[1] |
Asano T, Sakai A, Ouchi S, et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Advanced Materials, 2018, 30: 1803075.
|
[2] |
Li X N, Liang J W, Luo J, et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries. Energy & Environmental Science, 2019, 12: 2665-2671.
|
[3] |
Li X N, Liang J W, Adair K R, et al. Origin of superionic Li3Y1-xInxCl6 halide solid electrolytes with high humidity tolerance. Nano Letters, 2020, 20: 4384-4392.
|
[4] |
Liang J W, Li X N, Wang S, et al. Site-occupation-tuned superionic LixScCl3+x halide solid electrolytes for all-solid-state batteries. Journal of the American Chemical Society, 2020, 142: 7012-7022.
|
[5] |
Schlem R, Muy S, Prinz N, et al. Mechanochemical synthesis: A tool to tune cation site disorder and ionic transport properties of Li3MCl6 (M = Y, Er) superionic conductors. Advanced Energy Materials, 2020, 10: 1903719.
|
[6] |
Kwak H, Han D, Lyoo J, et al. New cost-effective halide solid electrolytes for all-solid-state batteries: Mechanochemically prepared Fe3+-substituted Li2ZrCl6. Advanced Energy Materials, 2021, 11: 2003190.
|
[7] |
Kanno R, Takeda Y, Yamamoto O. Ionic-conductivity of solid lithium ion conductors with the spinel structure: Li2MCl4 (M = Mg, Mn, Fe, Cd). Materials Research Bulletin, 1981, 16: 999-1005.
|
[8] |
Lutz H D, Schmidt W, Haeuseler H. Chloride spinels: A new group of solid lithium electrolytes. Journal of Physics and Chemistry of Solids, 1981, 42: 287-289.
|
[9] |
Kanno R, Takeda Y, Takada K, et al. Ionic-conductivity and phase-transition of the spinel system Li2-2xM1+xCl4 (M=Mg, Mn, Cd). Journal of the Electrochemical Society, 1984, 131: 469-474.
|
[10] |
Kanno R, Takeda Y, Matsumoto A, et al. Synthesis, structure, ionic-conductivity, and phase-transformation of new double chloride spinel, Li2CrCl4. Journal of Solid State Chemistry, 1988, 75: 41-51.
|
[11] |
Lutz H D, Pfitzner A, Cockcroft J K. Structural phase-transition and nonstoichiometry of Li2FeCl4 -neutron diffraction studies. Journal of Solid State Chemistry, 1993, 107: 245-249.
|
[12] |
Wickel C, Zhang Z, Lutz H D. Crystal-structure and electric-conductivity of spinel-type Li2-2xMn1+xCl4 solid-solutions. Zeitschrift für anorganische und allgemeine Chemie, 1994, 620: 1537-1542.
|
[13] |
Cros C, Hanebali L, Latie L, et al. Structure, ionic motion and conductivity in some solid-solutions of the LiCl-MCl2 systems (M = Mg, V, Mn). Solid State Ionics, 1983, 9-10:139-147.
|
[14] |
Lutz H D, Steiner H J, Wickel C. Fast ionic conductivity and crystal structure of spinel-type Li2-xMn1-xMxCl4 (M=Ga,In). Solid State Ionics, 1997, 95: 173-181.
|
[15] |
Jacob M M E, Rajendran S, Gangadharan R, et al. Effect of dispersion of CeO2 in the ionic conductivity of Li2MnCl4. Solid State Ionics, 1996, 86-88: 595-602.
|
[16] |
Soubeyroux J L, Cros C, Gang W, et al. Neutron-diffraction investigation of the cationic distribution in the structure of the spinel-type solid-solutions Li2-2xM1+xCl4(M=Mg, V ) : Correlation with the ionic-conductivity and NMR data. Solid State Ionics, 1985, 15: 293-300.
|
[17] |
Toby B H, Von Dreele R B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. Journal of Applied Crystallography, 2013, 46: 544-549.
|
[18] |
Yabuuchi N, Hara R, Kajiyama M, et al. New O2/P2-type Li-excess layered manganese oxides as promising multi-functional electrode materials for rechargeable Li/Na batteries. Advanced Energy Materials, 2014, 4: 1301453.
|
[1] |
Asano T, Sakai A, Ouchi S, et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Advanced Materials, 2018, 30: 1803075.
|
[2] |
Li X N, Liang J W, Luo J, et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries. Energy & Environmental Science, 2019, 12: 2665-2671.
|
[3] |
Li X N, Liang J W, Adair K R, et al. Origin of superionic Li3Y1-xInxCl6 halide solid electrolytes with high humidity tolerance. Nano Letters, 2020, 20: 4384-4392.
|
[4] |
Liang J W, Li X N, Wang S, et al. Site-occupation-tuned superionic LixScCl3+x halide solid electrolytes for all-solid-state batteries. Journal of the American Chemical Society, 2020, 142: 7012-7022.
|
[5] |
Schlem R, Muy S, Prinz N, et al. Mechanochemical synthesis: A tool to tune cation site disorder and ionic transport properties of Li3MCl6 (M = Y, Er) superionic conductors. Advanced Energy Materials, 2020, 10: 1903719.
|
[6] |
Kwak H, Han D, Lyoo J, et al. New cost-effective halide solid electrolytes for all-solid-state batteries: Mechanochemically prepared Fe3+-substituted Li2ZrCl6. Advanced Energy Materials, 2021, 11: 2003190.
|
[7] |
Kanno R, Takeda Y, Yamamoto O. Ionic-conductivity of solid lithium ion conductors with the spinel structure: Li2MCl4 (M = Mg, Mn, Fe, Cd). Materials Research Bulletin, 1981, 16: 999-1005.
|
[8] |
Lutz H D, Schmidt W, Haeuseler H. Chloride spinels: A new group of solid lithium electrolytes. Journal of Physics and Chemistry of Solids, 1981, 42: 287-289.
|
[9] |
Kanno R, Takeda Y, Takada K, et al. Ionic-conductivity and phase-transition of the spinel system Li2-2xM1+xCl4 (M=Mg, Mn, Cd). Journal of the Electrochemical Society, 1984, 131: 469-474.
|
[10] |
Kanno R, Takeda Y, Matsumoto A, et al. Synthesis, structure, ionic-conductivity, and phase-transformation of new double chloride spinel, Li2CrCl4. Journal of Solid State Chemistry, 1988, 75: 41-51.
|
[11] |
Lutz H D, Pfitzner A, Cockcroft J K. Structural phase-transition and nonstoichiometry of Li2FeCl4 -neutron diffraction studies. Journal of Solid State Chemistry, 1993, 107: 245-249.
|
[12] |
Wickel C, Zhang Z, Lutz H D. Crystal-structure and electric-conductivity of spinel-type Li2-2xMn1+xCl4 solid-solutions. Zeitschrift für anorganische und allgemeine Chemie, 1994, 620: 1537-1542.
|
[13] |
Cros C, Hanebali L, Latie L, et al. Structure, ionic motion and conductivity in some solid-solutions of the LiCl-MCl2 systems (M = Mg, V, Mn). Solid State Ionics, 1983, 9-10:139-147.
|
[14] |
Lutz H D, Steiner H J, Wickel C. Fast ionic conductivity and crystal structure of spinel-type Li2-xMn1-xMxCl4 (M=Ga,In). Solid State Ionics, 1997, 95: 173-181.
|
[15] |
Jacob M M E, Rajendran S, Gangadharan R, et al. Effect of dispersion of CeO2 in the ionic conductivity of Li2MnCl4. Solid State Ionics, 1996, 86-88: 595-602.
|
[16] |
Soubeyroux J L, Cros C, Gang W, et al. Neutron-diffraction investigation of the cationic distribution in the structure of the spinel-type solid-solutions Li2-2xM1+xCl4(M=Mg, V ) : Correlation with the ionic-conductivity and NMR data. Solid State Ionics, 1985, 15: 293-300.
|
[17] |
Toby B H, Von Dreele R B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. Journal of Applied Crystallography, 2013, 46: 544-549.
|
[18] |
Yabuuchi N, Hara R, Kajiyama M, et al. New O2/P2-type Li-excess layered manganese oxides as promising multi-functional electrode materials for rechargeable Li/Na batteries. Advanced Energy Materials, 2014, 4: 1301453.
|