[1] |
Tabe Y, Lorenzi P L, Konopleva M. Amino acid metabolism in hematologic malignancies and the era of targeted therapy. Blood, 2019, 134(13): 1014-1023.
|
[2] |
Li T, Le A. Glutamine metabolism in cancer. Adv. Exp. Med. Biol., 2018, 1063: 13-32.
|
[3] |
Grohmann U, Bronte V. Control of immune response by amino acid metabolism. Immunol. Rev., 2010, 236: 243-264.
|
[4] |
Martinez-Outschoorn U E, Peiris-Pages M, Pestell R G, et al. Cancer metabolism: A therapeutic perspective. Nat. Rev. Clin. Oncol., 2017, 14(1): 11-31.
|
[5] |
Holecek M. Branched-chain amino acids in health and disease: Metabolism, alterations in blood plasma, and as supplements. Nutr. Metab. (Lond), 2018, 15: 33.
|
[6] |
Wolfson R L, Sabatini D M. The dawn of the age of amino acid sensors for the mTORC1 pathway. Cell Metab., 2017, 26(2): 301-309.
|
[7] |
Staats S, Luersen K, Wagner A E, et al. Drosophila melanogaster as a versatile model organism in food and nutrition research. J. Agric. Food Chem., 2018, 66(15): 3737-3753.
|
[8] |
Castella C, Amichot M, Berge J B, et al. DSC1 channels are expressed in both the central and the peripheral nervous system of adult Drosophila melanogaster. Invert. Neurosci., 2001, 4(2): 85-94.
|
[9] |
Rein K, Zockler M, Mader M T, et al. The Drosophila standard brain. Curr. Biol., 2002, 12(3): 227-231.
|
[10] |
Zheng Z, Lauritzen J S, Perlman E, et al. A complete electron microscopy volume of the brain of adult Drosophila melanogaster. Cell, 2018, 174(3): 730-743.
|
[11] |
Nassel D R, Liu Y, Luo J. Insulin/IGF signaling and its regulation in Drosophila. Gen. Comp. Endocrinol., 2015, 221: 255-266.
|
[12] |
Oldham S. Obesity and nutrient sensing TOR pathway in flies and vertebrates: Functional conservation of genetic mechanisms. Trends Endocrinol. Metab., 2011, 22(2): 45-52.
|
[13] |
Musselman L P, Kuhnlein R P. Drosophila as a model to study obesity and metabolic disease. J. Exp. Biol., 2018, 221(Pt Suppl 1): jeb163881; doi: 10.1242/jeb.163881.
|
[14] |
Droujinine I A, Perrimon N. Interorgan communication pathways in physiology: Focus on Drosophila. Annu. Rev. Genet., 2016, 50: 539-570.
|
[15] |
Graham P, Pick L. Drosophila as a model for diabetes and diseases of insulin resistance. Curr. Top. Dev. Biol., 2017, 121: 397-419.
|
[16] |
Agrawal N, Delanoue R, Mauri A, et al. The Drosophila TNF Eiger is an adipokine that acts on insulin-producing cells to mediate nutrient response. Cell Metab., 2016, 23(4): 675-684.
|
[17] |
Jayakumar S, Richhariya S, Reddy O V, et al. Drosophila larval to pupal switch under nutrient stress requires IP3R/Ca(2+) signalling in glutamatergic interneurons. Elife, 2016, 5: e17495.
|
[18] |
Jayakumar S, Richhariya S, Deb B K, et al. A multicomponent neuronal response encodes the larval decision to pupariate upon amino acid starvation. J. Neurosci., 2018, 38(47): 10202-10219.
|
[19] |
Ki Y, Lim C. Sleep-promoting effects of threonine link amino acid metabolism in Drosophila neuron to GABAergic control of sleep drive. Elife, 2019, 8: e40593.
|
[20] |
Sonn J Y, Lee J, Sung M K, et al. Serine metabolism in the brain regulates starvation-induced sleep suppression in Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(27): 7129-7134.
|
[21] |
Yang Z, Huang R, Fu X, et al. A post-ingestive amino acid sensor promotes food consumption in Drosophila. Cell Res., 2018, 28(10): 1013-1025.
|
[22] |
Lee B C, Kaya A, Ma S, et al. Methionine restriction extends lifespan of Drosophila melanogaster under conditions of low amino-acid status. Nat. Commun., 2014, 5: 3592.
|
[23] |
Obata F, Tsuda-Sakurai K, Yamazaki T, et al. Nutritional control of stem cell division through S-adenosylmethionine in Drosophila intestine. Dev. Cell, 2018, 44(6): 741-751.
|
[24] |
Croset V, Schleyer M, Arguello J R, et al. A molecular and neuronal basis for amino acid sensing in the Drosophila larva. Sci. Rep., 2016, 6: 34871.
|
[25] |
Barone M C, Bohmann D. Assessing neurodegenerative phenotypes in Drosophila dopaminergic neurons by climbing assays and whole brain immunostaining. J. Vis. Exp., 2013(74): e50339.
|
[26] |
Zinke I, Schutz C S, Katzenberger J D, et al. Nutrient control of gene expression in Drosophila: Microarray analysis of starvation and sugar-dependent response. EMBO J., 2002, 21(22): 6162-6173.
|
[27] |
Ashburner M, Ball C A, Blake J A, et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet., 2000, 25(1): 25-29.
|
[28] |
Komljenovic A, Roux J, Wollbrett J, et al. BgeeDB, an R package for retrieval of curated expression datasets and for gene list expression localization enrichment tests. F1000Res., 2016, 5: 2748.
|
[1] |
Tabe Y, Lorenzi P L, Konopleva M. Amino acid metabolism in hematologic malignancies and the era of targeted therapy. Blood, 2019, 134(13): 1014-1023.
|
[2] |
Li T, Le A. Glutamine metabolism in cancer. Adv. Exp. Med. Biol., 2018, 1063: 13-32.
|
[3] |
Grohmann U, Bronte V. Control of immune response by amino acid metabolism. Immunol. Rev., 2010, 236: 243-264.
|
[4] |
Martinez-Outschoorn U E, Peiris-Pages M, Pestell R G, et al. Cancer metabolism: A therapeutic perspective. Nat. Rev. Clin. Oncol., 2017, 14(1): 11-31.
|
[5] |
Holecek M. Branched-chain amino acids in health and disease: Metabolism, alterations in blood plasma, and as supplements. Nutr. Metab. (Lond), 2018, 15: 33.
|
[6] |
Wolfson R L, Sabatini D M. The dawn of the age of amino acid sensors for the mTORC1 pathway. Cell Metab., 2017, 26(2): 301-309.
|
[7] |
Staats S, Luersen K, Wagner A E, et al. Drosophila melanogaster as a versatile model organism in food and nutrition research. J. Agric. Food Chem., 2018, 66(15): 3737-3753.
|
[8] |
Castella C, Amichot M, Berge J B, et al. DSC1 channels are expressed in both the central and the peripheral nervous system of adult Drosophila melanogaster. Invert. Neurosci., 2001, 4(2): 85-94.
|
[9] |
Rein K, Zockler M, Mader M T, et al. The Drosophila standard brain. Curr. Biol., 2002, 12(3): 227-231.
|
[10] |
Zheng Z, Lauritzen J S, Perlman E, et al. A complete electron microscopy volume of the brain of adult Drosophila melanogaster. Cell, 2018, 174(3): 730-743.
|
[11] |
Nassel D R, Liu Y, Luo J. Insulin/IGF signaling and its regulation in Drosophila. Gen. Comp. Endocrinol., 2015, 221: 255-266.
|
[12] |
Oldham S. Obesity and nutrient sensing TOR pathway in flies and vertebrates: Functional conservation of genetic mechanisms. Trends Endocrinol. Metab., 2011, 22(2): 45-52.
|
[13] |
Musselman L P, Kuhnlein R P. Drosophila as a model to study obesity and metabolic disease. J. Exp. Biol., 2018, 221(Pt Suppl 1): jeb163881; doi: 10.1242/jeb.163881.
|
[14] |
Droujinine I A, Perrimon N. Interorgan communication pathways in physiology: Focus on Drosophila. Annu. Rev. Genet., 2016, 50: 539-570.
|
[15] |
Graham P, Pick L. Drosophila as a model for diabetes and diseases of insulin resistance. Curr. Top. Dev. Biol., 2017, 121: 397-419.
|
[16] |
Agrawal N, Delanoue R, Mauri A, et al. The Drosophila TNF Eiger is an adipokine that acts on insulin-producing cells to mediate nutrient response. Cell Metab., 2016, 23(4): 675-684.
|
[17] |
Jayakumar S, Richhariya S, Reddy O V, et al. Drosophila larval to pupal switch under nutrient stress requires IP3R/Ca(2+) signalling in glutamatergic interneurons. Elife, 2016, 5: e17495.
|
[18] |
Jayakumar S, Richhariya S, Deb B K, et al. A multicomponent neuronal response encodes the larval decision to pupariate upon amino acid starvation. J. Neurosci., 2018, 38(47): 10202-10219.
|
[19] |
Ki Y, Lim C. Sleep-promoting effects of threonine link amino acid metabolism in Drosophila neuron to GABAergic control of sleep drive. Elife, 2019, 8: e40593.
|
[20] |
Sonn J Y, Lee J, Sung M K, et al. Serine metabolism in the brain regulates starvation-induced sleep suppression in Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(27): 7129-7134.
|
[21] |
Yang Z, Huang R, Fu X, et al. A post-ingestive amino acid sensor promotes food consumption in Drosophila. Cell Res., 2018, 28(10): 1013-1025.
|
[22] |
Lee B C, Kaya A, Ma S, et al. Methionine restriction extends lifespan of Drosophila melanogaster under conditions of low amino-acid status. Nat. Commun., 2014, 5: 3592.
|
[23] |
Obata F, Tsuda-Sakurai K, Yamazaki T, et al. Nutritional control of stem cell division through S-adenosylmethionine in Drosophila intestine. Dev. Cell, 2018, 44(6): 741-751.
|
[24] |
Croset V, Schleyer M, Arguello J R, et al. A molecular and neuronal basis for amino acid sensing in the Drosophila larva. Sci. Rep., 2016, 6: 34871.
|
[25] |
Barone M C, Bohmann D. Assessing neurodegenerative phenotypes in Drosophila dopaminergic neurons by climbing assays and whole brain immunostaining. J. Vis. Exp., 2013(74): e50339.
|
[26] |
Zinke I, Schutz C S, Katzenberger J D, et al. Nutrient control of gene expression in Drosophila: Microarray analysis of starvation and sugar-dependent response. EMBO J., 2002, 21(22): 6162-6173.
|
[27] |
Ashburner M, Ball C A, Blake J A, et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet., 2000, 25(1): 25-29.
|
[28] |
Komljenovic A, Roux J, Wollbrett J, et al. BgeeDB, an R package for retrieval of curated expression datasets and for gene list expression localization enrichment tests. F1000Res., 2016, 5: 2748.
|