[1] |
Eugenio C. Extremal Kähler metrics. In: Seminar on Differential Geometry. Princeton, NJ: Princeton University Press, 1982: 259-290.
|
[2] |
Chruściel P T. Semi-global existence and convergence of solutions of the Robinson Trautman (2-dimensional Calabi) equation. Comm. Math. Phys., 1991, 137(2): 289-313.
|
[3] |
Chen X X. Calabi flow in Riemann surfaces revisited: A new point of view. International Mathematics Research Notices, 2001, 2001(6): 275-297.
|
[4] |
Struwe M. Curvature flows on surfaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2002, 1(2): 247-274.
|
[5] |
Li H Z, Wang B, Zheng K. Regularity scales and convergence of the Calabi flow. Journal of Geometric Analysis, 2018, 28(3): 2050-2101.
|
[6] |
Yin H. Ricci flow on surfaces with conical singularities. J. Geom. Anal., 2010, 20(4): 970-995.
|
[7] |
Mazzeo R, Rubinstein Y, Sesum N. Ricci flow on surfaces with conic singularities. Anal. PDE, 2015, 8(4): 839-882.
|
[8] |
Phong D H, Song J, Sturm J, et al. The Ricci flow on the sphere with marked points. J. Differential Geom., 2020, 114(1): 117-170.
|
[9] |
Daniel R. Ricci flow on cone surfaces. Port. Math.,2018, 75(1): 11-65.
|
[10] |
Yin H. Analysis aspects of Ricci flow on conical surfaces. https://arxiv.org/abs/1605.08836.
|
[11] |
Zheng K. Existence of constant scalar curvature Kähler cone metrics, properness and geodesic stability. https://arxiv.org/abs/1803.09506.
|
[12] |
Zheng K. Geodesics in the space of Kähler cone metrics II: Uniqueness of constant scalar curvature Kähler cone metrics. Communications on Pure and Applied Mathematics, 2019, 72(12): 2621-2701.
|
[13] |
Eidelman S D, Zhitarashu N V. Parabolic Boundary Value Problems. Basel, Switzerland: Birkhäuser Verlag, 1998.
|
[1] |
Eugenio C. Extremal Kähler metrics. In: Seminar on Differential Geometry. Princeton, NJ: Princeton University Press, 1982: 259-290.
|
[2] |
Chruściel P T. Semi-global existence and convergence of solutions of the Robinson Trautman (2-dimensional Calabi) equation. Comm. Math. Phys., 1991, 137(2): 289-313.
|
[3] |
Chen X X. Calabi flow in Riemann surfaces revisited: A new point of view. International Mathematics Research Notices, 2001, 2001(6): 275-297.
|
[4] |
Struwe M. Curvature flows on surfaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2002, 1(2): 247-274.
|
[5] |
Li H Z, Wang B, Zheng K. Regularity scales and convergence of the Calabi flow. Journal of Geometric Analysis, 2018, 28(3): 2050-2101.
|
[6] |
Yin H. Ricci flow on surfaces with conical singularities. J. Geom. Anal., 2010, 20(4): 970-995.
|
[7] |
Mazzeo R, Rubinstein Y, Sesum N. Ricci flow on surfaces with conic singularities. Anal. PDE, 2015, 8(4): 839-882.
|
[8] |
Phong D H, Song J, Sturm J, et al. The Ricci flow on the sphere with marked points. J. Differential Geom., 2020, 114(1): 117-170.
|
[9] |
Daniel R. Ricci flow on cone surfaces. Port. Math.,2018, 75(1): 11-65.
|
[10] |
Yin H. Analysis aspects of Ricci flow on conical surfaces. https://arxiv.org/abs/1605.08836.
|
[11] |
Zheng K. Existence of constant scalar curvature Kähler cone metrics, properness and geodesic stability. https://arxiv.org/abs/1803.09506.
|
[12] |
Zheng K. Geodesics in the space of Kähler cone metrics II: Uniqueness of constant scalar curvature Kähler cone metrics. Communications on Pure and Applied Mathematics, 2019, 72(12): 2621-2701.
|
[13] |
Eidelman S D, Zhitarashu N V. Parabolic Boundary Value Problems. Basel, Switzerland: Birkhäuser Verlag, 1998.
|