[1] |
Supuran C T. Carbonic anhydrases: Novel therapeutic applications for inhibitors and activators. Nature Reviews Drug Discovery, 2008, 7: 168-181.
|
[2] |
Supuran C T. Carbonic Anhydrase inhibition and the management of hypoxic tumors. Metabolites, 2017, 7: 48; doi: 10.3390/metabo7030048.
|
[3] |
Chiche J, Ilc K, Laferriere J, et al. Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Research, 2009, 69: 358-368.
|
[4] |
Doyen J, Parks S K, Marcie S, et al. Knock-down of hypoxia-induced carbonic anhydrases IX and XII radiosensitizes tumor cells by increasing intracellular acidosis.Frontiers in Oncology, 2012, 2: 199.
|
[5] |
Ahlskog J K J, Dumelin C E, Trussel S, et al. In vivo targeting of tumor-associated carbonic anhydrases using acetazolamide derivatives.Bioorganic & Medicinal Chemistry Letters, 2009, 19: 4851-4856.
|
[6] |
Neri D, Supuran C T. Interfering with pH regulation in tumours as a therapeutic strategy. Nature Reviews Drug Discovery, 2011, 10: 767-777.
|
[7] |
Supuran C T. Carbonic anhydrase inhibitors and their potential in a range of therapeutic areas. Expert Opinion on Therapeutic Patents, 2018, 28: 709-712.
|
[8] |
Pacchiano F, Aggarwal M, Avvaru B S, et al. Selective hydrophobic pocket binding observed within the carbonic anhydrase II active site accommodate different 4-substituted-ureido-benzenesulfonamides and correlate to inhibitor potency.Chemical Communications, 2010, 46: 8371-8373.
|
[9] |
Pacchiano F, Carta F, McDonald P C, et al. Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show antimetastatic activity in a model of breast cancer metastasis. Journal of Medicinal Chemistry, 2011, 54: 1896-1902.
|
[10] |
McDonald P C, Chafe S C, Brown W S, et al. Regulation of pH bycarbonic anhydrase 9 mediates survival of pancreatic cancer cells with activated KRAS in response to hypoxia. Gastroenterology, 2019, 157: 823-837.
|
[11] |
Andreucci E, Ruzzolini J, Peppicelli S, et al. The carbonic anhydrase IX inhibitorSLC-0111 sensitises cancer cells to conventional chemotherapy. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34: 117-123.
|
[12] |
McDonald P C, Chia S, Bedard P L, et al. A Phase 1study of SLC-0111, a novel inhibitor of carbonic anhydrase IX, in patients with advanced solid tumors. American Journal of Clinical Oncology, 2020,43:484-490.
|
[13] |
Nocentini A, Supuran C T. Carbonic anhydrase inhibitors as antitumor/antimetastatic agents: A patent review (2008-2018). Expert Opinion on Therapeutic Patents, 2018, 28: 729-740.
|
[14] |
Lock F E, McDonald P C, Lou Y, et al. Targeting carbonic anhydrase IX depletes breast cancer stem cells within the hypoxic niche.Oncogene, 2013, 32: 5210-5219.
|
[15] |
Boyd N H, Walker K, Fried J, et al. Addition of carbonic anhydrase 9 inhibitor SLC-0111 to temozolomide treatment delays glioblastoma growth in vivo.JCI Insight, 2017, 2: e92928.
|
[16] |
Shetty S S, Kudpaje A, Jayaraj R, et al. Tongue cancer: A discrete oral cavity subsite.Oral Oncology, 2019, 99: 104348.
|
[17] |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA: A Cancer Journal for Clinicians, 2018, 68: 394-424.
|
[18] |
Salo T, Vered M, Bello I O, et al. Insights into the role of components of the tumor microenvironment in oral carcinoma call for new therapeutic approaches. Experimental Cell Research, 2014, 325: 58-64.
|
[19] |
Omura K. Current status of oral cancer treatment strategies: Surgical treatments for oral squamous cell carcinoma. International Journal of Clinical Oncology, 2014, 19: 423-430.
|
[20] |
Roh J L, Cho K J, Kwon G Y, et al. The prognostic value of hypoxia markers in T2-staged oral tongue cancer.Oral Oncology, 2009, 45: 63-68.
|
[21] |
Zheng G, Zhou M, Ou X, et al. Identification of carbonic anhydrase 9 as a contributor to pingyangmycin-induced drug resistance in human tongue cancer cells.FEBS Journal, 2010, 277: 4506-4518.
|
[22] |
Xu G, Fang Z, Clark L H, et al. Topiramate exhibits anti-tumorigenic and metastatic effects in ovarian cancer cells. American Journal of Translational Research, 2018, 10: 1663-1676.
|
[23] |
Wang Y, Shi K R, Zhang L, et al. Significantly enhanced tumor cellular and lysosomal hydroxychloroquine delivery by smart liposomes for optimal autophagy inhibition and improved antitumor efficiency with liposomal doxorubicin.Autophagy, 2016, 12: 949-962.
|
[24] |
Corbet C, Bastien E, Santiago de Jesus J P, et al. TGFbeta2-induced formation of lipid droplets supports acidosis-driven EMT and the metastatic spreading of cancer cells.Nature Communications, 2020, 11: 454.
|
[25] |
Parks S K, Chiche J, Pouyssegur J. Disrupting proton dynamics and energy metabolism for cancer therapy. Nature Reviews Cancer, 2013, 13: 611-623.
|
[26] |
Rapisarda V, Borghesan M, Miguela V, et al. Integrinbeta 3 regulates cellular senescence by activating the TGF-β pathway. Cell Reports, 2017, 18: 2480-2493.
|
[27] |
Yeh H W, Lee S S, Chang C Y, et al. A new switch for TGFβ in cancer. Cancer Research, 2019, 79: 3797-3805.
|
[28] |
Vandenabeele P, Galluzzi L, Vanden Berghe T, et al. Molecular mechanisms of necroptosis:An ordered cellular explosion. Nature Reviews Molecular Cell Biology, 2010, 11: 700-714.
|
[29] |
Vereecke L, Beyaert R, van Loo G. The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends in Immunology, 2009, 30: 383-391.
|
[30] |
Swayampakula M, McDonald P C, Vallejo M, et al. The interactome of metabolic enzyme carbonic anhydrase IX reveals novel roles in tumor cell migration and invadopodia/MMP14-mediated invasion.Oncogene, 2017, 36: 6244-6261.
|
[31] |
Debreova M, Csaderova L, Burikova M, et al. CAIXregulates invadopodia formation through both a pH-dependent mechanism and interplay with actin regulatory proteins. International Journal of Molecular Sciences, 2019, 20: 19.
|
[32] |
Wang H C, Chan L P, Cho S F. Targeting the immune microenvironment in the treatment of head and neck squamous cell carcinoma. Frontiers in Oncology, 2019, 9: 1084.
|
[33] |
Zheng G, Peng C, Jia X, et al. ZEB1 transcriptionally regulated carbonic anhydrase 9 mediates the chemoresistance of tongue cancer via maintaining intracellular pH.Molecular Cancer, 2015, 14: 84.
|
[34] |
Chafe S C, McDonald P C, Saberi S, et al. Targeting hypoxia-induced carbonic anhydrase IX enhances immune-checkpoint blockade locally and systemically. Cancer Immunology Research, 2019, 7: 1064-1078.
|
[1] |
Supuran C T. Carbonic anhydrases: Novel therapeutic applications for inhibitors and activators. Nature Reviews Drug Discovery, 2008, 7: 168-181.
|
[2] |
Supuran C T. Carbonic Anhydrase inhibition and the management of hypoxic tumors. Metabolites, 2017, 7: 48; doi: 10.3390/metabo7030048.
|
[3] |
Chiche J, Ilc K, Laferriere J, et al. Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Research, 2009, 69: 358-368.
|
[4] |
Doyen J, Parks S K, Marcie S, et al. Knock-down of hypoxia-induced carbonic anhydrases IX and XII radiosensitizes tumor cells by increasing intracellular acidosis.Frontiers in Oncology, 2012, 2: 199.
|
[5] |
Ahlskog J K J, Dumelin C E, Trussel S, et al. In vivo targeting of tumor-associated carbonic anhydrases using acetazolamide derivatives.Bioorganic & Medicinal Chemistry Letters, 2009, 19: 4851-4856.
|
[6] |
Neri D, Supuran C T. Interfering with pH regulation in tumours as a therapeutic strategy. Nature Reviews Drug Discovery, 2011, 10: 767-777.
|
[7] |
Supuran C T. Carbonic anhydrase inhibitors and their potential in a range of therapeutic areas. Expert Opinion on Therapeutic Patents, 2018, 28: 709-712.
|
[8] |
Pacchiano F, Aggarwal M, Avvaru B S, et al. Selective hydrophobic pocket binding observed within the carbonic anhydrase II active site accommodate different 4-substituted-ureido-benzenesulfonamides and correlate to inhibitor potency.Chemical Communications, 2010, 46: 8371-8373.
|
[9] |
Pacchiano F, Carta F, McDonald P C, et al. Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show antimetastatic activity in a model of breast cancer metastasis. Journal of Medicinal Chemistry, 2011, 54: 1896-1902.
|
[10] |
McDonald P C, Chafe S C, Brown W S, et al. Regulation of pH bycarbonic anhydrase 9 mediates survival of pancreatic cancer cells with activated KRAS in response to hypoxia. Gastroenterology, 2019, 157: 823-837.
|
[11] |
Andreucci E, Ruzzolini J, Peppicelli S, et al. The carbonic anhydrase IX inhibitorSLC-0111 sensitises cancer cells to conventional chemotherapy. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34: 117-123.
|
[12] |
McDonald P C, Chia S, Bedard P L, et al. A Phase 1study of SLC-0111, a novel inhibitor of carbonic anhydrase IX, in patients with advanced solid tumors. American Journal of Clinical Oncology, 2020,43:484-490.
|
[13] |
Nocentini A, Supuran C T. Carbonic anhydrase inhibitors as antitumor/antimetastatic agents: A patent review (2008-2018). Expert Opinion on Therapeutic Patents, 2018, 28: 729-740.
|
[14] |
Lock F E, McDonald P C, Lou Y, et al. Targeting carbonic anhydrase IX depletes breast cancer stem cells within the hypoxic niche.Oncogene, 2013, 32: 5210-5219.
|
[15] |
Boyd N H, Walker K, Fried J, et al. Addition of carbonic anhydrase 9 inhibitor SLC-0111 to temozolomide treatment delays glioblastoma growth in vivo.JCI Insight, 2017, 2: e92928.
|
[16] |
Shetty S S, Kudpaje A, Jayaraj R, et al. Tongue cancer: A discrete oral cavity subsite.Oral Oncology, 2019, 99: 104348.
|
[17] |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA: A Cancer Journal for Clinicians, 2018, 68: 394-424.
|
[18] |
Salo T, Vered M, Bello I O, et al. Insights into the role of components of the tumor microenvironment in oral carcinoma call for new therapeutic approaches. Experimental Cell Research, 2014, 325: 58-64.
|
[19] |
Omura K. Current status of oral cancer treatment strategies: Surgical treatments for oral squamous cell carcinoma. International Journal of Clinical Oncology, 2014, 19: 423-430.
|
[20] |
Roh J L, Cho K J, Kwon G Y, et al. The prognostic value of hypoxia markers in T2-staged oral tongue cancer.Oral Oncology, 2009, 45: 63-68.
|
[21] |
Zheng G, Zhou M, Ou X, et al. Identification of carbonic anhydrase 9 as a contributor to pingyangmycin-induced drug resistance in human tongue cancer cells.FEBS Journal, 2010, 277: 4506-4518.
|
[22] |
Xu G, Fang Z, Clark L H, et al. Topiramate exhibits anti-tumorigenic and metastatic effects in ovarian cancer cells. American Journal of Translational Research, 2018, 10: 1663-1676.
|
[23] |
Wang Y, Shi K R, Zhang L, et al. Significantly enhanced tumor cellular and lysosomal hydroxychloroquine delivery by smart liposomes for optimal autophagy inhibition and improved antitumor efficiency with liposomal doxorubicin.Autophagy, 2016, 12: 949-962.
|
[24] |
Corbet C, Bastien E, Santiago de Jesus J P, et al. TGFbeta2-induced formation of lipid droplets supports acidosis-driven EMT and the metastatic spreading of cancer cells.Nature Communications, 2020, 11: 454.
|
[25] |
Parks S K, Chiche J, Pouyssegur J. Disrupting proton dynamics and energy metabolism for cancer therapy. Nature Reviews Cancer, 2013, 13: 611-623.
|
[26] |
Rapisarda V, Borghesan M, Miguela V, et al. Integrinbeta 3 regulates cellular senescence by activating the TGF-β pathway. Cell Reports, 2017, 18: 2480-2493.
|
[27] |
Yeh H W, Lee S S, Chang C Y, et al. A new switch for TGFβ in cancer. Cancer Research, 2019, 79: 3797-3805.
|
[28] |
Vandenabeele P, Galluzzi L, Vanden Berghe T, et al. Molecular mechanisms of necroptosis:An ordered cellular explosion. Nature Reviews Molecular Cell Biology, 2010, 11: 700-714.
|
[29] |
Vereecke L, Beyaert R, van Loo G. The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends in Immunology, 2009, 30: 383-391.
|
[30] |
Swayampakula M, McDonald P C, Vallejo M, et al. The interactome of metabolic enzyme carbonic anhydrase IX reveals novel roles in tumor cell migration and invadopodia/MMP14-mediated invasion.Oncogene, 2017, 36: 6244-6261.
|
[31] |
Debreova M, Csaderova L, Burikova M, et al. CAIXregulates invadopodia formation through both a pH-dependent mechanism and interplay with actin regulatory proteins. International Journal of Molecular Sciences, 2019, 20: 19.
|
[32] |
Wang H C, Chan L P, Cho S F. Targeting the immune microenvironment in the treatment of head and neck squamous cell carcinoma. Frontiers in Oncology, 2019, 9: 1084.
|
[33] |
Zheng G, Peng C, Jia X, et al. ZEB1 transcriptionally regulated carbonic anhydrase 9 mediates the chemoresistance of tongue cancer via maintaining intracellular pH.Molecular Cancer, 2015, 14: 84.
|
[34] |
Chafe S C, McDonald P C, Saberi S, et al. Targeting hypoxia-induced carbonic anhydrase IX enhances immune-checkpoint blockade locally and systemically. Cancer Immunology Research, 2019, 7: 1064-1078.
|