ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Original Paper

Dielectric responses enhanced by nanofiller-polymer interfaces in PVDF-based terpolymer nanocomposites

Funds:  Supported by the National Key Research and Development Program of China (2017YFA0701301), the National Natural Science Foundation of China (51672261, 51373161), the Start-up Fund of Guangdong Technion Israel Institute of Technology.
Cite this:
https://doi.org/10.3969/j.issn.0253-2778.2020.06.007
More Information
  • Author Bio:

    CHE Yaping, female, born in 1995, master candidate. Research field: dielectric nanocomposites. E-mail: cyping@mail.ustc.edu.cn

  • Corresponding author: CHU Baojin
  • Received Date: 28 December 2019
  • Accepted Date: 20 March 2020
  • Rev Recd Date: 20 March 2020
  • Publish Date: 30 June 2020
  • The interfaces between nanofillers and the polymer matrix in nanocomposites are known to be increasingly important when nanofillers become smaller. A P(VDF-TrFE-CFE) terpolymer is used as the template polymer matrix and low-K(dielectric constant) SiO2 and high-K BaTiO3 nanoparticles as fillers to determine the enhancement effect of the interfaces. For both kinds of fillers, anomalous increases in the dielectric constant and polarization response are observed at nanoparticle loading less than 1%( volume fraction). These increases are not related to the intrinsic dielectric properties of the nanofillers and the change of crystallinity of the terpolymer. The crystalline phase is slightly changed from a non-polar structure towards a more polar one, improving the dielectric response in the interfacial regions. An interfacial model is proposed and the non-uniform dielectric response of the interfacial regions is responsible for the observed dielectric phenomena. The overlapping of the interfacial regions leads to the maximum dielectric response of the nanocomposites with certain particle loading.
    The interfaces between nanofillers and the polymer matrix in nanocomposites are known to be increasingly important when nanofillers become smaller. A P(VDF-TrFE-CFE) terpolymer is used as the template polymer matrix and low-K(dielectric constant) SiO2 and high-K BaTiO3 nanoparticles as fillers to determine the enhancement effect of the interfaces. For both kinds of fillers, anomalous increases in the dielectric constant and polarization response are observed at nanoparticle loading less than 1%( volume fraction). These increases are not related to the intrinsic dielectric properties of the nanofillers and the change of crystallinity of the terpolymer. The crystalline phase is slightly changed from a non-polar structure towards a more polar one, improving the dielectric response in the interfacial regions. An interfacial model is proposed and the non-uniform dielectric response of the interfacial regions is responsible for the observed dielectric phenomena. The overlapping of the interfacial regions leads to the maximum dielectric response of the nanocomposites with certain particle loading.
  • loading
  • [1]
    WAGNER D. Paving the way to stronger materials[J]. Nature Nanotechnology, 2007, 2: 742-744.
    [2]
    MONIRUZZAMAN M, CHATTOPADHYAY J, BILLUPS W E, et al. Tuning the mechanical properties of SWNT/nylon 6,10 composites with flexible spacers at the interface[J]. Nano Letters, 2007, 7(5): 1178-1185.
    [3]
    BAI Y, CHENG Z Y, BHARTI V, et al. High-dielectric-constant ceramic-powder polymer composites[J]. Applied Physics Letters, 2000, 76(25): 3804-3806.
    [4]
    ROY M, NELSON J K, MACCRONE R K, et al. Polymer nanocomposite dielectrics-the role of the interface[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 4(4): 629-643.
    [5]
    TAN Q, IRWIN P, CAO Y. Advanced dielectrics for capacitors[J]. IEEJ Transactions on Fundamentals and Materials, 2006, 126(11): 1153-1159.
    [6]
    LIU S H, ZHAI J W, WANG J W, et al. Enhanced energy storage density in poly(vinylidene fluoride) nanocomposites by a small loading of surface-hydroxylated Ba0.6Sr0.4TiO3 nanofibers[J]. ACS Applied Materials & Interfaces, 2014, 6(3): 1533-1540.
    [7]
    LI Q, CHEN L, GADINSKI M R, et al. Flexible high-temperature dielectric materials from polymer nanocomposites[J]. Nature, 2015, 523(576): 576-579.
    [8]
    HU X P, YI K W, LIU J, et al. High energy density dielectrics based on PVDF-based polymers[J]. Energy Technology, 2018, 6(5): 849-864.
    [9]
    CHU B J, LIN M R, NEESE B, et al. Enhancement of dielectric energy density in thepoly(vinylidene fluoride)-based terpolymer/copolymer blends[J]. Applied Physics Letters, 2007, 91(12): 122909.
    [10]
    CHU B J, LIN M R, NEESE B,et al. Interfaces in poly(vinylidene fluoride) terpolymer/ZrO2 nanocomposites and their effect on dielectric properties[J]. Journal of Applied Physics, 2009, 105(1): 014103.
    [11]
    THAKUR Y, ZHANG T, LACOB C, et al. Enhancement of the dielectric response in polymer nanocomposites with low dielectric constant fillers[J]. Nanoscale, 2017, 9: 10992-10997.
    [12]
    TANAKA T, KOZAKO M, FUSE N, et al. Proposal of a multi-core model for polymer nanocomposite dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(4): 669-681.
    [13]
    SHEN Y, LIN Y H, LI M, et al. High dielectric performance of polymer composite films induced by a percolating interparticle barrier layer[J]. Advanced Materials, 2007, 19(10): 1418-1422.
    [14]
    PRIYA L, JOG J P. Intercalatedpoly(vinylidene fluoride)/clay nanocomposites: Structure and properties[J]. Journal of Polymer Science Part B: Polymer Physics, 2003, 41(1): 31-38.
    [15]
    SHAH D, MAITI P, GUNN E, et al. Dramaticenhancements in toughness of polyvinylidene fluoride nanocomposites via nanoclay-directed crystal structure and morphology[J]. Advanced Materials, 2004, 16(14): 1173.
    [16]
    XIA F, CHENG Z Y, XU S H, et al. High electromechanical responses in a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer[J]. Advanced Materials, 2002, 14(21): 1574-1577.
    [17]
    CHEN Q, SHEN Y, ZHANG S H, et al. Polymer-based dielectrics with high energy storage density[J]. Annual Review of Materials Research, 2015, 45: 433-458.
    [18]
    CHU B J, ZHOU X, NEESE B, et al.Relaxor ferroelectric poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer for high energy density storage capacitors[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2006, 13(5): 1162-1169.
    [19]
    NAKAJIMA N, OKI M, ISOHAMA Y, et al. Enhancement of dielectric constant of BaTiO3 nanoparticles studied by resonant x-ray emission spectroscopy[J]. Physical Review B, 2012, 86(22): 224114.
    [20]
    SAKABE Y, WADA N, HAMAJI Y, et al. Grainsize effects on dielectric properties and crystal structure of fine-grained BaTiO3 ceramics[J]. Journal of the Korean Physical Society, 1998, 32: S260-S264.
    [21]
    BAO H M, SONG J, ZHANG J F, et al. Phase transitions and ferroelectricrelaxor behavior in P(VDF-TrFE-CFE) terpolymers[J]. Macromolecules, 2007, 40(7): 2371-2379.
    [22]
    WANG Y, REN K L, ZHANG Q M. Direct piezoelectric response of piezopolymer polyvinylidene fluoride under high mechanical strain and stress[J]. Applied Physics Letters, 2007, 91(22): 222905.
    [23]
    RIBEIRO S, MEIRA R, CORREIA D M, et al. Silica nanoparticles surface charge modulation of the electroactive phase content and physical-chemical properties ofpoly(vinylidene fluoride) nanocomposites[J]. Composites Part B: Engineering, 2020, 185: 107786.
    [24]
    SABIKOGLU I. Energy harvesting sensor-PZT0.5M0.5(M: PVC, PP, PVDF) composite thick film equipped with SiO2[J]. AIP Conference Proceedings, 2019, 2178(1): 030005.
    [25]
    LI H, LIU F H, TIAN H D, et al. Synergetic enhancement of mechanical and electrical strength in epoxy/silica nanocomposites via chemically-bonded interface[J]. Composites Science and Technology, 2018, 167: 539-546.
    [26]
    SOLARAJAN A K, MURUGADOSS V, ANGAIAH S. High performanceelectrospun PVdF-HFP/SiO2 nanocomposite membrane electrolyte for Li-ion capacitors[J]. Journal of Applied Polymer Science, 2017, 134(32): 45177.
    [27]
    ZHAO Y Z, YUAN W F, ZHAO C Y, et al. Piezoelectricity of nano-SiO2/PVDF composite film[J]. Materials Research Express, 2018, 5(10): 1-11.
    [28]
    RAHIM N H, LAU K Y, MUHAMAD N A, et al. Effects of filler calcination on structure and dielectric properties of polyethylene/silica nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 26(1): 284-291.
    [29]
    WANG Z D, CHENG Y H, YANG MM, et al. Dielectric properties and thermal conductivity of epoxy composites using core/shell structured Si/SiO2/Polydopamine[J]. Composites Part B: Engineering, 2018, 140: 83-90.
    [30]
    GYANESH S, PURUSHOTTAM S, DEEPIKA R. Investigatedielectric constants and refractive index of PMMA/SiO2 nanocomposite and protect from UV-radiations[J]. Advanced Science, Engineering and Medicine, 2019, 11: 63-65.
    [31]
    CHU B J, BRADY A T, MANNHALTER B D, et al. Effect of silica particle surface chemistry on the shear thickening behaviour of concentrated colloidal suspensions[J]. Journal of Physics D: Applied Physics, 2014, 47(33): 335302.
    [32]
    TAN D Q. Review of polymer-based nanodielectric exploration and film scale-up for advanced capacitors[J]. Advanced Functional Materials, 2019, 30(18): 1808567.
    [33]
    ZHANG S H, CHU B J, NEESE B, et al. Direct spectroscopic evidence of field-induced solid-state chain conformation transformation in a ferroelectric relaxor polymer[J]. Journal of Applied Physics, 2006, 99(4): 044107.)
  • 加载中

Catalog

    [1]
    WAGNER D. Paving the way to stronger materials[J]. Nature Nanotechnology, 2007, 2: 742-744.
    [2]
    MONIRUZZAMAN M, CHATTOPADHYAY J, BILLUPS W E, et al. Tuning the mechanical properties of SWNT/nylon 6,10 composites with flexible spacers at the interface[J]. Nano Letters, 2007, 7(5): 1178-1185.
    [3]
    BAI Y, CHENG Z Y, BHARTI V, et al. High-dielectric-constant ceramic-powder polymer composites[J]. Applied Physics Letters, 2000, 76(25): 3804-3806.
    [4]
    ROY M, NELSON J K, MACCRONE R K, et al. Polymer nanocomposite dielectrics-the role of the interface[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 4(4): 629-643.
    [5]
    TAN Q, IRWIN P, CAO Y. Advanced dielectrics for capacitors[J]. IEEJ Transactions on Fundamentals and Materials, 2006, 126(11): 1153-1159.
    [6]
    LIU S H, ZHAI J W, WANG J W, et al. Enhanced energy storage density in poly(vinylidene fluoride) nanocomposites by a small loading of surface-hydroxylated Ba0.6Sr0.4TiO3 nanofibers[J]. ACS Applied Materials & Interfaces, 2014, 6(3): 1533-1540.
    [7]
    LI Q, CHEN L, GADINSKI M R, et al. Flexible high-temperature dielectric materials from polymer nanocomposites[J]. Nature, 2015, 523(576): 576-579.
    [8]
    HU X P, YI K W, LIU J, et al. High energy density dielectrics based on PVDF-based polymers[J]. Energy Technology, 2018, 6(5): 849-864.
    [9]
    CHU B J, LIN M R, NEESE B, et al. Enhancement of dielectric energy density in thepoly(vinylidene fluoride)-based terpolymer/copolymer blends[J]. Applied Physics Letters, 2007, 91(12): 122909.
    [10]
    CHU B J, LIN M R, NEESE B,et al. Interfaces in poly(vinylidene fluoride) terpolymer/ZrO2 nanocomposites and their effect on dielectric properties[J]. Journal of Applied Physics, 2009, 105(1): 014103.
    [11]
    THAKUR Y, ZHANG T, LACOB C, et al. Enhancement of the dielectric response in polymer nanocomposites with low dielectric constant fillers[J]. Nanoscale, 2017, 9: 10992-10997.
    [12]
    TANAKA T, KOZAKO M, FUSE N, et al. Proposal of a multi-core model for polymer nanocomposite dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(4): 669-681.
    [13]
    SHEN Y, LIN Y H, LI M, et al. High dielectric performance of polymer composite films induced by a percolating interparticle barrier layer[J]. Advanced Materials, 2007, 19(10): 1418-1422.
    [14]
    PRIYA L, JOG J P. Intercalatedpoly(vinylidene fluoride)/clay nanocomposites: Structure and properties[J]. Journal of Polymer Science Part B: Polymer Physics, 2003, 41(1): 31-38.
    [15]
    SHAH D, MAITI P, GUNN E, et al. Dramaticenhancements in toughness of polyvinylidene fluoride nanocomposites via nanoclay-directed crystal structure and morphology[J]. Advanced Materials, 2004, 16(14): 1173.
    [16]
    XIA F, CHENG Z Y, XU S H, et al. High electromechanical responses in a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer[J]. Advanced Materials, 2002, 14(21): 1574-1577.
    [17]
    CHEN Q, SHEN Y, ZHANG S H, et al. Polymer-based dielectrics with high energy storage density[J]. Annual Review of Materials Research, 2015, 45: 433-458.
    [18]
    CHU B J, ZHOU X, NEESE B, et al.Relaxor ferroelectric poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer for high energy density storage capacitors[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2006, 13(5): 1162-1169.
    [19]
    NAKAJIMA N, OKI M, ISOHAMA Y, et al. Enhancement of dielectric constant of BaTiO3 nanoparticles studied by resonant x-ray emission spectroscopy[J]. Physical Review B, 2012, 86(22): 224114.
    [20]
    SAKABE Y, WADA N, HAMAJI Y, et al. Grainsize effects on dielectric properties and crystal structure of fine-grained BaTiO3 ceramics[J]. Journal of the Korean Physical Society, 1998, 32: S260-S264.
    [21]
    BAO H M, SONG J, ZHANG J F, et al. Phase transitions and ferroelectricrelaxor behavior in P(VDF-TrFE-CFE) terpolymers[J]. Macromolecules, 2007, 40(7): 2371-2379.
    [22]
    WANG Y, REN K L, ZHANG Q M. Direct piezoelectric response of piezopolymer polyvinylidene fluoride under high mechanical strain and stress[J]. Applied Physics Letters, 2007, 91(22): 222905.
    [23]
    RIBEIRO S, MEIRA R, CORREIA D M, et al. Silica nanoparticles surface charge modulation of the electroactive phase content and physical-chemical properties ofpoly(vinylidene fluoride) nanocomposites[J]. Composites Part B: Engineering, 2020, 185: 107786.
    [24]
    SABIKOGLU I. Energy harvesting sensor-PZT0.5M0.5(M: PVC, PP, PVDF) composite thick film equipped with SiO2[J]. AIP Conference Proceedings, 2019, 2178(1): 030005.
    [25]
    LI H, LIU F H, TIAN H D, et al. Synergetic enhancement of mechanical and electrical strength in epoxy/silica nanocomposites via chemically-bonded interface[J]. Composites Science and Technology, 2018, 167: 539-546.
    [26]
    SOLARAJAN A K, MURUGADOSS V, ANGAIAH S. High performanceelectrospun PVdF-HFP/SiO2 nanocomposite membrane electrolyte for Li-ion capacitors[J]. Journal of Applied Polymer Science, 2017, 134(32): 45177.
    [27]
    ZHAO Y Z, YUAN W F, ZHAO C Y, et al. Piezoelectricity of nano-SiO2/PVDF composite film[J]. Materials Research Express, 2018, 5(10): 1-11.
    [28]
    RAHIM N H, LAU K Y, MUHAMAD N A, et al. Effects of filler calcination on structure and dielectric properties of polyethylene/silica nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 26(1): 284-291.
    [29]
    WANG Z D, CHENG Y H, YANG MM, et al. Dielectric properties and thermal conductivity of epoxy composites using core/shell structured Si/SiO2/Polydopamine[J]. Composites Part B: Engineering, 2018, 140: 83-90.
    [30]
    GYANESH S, PURUSHOTTAM S, DEEPIKA R. Investigatedielectric constants and refractive index of PMMA/SiO2 nanocomposite and protect from UV-radiations[J]. Advanced Science, Engineering and Medicine, 2019, 11: 63-65.
    [31]
    CHU B J, BRADY A T, MANNHALTER B D, et al. Effect of silica particle surface chemistry on the shear thickening behaviour of concentrated colloidal suspensions[J]. Journal of Physics D: Applied Physics, 2014, 47(33): 335302.
    [32]
    TAN D Q. Review of polymer-based nanodielectric exploration and film scale-up for advanced capacitors[J]. Advanced Functional Materials, 2019, 30(18): 1808567.
    [33]
    ZHANG S H, CHU B J, NEESE B, et al. Direct spectroscopic evidence of field-induced solid-state chain conformation transformation in a ferroelectric relaxor polymer[J]. Journal of Applied Physics, 2006, 99(4): 044107.)

    Article Metrics

    Article views (99) PDF downloads(110)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return