[1] |
MANDELBROT B B. The Fractal Geometry of Nature [M]. San Francisco: Freeman, 1982.
|
[2] |
PENTLAN A. Fractal-based description of nature scenes [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1984, 6(6): 661-647.
|
[3] |
VOSS R. Random Fractals: Characterization and Measurement [M]. New York: Plenum, 1986.
|
[4] |
AI T, ZHANG R, ZHOU H, et al. Box-counting methods to directly estimate the fractal dimension fo a rock surface [J]. Applied Surface Science, 2014, 314: 610-621.
|
[5] |
XU J, JIAN Z, LIAN X. An application of box counting method for measuring phase fraction [J]. Measurement, 2017, 100: 297-300.
|
[6] |
KARPERIEN A L, JELINEK H F. Box-counting fractal analysis: A primer for the clinician[M]// The Fractal Geometry of the Brain. New York: Springer, 2016:13-43.
|
[7] |
SAMAJDAR T, PATTNAIK P K. Experimental study of multi-fractal geometry on electronic medical images using differential box counting[M]//Computational Intelligence in Data Mining. Singapore: Springer, 2017: 363-370.
|
[8] |
RISTANOVIC D, STEFANOVIC B, PUSKAS N. Fractal analysis of dendrite morphology using modified box-counting method [J]. Neuroscience Research, 2014, 84: 64-67.
|
[9] |
慕永云, 王荣本, 赵一兵, 等. 基于多特征融合的前方车辆检测方法研究[J]. 计算机应用研究, 2011, 28(9): 3572-3575.
|
[10] |
MU Yongyun, WANG Rongben, ZHAO Yibing, et al. Study on detecting method of preceding vehicle based on multi-feature fusion [J]. Application Research of Computers, 2011, 28(9): 3572-3575.
|
[11] |
张建明, 张玲增, 刘志强. 一种结合多特征的前方车辆检测与跟踪方法 [J]. 计算机工程与应用, 2011, 47(5): 220-223.
|
[12] |
ZHANG Jianming, ZHANG Lingzeng, LIU Zhiqiang. Approach to front vehicle detection and tracking based on multiple feature [J]. Computer Engineering and Applications, 2011, 47(5): 220-223.
|
[13] |
LI J, DU Q, SUN C. An improved box-counting method for image fractal dimension estimation [J]. Pattern Recogn, 2009, 42(11): 2460-2469.
|
[14] |
GE M, LIN Q. Realizing the box-counting method for calculating fractal dimension of urban form based on remote sensing image [J]. Geo-Spatial Imformation Science, 2009, 12(4): 265-270.
|
[15] |
BARNSLEY M, DEVANEY R, MANDELBROT B B. The Science of Fractal Image [M]. Berlin: Springer-Verlag, 1988.
|
[16] |
LONG M, PENG F. A box-counting method with adaptable box height for measuring the fractal feature of images [J]. Radio Engineering, 2013, 22(1): 208-213.
|
[17] |
CHEN W, YUAN S, HSIEH C. Two algorithms to estimate fractal dimension of gray-level images [J]. Optical Engineering, 2003, 42(8): 2452-2464.
|
[18] |
KAEWARAMSRI Y, WORARATPANYA K. Improved triangle box-counting method for fractal dimension estimation[M]// Recent Advance in Information and Communication Technology 2015. Cham: Springer, 2015:53-61.
|
[19] |
LIU Y, CHEN L, JIANG L. An improved differential box-counting method to estimate fractal dimensions of gray- level images [J]. Journal of Visual Communication and Image Representation, 2014, 25(5): 1102-1111.
|
[20] |
SARKAR N, CHAUDHURI B B. An efficient differential box-counting approach to computed fractal dimension of image [J]. IEEE Transactions on systems, man, and cybernetics, 1994, 24(1): 115-120.)
|
[1] |
MANDELBROT B B. The Fractal Geometry of Nature [M]. San Francisco: Freeman, 1982.
|
[2] |
PENTLAN A. Fractal-based description of nature scenes [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1984, 6(6): 661-647.
|
[3] |
VOSS R. Random Fractals: Characterization and Measurement [M]. New York: Plenum, 1986.
|
[4] |
AI T, ZHANG R, ZHOU H, et al. Box-counting methods to directly estimate the fractal dimension fo a rock surface [J]. Applied Surface Science, 2014, 314: 610-621.
|
[5] |
XU J, JIAN Z, LIAN X. An application of box counting method for measuring phase fraction [J]. Measurement, 2017, 100: 297-300.
|
[6] |
KARPERIEN A L, JELINEK H F. Box-counting fractal analysis: A primer for the clinician[M]// The Fractal Geometry of the Brain. New York: Springer, 2016:13-43.
|
[7] |
SAMAJDAR T, PATTNAIK P K. Experimental study of multi-fractal geometry on electronic medical images using differential box counting[M]//Computational Intelligence in Data Mining. Singapore: Springer, 2017: 363-370.
|
[8] |
RISTANOVIC D, STEFANOVIC B, PUSKAS N. Fractal analysis of dendrite morphology using modified box-counting method [J]. Neuroscience Research, 2014, 84: 64-67.
|
[9] |
慕永云, 王荣本, 赵一兵, 等. 基于多特征融合的前方车辆检测方法研究[J]. 计算机应用研究, 2011, 28(9): 3572-3575.
|
[10] |
MU Yongyun, WANG Rongben, ZHAO Yibing, et al. Study on detecting method of preceding vehicle based on multi-feature fusion [J]. Application Research of Computers, 2011, 28(9): 3572-3575.
|
[11] |
张建明, 张玲增, 刘志强. 一种结合多特征的前方车辆检测与跟踪方法 [J]. 计算机工程与应用, 2011, 47(5): 220-223.
|
[12] |
ZHANG Jianming, ZHANG Lingzeng, LIU Zhiqiang. Approach to front vehicle detection and tracking based on multiple feature [J]. Computer Engineering and Applications, 2011, 47(5): 220-223.
|
[13] |
LI J, DU Q, SUN C. An improved box-counting method for image fractal dimension estimation [J]. Pattern Recogn, 2009, 42(11): 2460-2469.
|
[14] |
GE M, LIN Q. Realizing the box-counting method for calculating fractal dimension of urban form based on remote sensing image [J]. Geo-Spatial Imformation Science, 2009, 12(4): 265-270.
|
[15] |
BARNSLEY M, DEVANEY R, MANDELBROT B B. The Science of Fractal Image [M]. Berlin: Springer-Verlag, 1988.
|
[16] |
LONG M, PENG F. A box-counting method with adaptable box height for measuring the fractal feature of images [J]. Radio Engineering, 2013, 22(1): 208-213.
|
[17] |
CHEN W, YUAN S, HSIEH C. Two algorithms to estimate fractal dimension of gray-level images [J]. Optical Engineering, 2003, 42(8): 2452-2464.
|
[18] |
KAEWARAMSRI Y, WORARATPANYA K. Improved triangle box-counting method for fractal dimension estimation[M]// Recent Advance in Information and Communication Technology 2015. Cham: Springer, 2015:53-61.
|
[19] |
LIU Y, CHEN L, JIANG L. An improved differential box-counting method to estimate fractal dimensions of gray- level images [J]. Journal of Visual Communication and Image Representation, 2014, 25(5): 1102-1111.
|
[20] |
SARKAR N, CHAUDHURI B B. An efficient differential box-counting approach to computed fractal dimension of image [J]. IEEE Transactions on systems, man, and cybernetics, 1994, 24(1): 115-120.)
|