[1] |
EISENBEIS R A. Recent developments in the application of credit-scoring technique to the evaliation of commercial loan[J]. IMA Journal of Management Mathematics, 1996, 7(4): 271-290.
|
[2] |
BERGER A N, FRAME W S. Small business credit scoring and credit availability[J]. Journal of Small Business Management, 2007, 45(1): 5-22.
|
[3] |
BERGER A N, UDELL G F. Small business credit availability and relationship lending: The importance of bank organizational structure[J]. The Economic Journal, 2002, 112(477): F32-F53.
|
[4] |
HUANG C L, CHEN M C, WANG C J. Credit scoring with a data mining approach based on support vector machines[J]. Expert Systems With Applications,2007, 33(4): 847-856.
|
[5] |
BELLOTTI T, CROOK J. Support vector machines for credit scoring and discovery of significant features[J]. Expert Systems with Applications, 2009, 36(2): 3302-3308.
|
[6] |
SHAHSHAHANI B M, LANDGREBE D A. The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon[J]. IEEE Transactions on Geoscience and Remote Sensing,1994, 32(5): 1087-1095.
|
[7] |
NIGAM K, GHANI R. Analyzing the effectiveness and applicability of co-training[J]. Proceedings of the Ninth International Conference on Information and Knowledge Management. New York, NY, USA :ACM, 2000.
|
[8] |
BALUJA S. Probabilistic modeling for face orientation discrimination: Learning from labeled and unlabeled data[C]// Proceedings of the 11th International Conference on Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 1998: 854-860.
|
[9] |
BLUM A, CHAWLA S. Learning from labeled and unlabeled data using graph mincuts[C]// Proceedings of the Eighteenth international Conference on Machine Learning. San Francisco, CA, USA : Morgan Kaufmann Publishers Inc., 2001: 19-26.
|
[10] |
ZHOU D Y, BOUSQUET O, LAL T N, et al. Learning with local and global consistency[C]// Proceedings of the 16th International Conference on Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2003: 321-328.
|
[11] |
WANG F, ZHANG C S. Label propagation through linear neighborhoods[J]. IEEE Transactions on Knowledge and Data Engineering,2008, 20(1) : 55-67.
|
[12] |
BLUM A, MITCHELL T. Combining labeled and unlabeled data with co-training[C]//Proceedings of the Eleventh Annual Conference on Computational Learning Theory. New York, NY, USA :ACM, 1998: 92-100.
|
[13] |
ZHOU Z H, LI M. Tri-training: Exploiting unlabeled data using three classifiers[J]. IEEE Transactions on knowledge and Data Engineering, 2005, 17(11): 1529-1541.
|
[14] |
JONES R. Learning to extract entities from labeled and unlabeled text[D]. Pittsburgh,PA,USA:Carnegie Mellon University, 2005.
|
[15] |
JOACHIMS T. Transductive inference for text classification using support vector machines[C]// Proceedings of the Sixteenth International Conference on Machine Learning. San Francisco, CA, USA :Morgan Kaufmann Publishers Inc.,1999: 200-209.
|
[16] |
CHAPELLE O, CHI M, ZIEN A. A continuation method for semi-supervised SVMs[C]// Proceedings of the 23rd International Conference on Machine Learning. New York, NY, USA: ACM, 2006:185-192.
|
[17] |
SINDHWANI V, KEERTHI S S, CHAPELLE O. Deterministic annealing for semi-supervised kernel machines[C]// Proceedings of the Twenty-Third International Conference on Machine Learning. New York, NY, USA: ACM, 2006: 841- 848.
|
[18] |
BELKIN M, NIYOGI P, SINDHWANI V. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples[J]. Journal of Machine Learning Research, 2006,7: 2399-2434.
|
[19] |
LI Y F, KWOK J T, ZHOU Z H. Semi-supervised learning using label mean[C]// Proceedings of the 26th Annual International Conference on Machine Learning. New York, NY, USA:ACM, 2009:633-640.
|
[20] |
ROSE K. Deterministic annealing for clustering, compression, classifi- cation, regression, and related optimization problems[J]. Proceedings of the IEEE, 1998, 86(11): 2210-2239.
|
[21] |
BENNETT K P, DEMIRIZ A. Semi-supervised support vector machin-ES[C]// Proceedings of the 11th International Conference on Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 1998: 368-374.
|
[22] |
CHAPELLE O, ZIEN A. Semi-supervised classification by low density separation[C]// Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, 2005:57-64.
|
[23] |
BERTSIMAS D, TSITSIKLIS J. Simulated annealing[J]. Statistical Science, 1993, 8(1): 10-15.
|
[24] |
KEERTHI S S, DECOSTE D. A modified finite newton method for fast solution of large scale linear SVMs[J]. Journal of Machine Learning Research, 2005, 6: 341-361.
|
[25] |
CHAPELLE O, SINDHWANI V, KEERTHI S S. Optimization techniques for semi-supervised support vector machines[J]. Journal of Machine Learning Research, 2008, 9: 203-233.
|
[26] |
CHAPELLE O, SCHOLKOPF B, ZIEN A. Semi-supervised learning[J]. IEEE Transactions on Neural Networks, 2009, 20(3): 542-542.
|
[27] |
SINDHWANI V, KEERTHI S S. Large scale semi-supervised linear SVMs[C]// Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY, USA: ACM, 2006: 477-484.
|
[28] |
MANGASARIAN O L. A finite newton method for classification[J]. Optimization Methods and Software, 2002, 17(5): 913-929.
|
[29] |
DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1977, 39(1):1-38.
|
[30] |
ZHU X, GHAHRAMANI Z, LAFFERTY J. Semi-supervised learning using Gaussian fields and harmonic functions[C]// Twentieth International Conference on International Conference on Machine Learning. AAAI Press, 2003:912-919.)
|
[1] |
EISENBEIS R A. Recent developments in the application of credit-scoring technique to the evaliation of commercial loan[J]. IMA Journal of Management Mathematics, 1996, 7(4): 271-290.
|
[2] |
BERGER A N, FRAME W S. Small business credit scoring and credit availability[J]. Journal of Small Business Management, 2007, 45(1): 5-22.
|
[3] |
BERGER A N, UDELL G F. Small business credit availability and relationship lending: The importance of bank organizational structure[J]. The Economic Journal, 2002, 112(477): F32-F53.
|
[4] |
HUANG C L, CHEN M C, WANG C J. Credit scoring with a data mining approach based on support vector machines[J]. Expert Systems With Applications,2007, 33(4): 847-856.
|
[5] |
BELLOTTI T, CROOK J. Support vector machines for credit scoring and discovery of significant features[J]. Expert Systems with Applications, 2009, 36(2): 3302-3308.
|
[6] |
SHAHSHAHANI B M, LANDGREBE D A. The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon[J]. IEEE Transactions on Geoscience and Remote Sensing,1994, 32(5): 1087-1095.
|
[7] |
NIGAM K, GHANI R. Analyzing the effectiveness and applicability of co-training[J]. Proceedings of the Ninth International Conference on Information and Knowledge Management. New York, NY, USA :ACM, 2000.
|
[8] |
BALUJA S. Probabilistic modeling for face orientation discrimination: Learning from labeled and unlabeled data[C]// Proceedings of the 11th International Conference on Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 1998: 854-860.
|
[9] |
BLUM A, CHAWLA S. Learning from labeled and unlabeled data using graph mincuts[C]// Proceedings of the Eighteenth international Conference on Machine Learning. San Francisco, CA, USA : Morgan Kaufmann Publishers Inc., 2001: 19-26.
|
[10] |
ZHOU D Y, BOUSQUET O, LAL T N, et al. Learning with local and global consistency[C]// Proceedings of the 16th International Conference on Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2003: 321-328.
|
[11] |
WANG F, ZHANG C S. Label propagation through linear neighborhoods[J]. IEEE Transactions on Knowledge and Data Engineering,2008, 20(1) : 55-67.
|
[12] |
BLUM A, MITCHELL T. Combining labeled and unlabeled data with co-training[C]//Proceedings of the Eleventh Annual Conference on Computational Learning Theory. New York, NY, USA :ACM, 1998: 92-100.
|
[13] |
ZHOU Z H, LI M. Tri-training: Exploiting unlabeled data using three classifiers[J]. IEEE Transactions on knowledge and Data Engineering, 2005, 17(11): 1529-1541.
|
[14] |
JONES R. Learning to extract entities from labeled and unlabeled text[D]. Pittsburgh,PA,USA:Carnegie Mellon University, 2005.
|
[15] |
JOACHIMS T. Transductive inference for text classification using support vector machines[C]// Proceedings of the Sixteenth International Conference on Machine Learning. San Francisco, CA, USA :Morgan Kaufmann Publishers Inc.,1999: 200-209.
|
[16] |
CHAPELLE O, CHI M, ZIEN A. A continuation method for semi-supervised SVMs[C]// Proceedings of the 23rd International Conference on Machine Learning. New York, NY, USA: ACM, 2006:185-192.
|
[17] |
SINDHWANI V, KEERTHI S S, CHAPELLE O. Deterministic annealing for semi-supervised kernel machines[C]// Proceedings of the Twenty-Third International Conference on Machine Learning. New York, NY, USA: ACM, 2006: 841- 848.
|
[18] |
BELKIN M, NIYOGI P, SINDHWANI V. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples[J]. Journal of Machine Learning Research, 2006,7: 2399-2434.
|
[19] |
LI Y F, KWOK J T, ZHOU Z H. Semi-supervised learning using label mean[C]// Proceedings of the 26th Annual International Conference on Machine Learning. New York, NY, USA:ACM, 2009:633-640.
|
[20] |
ROSE K. Deterministic annealing for clustering, compression, classifi- cation, regression, and related optimization problems[J]. Proceedings of the IEEE, 1998, 86(11): 2210-2239.
|
[21] |
BENNETT K P, DEMIRIZ A. Semi-supervised support vector machin-ES[C]// Proceedings of the 11th International Conference on Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 1998: 368-374.
|
[22] |
CHAPELLE O, ZIEN A. Semi-supervised classification by low density separation[C]// Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, 2005:57-64.
|
[23] |
BERTSIMAS D, TSITSIKLIS J. Simulated annealing[J]. Statistical Science, 1993, 8(1): 10-15.
|
[24] |
KEERTHI S S, DECOSTE D. A modified finite newton method for fast solution of large scale linear SVMs[J]. Journal of Machine Learning Research, 2005, 6: 341-361.
|
[25] |
CHAPELLE O, SINDHWANI V, KEERTHI S S. Optimization techniques for semi-supervised support vector machines[J]. Journal of Machine Learning Research, 2008, 9: 203-233.
|
[26] |
CHAPELLE O, SCHOLKOPF B, ZIEN A. Semi-supervised learning[J]. IEEE Transactions on Neural Networks, 2009, 20(3): 542-542.
|
[27] |
SINDHWANI V, KEERTHI S S. Large scale semi-supervised linear SVMs[C]// Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY, USA: ACM, 2006: 477-484.
|
[28] |
MANGASARIAN O L. A finite newton method for classification[J]. Optimization Methods and Software, 2002, 17(5): 913-929.
|
[29] |
DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1977, 39(1):1-38.
|
[30] |
ZHU X, GHAHRAMANI Z, LAFFERTY J. Semi-supervised learning using Gaussian fields and harmonic functions[C]// Twentieth International Conference on International Conference on Machine Learning. AAAI Press, 2003:912-919.)
|