ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Original Paper

A Schiff base fluorescence probe for Cu2+ ion in CH3CN/H2O

Cite this:
https://doi.org/10.3969/j.issn.0253-2778.2016.12.008
  • Received Date: 18 November 2016
  • Accepted Date: 21 December 2016
  • Rev Recd Date: 21 December 2016
  • Publish Date: 30 December 2016
  • A Shiff base (2′4′-dihydroxyl phenylideneimino)-2-naphthol (L) was synthesized from 1-amino-2-naphthol and 2,4-dihydroxybenzaldehyde. The aim compound was characterized by FT-IR, HNMR and ESI-MS. In the solution of V(CH3CN):V(HEPES)=1:1 at pH 7.2, the fluorescence responses of L to many metal ions (Cu2+, Hg2+, Ag+, Pb2+, Cd2+, Zn2+, Ni2+, Co2+, Fe2+, Al3+, Mn2+, Ca2+, Mg2+, K+, Na+) were studied. The results indicate that L displays a fluorescence quenching for Cu2+ with good selectivity and without obvious interferences by other metal ions. In the concentration range of Cu2+ from 0 to 25×10-5 mol/L, the fluorescence intensity of this solution shows a good linear relationship with the concentration of Cu2+. Based on this curve, the binding constant between L and Cu2+ is 333×104 L/mol, and the detection limit of L for Cu2+is calculated to be 4.92×10-7 mol/L.In natural water, L also shows a good linearity with Cu2+ in the concentration range of Cu2+ from 0 to 25×10-5 mol/L.
    A Shiff base (2′4′-dihydroxyl phenylideneimino)-2-naphthol (L) was synthesized from 1-amino-2-naphthol and 2,4-dihydroxybenzaldehyde. The aim compound was characterized by FT-IR, HNMR and ESI-MS. In the solution of V(CH3CN):V(HEPES)=1:1 at pH 7.2, the fluorescence responses of L to many metal ions (Cu2+, Hg2+, Ag+, Pb2+, Cd2+, Zn2+, Ni2+, Co2+, Fe2+, Al3+, Mn2+, Ca2+, Mg2+, K+, Na+) were studied. The results indicate that L displays a fluorescence quenching for Cu2+ with good selectivity and without obvious interferences by other metal ions. In the concentration range of Cu2+ from 0 to 25×10-5 mol/L, the fluorescence intensity of this solution shows a good linear relationship with the concentration of Cu2+. Based on this curve, the binding constant between L and Cu2+ is 333×104 L/mol, and the detection limit of L for Cu2+is calculated to be 4.92×10-7 mol/L.In natural water, L also shows a good linearity with Cu2+ in the concentration range of Cu2+ from 0 to 25×10-5 mol/L.
  • loading
  • [1]
    王迎春,刘陆智,李芳耀,等. 一种脱氢松香基二吡啶吩嗪衍生物的合成及其对铜离子的识别[J]. 精细化工, 2011, 28(3):303-307.
    WANG Yingchun, LIU Luzhi, LI Fangyao, et al. Synthesis of a dehydroabietyldipyridophenazine derivative and recognition on copper ion [J].Fine Chemicals, 2011, 28(3):303-307.
    [2]
    BARCELOUX D G. Copper[J]. Clinical Toxicology,1999,37(2):217-230.
    [3]
    ZHANG C H, GAO B Z, ZHANG Q Y, et al. A simple schiff base fluorescence probe for highly sensitive and selective detection of Hg2+ and Cu2+[J]. Talanta, 2016, 154:278-283.
    [4]
    RADISKY D, KAPLAN J. Regulation of transition metal transport across the yeast plasma membrane[J].The Journal of Biological Chemistry,1999,274(8):4 481-4 484.
    [5]
    WUH P. Dynamics and performance of fast linear scan anodic stripping voltammetry of Cd, Pb, and Cu using in situ-generated ultrathin mercury films[J]. Analytical Chemistry,1996,68(9):1 639-1 645.
    [6]
    HINKS L J, CLAYTON B E, LLOYD R S. Zinc and copper concentrations in leucocytes and erythrocytes in healthy adults and the effect of oral contraceptives[J]. Journal of Clinical Pathology,1983,36(9):1 016-1 021.
    [7]
    DOMAILLE D W, QUE E L, CHANG C J. Synthetic fluorescent sensors for studying the cell biology of metals [J]. Nature Chemical Biology, 2008,4:168-175.
    [8]
    GAGGELLI E, KOZLOWSKI H, VALENSIN D, et al. Copper homeostasis and neurodegenerative disorders (Alzheimers, Prion, and Parkinsons diseases and amyotrophic lateral sclerosis)[J].Chemical Reviews,2006,106:1 995-2 044.
    [9]
    DERAEVE C, BOLDRON C, MARAVALA, et al. Preparation and study of new poly-8-hydroxyquinoline chelators for an anti-Alzheimer strategy [J]. Chemistry: A European Journal,2008,14:682-696.
    [10]
    DODANI S C, LEARY S C, COBINE PA, et al. A targetable fluorescent sensor reveals that copper-deficient SCO1 and SCO2 patient cells prioritize mitochondrial copper homeostasis[J].Journal of the American Chemical Society,2011, 133:8 606-8 616.
    [11]
    BARNHAM K J, MASTERS C L, BUSH A I. Neurodegenerative diseases and oxidative stress[J].Nature Reviews Drug Discovery,2004,3:205-214.
    [12]
    VILES J H. Metal ions and amyloid fiber formation in neurodegenerative diseases. Copper, zinc and iron in Alzheimers Parkinsons and prion diseases[J].Coordination Chemistry Reviews,2012,256:2 271-2 284.
    [13]
    SHENG R, WANG P, GAO Y, et al. Colorimetric test kit for Cu2+ detection[J].Organic Letters,2008,10:5 015-5 018.
    [14]
    PRAMANIK D, GHOSH C, DEYS G. Heme-Cu bound Aβ peptides: Spectroscopic characterization, reactivity, and relevance to Alzheimers disease[J].Journal of the American Chemical Society,2011,133:15 545-15 552.
    [15]
    SMITH D P, CICCOTOSTO G D, TEW D J, et al. Concentration dependent Cu2+ induced aggregation and dityrosine formation of the Alzheimers disease amyloid-β peptide[J].Biochemistry,2007,46:2 881-2 891.
    [16]
    YUAN Y, SUN S, LIU S, et al. Highly sensitive and selective turn-on fluorescent probes for Cu2+ based on rhodamine B[J].Journal of Materials Chemistry B,2015,3:5 261-5 265.
    [17]
    POURREZA N, HOVEIZAVIR. Simultaneous preconcentration of Cu, Fe and Pb as methylthymol blue complexes on naphthalene adsorbent and flame atomic absorption determination [J].Analytica Chimica Acta,2005,549(1):124 -128.
    [18]
    ROMANI J O, MOREDA A P, BARRERA A B, et al. Evaluation of commercial C18 cartridges for trace elements solid phase extraction from sea water followed by inductively coupled plasma-opticalemission spectrometry determination[J].Analytica Chimica Acta,2005,536(2):213-218.
    [19]
    BENI V, OGURTSOV V I, BAKUNIN N V, et al. Development of a portable electroanalytical system for the stripping voltammetry of metals: Determination of copper in acetic acid soil extracts[J].Analytica Chimica Acta,2005, 552(1):190 -200.
    [20]
    史大昕, 冯亚青, 李筱芳. 双酰亚胺类蛋白质荧光探针的合成[J]. 精细化工,2004,21(4):245-248.
    SHI Daxin, FENG Yaqing, LI Xiaofang. Synthesis of di-imides as protein fluorescent probes[J].Fine Chemicals,2004,21(4):245-248.
    [21]
    刘涛, 程忠玲, 吴效楠,等. 用于半胱氨酸检测的比率荧光探针的合成与应用[J]. 精细化工,2014,31(7):817-824.
    LIU Tao, CHENG Zhongling, WU Xiaonan, et al. Synthesis and application of the ratiometric fluorescent sensor for cysteine [J].Fine Chemicals,2014,31(7):817-824.
    [22]
    魏荣严, 赵峰, 严世强. 基于罗丹明B的off-on型席夫碱荧光探针的研究[J]. 精细化工,2013,30(10):1 169-1 172.
    WEI Rongyan, ZHAO Feng, YAN Shiqiang. A study of“off-on”schiff-base fluorescent probe based on rhodamine B[J].Fine Chemicals,2013,30(10):1 169-1 172.
    [23]
    丁宝辰, 朱红军, 李小墨, 等. 以香豆素为母体的荧光探针的合成、离子识别及拟合计算研究[J]. 精细化工,2014,31(6):695-698,748.
    DING baochen, ZHU Hongjun, LI Xiaomo, et al. Synthesis,ionic recognition and theoretical calculation of the fluorescence probe derived from coumarin[J].Fine Chemicals,2014,31(6):695-698,748.
    [24]
    王亮, 刘娟, 郑长征,等. 一个新的双核锌(Ⅱ)配合物的水热合成、晶体结构和荧光性质[J].精细化工,2012,29(2):105-108.
    WANG Liang, LIU Juan, ZHENG Changzheng, et al. Hydrothermal synthesis, crystal structure and fluorescence properties of a new dinuclear Zn(Ⅱ) complex[J].Fine Chemicals,2012,29(2):105-108.
    [25]
    彭梦姣, 郭媛, 杨栋,等. 香豆素类亚硫酸氢根离子探针的合成及荧光性质研究[J]. 精细化工,2011,28(3):308-312.
    PENG Mengjiao, GUO Yuan, YANG Dong,et al. Study on the synthesis and fluorescence of coumarin-based bisulfite anion probes[J].Fine Chemicals,2011,28(3):308-312.
    [26]
    韩晓三, 梁高林. 自组装纳米荧光探针用于caspase-3的检测[J].中国科学技术大学学报,2015, 45(8):643-648.
    HAN Xiaosan, LIANG Gaolin. Detection of caspase-3 by fluorescence quenching effect of a self-assembly nanoparticle[J]. Journal of University of Science and Technology of China, 2015, 45(8):643-648.
    [27]
    ZHOU Y, WANG F, KIM Y, et al.Cu2+-selective ratiometric and “off-on” sensor based on the rhodamine derivative bearing pyrene group[J].Organic Letters,2009,11(19):4 442-4 445.
    [28]
    恩达, 孙晓红, 延永. 香豆素-铜离子(Ⅱ)配合物硫醇荧光探针的合成及荧光性质[J]. 精细化工,2014,31(10):1 183-1 187.
    EN Da, SUN Xiaohong, YAN Yong. Synthesis and fluorescence of complex coumarin-Cu(Ⅱ) thiols probes[J].Fine Chemicals,2014,31(10):1 183-1 187.
    [29]
    DEMASA J N, CROSBYG A. Measurement of photoluminescence quantum yields. Review[J].The Journal of Physical Chemistry ,1971,75(8): 991-1 024.
    [30]
    BENESI H A, HILDEBRAND J H. A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons[J]. Journal of the American Chemical Society,1949,71(8):2 703-2 707.
    [31]
    YANNISL L. Multiple complex formation of fluorescent compounds with cyclodextrins: Efficient determination and evaluation of the binding constant with improved fluorometric studies[J].The Journal of Physical Chemistry B,1997,101(24): 4 863-4 866.
    [32]
    JISHA V S, THOMAS A J, RAMAIAH D. Fluorescence ratiometric selective recognition of Cu2+ ions by dansyl-naphthalimide dyads[J].The Journal of Organic Chemistry,2009,74(17): 6 667-6 673.
    [33]
    HAKONEN A. Plasmon enhancement and surface wave quenching for phase ratiometry in coextraction-based fluorosensors[J].Analytical Chemistry,2009,81(11): 4 555-4 559.
    [34]
    ZHU H, FAN J, LU J, et al. Optical Cu2+ probe bearing an 8-hydroxyquinoline subunit: High sensitivity and large fluorescence enhancement[J].Talanta,2012,93(15): 55-61.
  • 加载中

Catalog

    [1]
    王迎春,刘陆智,李芳耀,等. 一种脱氢松香基二吡啶吩嗪衍生物的合成及其对铜离子的识别[J]. 精细化工, 2011, 28(3):303-307.
    WANG Yingchun, LIU Luzhi, LI Fangyao, et al. Synthesis of a dehydroabietyldipyridophenazine derivative and recognition on copper ion [J].Fine Chemicals, 2011, 28(3):303-307.
    [2]
    BARCELOUX D G. Copper[J]. Clinical Toxicology,1999,37(2):217-230.
    [3]
    ZHANG C H, GAO B Z, ZHANG Q Y, et al. A simple schiff base fluorescence probe for highly sensitive and selective detection of Hg2+ and Cu2+[J]. Talanta, 2016, 154:278-283.
    [4]
    RADISKY D, KAPLAN J. Regulation of transition metal transport across the yeast plasma membrane[J].The Journal of Biological Chemistry,1999,274(8):4 481-4 484.
    [5]
    WUH P. Dynamics and performance of fast linear scan anodic stripping voltammetry of Cd, Pb, and Cu using in situ-generated ultrathin mercury films[J]. Analytical Chemistry,1996,68(9):1 639-1 645.
    [6]
    HINKS L J, CLAYTON B E, LLOYD R S. Zinc and copper concentrations in leucocytes and erythrocytes in healthy adults and the effect of oral contraceptives[J]. Journal of Clinical Pathology,1983,36(9):1 016-1 021.
    [7]
    DOMAILLE D W, QUE E L, CHANG C J. Synthetic fluorescent sensors for studying the cell biology of metals [J]. Nature Chemical Biology, 2008,4:168-175.
    [8]
    GAGGELLI E, KOZLOWSKI H, VALENSIN D, et al. Copper homeostasis and neurodegenerative disorders (Alzheimers, Prion, and Parkinsons diseases and amyotrophic lateral sclerosis)[J].Chemical Reviews,2006,106:1 995-2 044.
    [9]
    DERAEVE C, BOLDRON C, MARAVALA, et al. Preparation and study of new poly-8-hydroxyquinoline chelators for an anti-Alzheimer strategy [J]. Chemistry: A European Journal,2008,14:682-696.
    [10]
    DODANI S C, LEARY S C, COBINE PA, et al. A targetable fluorescent sensor reveals that copper-deficient SCO1 and SCO2 patient cells prioritize mitochondrial copper homeostasis[J].Journal of the American Chemical Society,2011, 133:8 606-8 616.
    [11]
    BARNHAM K J, MASTERS C L, BUSH A I. Neurodegenerative diseases and oxidative stress[J].Nature Reviews Drug Discovery,2004,3:205-214.
    [12]
    VILES J H. Metal ions and amyloid fiber formation in neurodegenerative diseases. Copper, zinc and iron in Alzheimers Parkinsons and prion diseases[J].Coordination Chemistry Reviews,2012,256:2 271-2 284.
    [13]
    SHENG R, WANG P, GAO Y, et al. Colorimetric test kit for Cu2+ detection[J].Organic Letters,2008,10:5 015-5 018.
    [14]
    PRAMANIK D, GHOSH C, DEYS G. Heme-Cu bound Aβ peptides: Spectroscopic characterization, reactivity, and relevance to Alzheimers disease[J].Journal of the American Chemical Society,2011,133:15 545-15 552.
    [15]
    SMITH D P, CICCOTOSTO G D, TEW D J, et al. Concentration dependent Cu2+ induced aggregation and dityrosine formation of the Alzheimers disease amyloid-β peptide[J].Biochemistry,2007,46:2 881-2 891.
    [16]
    YUAN Y, SUN S, LIU S, et al. Highly sensitive and selective turn-on fluorescent probes for Cu2+ based on rhodamine B[J].Journal of Materials Chemistry B,2015,3:5 261-5 265.
    [17]
    POURREZA N, HOVEIZAVIR. Simultaneous preconcentration of Cu, Fe and Pb as methylthymol blue complexes on naphthalene adsorbent and flame atomic absorption determination [J].Analytica Chimica Acta,2005,549(1):124 -128.
    [18]
    ROMANI J O, MOREDA A P, BARRERA A B, et al. Evaluation of commercial C18 cartridges for trace elements solid phase extraction from sea water followed by inductively coupled plasma-opticalemission spectrometry determination[J].Analytica Chimica Acta,2005,536(2):213-218.
    [19]
    BENI V, OGURTSOV V I, BAKUNIN N V, et al. Development of a portable electroanalytical system for the stripping voltammetry of metals: Determination of copper in acetic acid soil extracts[J].Analytica Chimica Acta,2005, 552(1):190 -200.
    [20]
    史大昕, 冯亚青, 李筱芳. 双酰亚胺类蛋白质荧光探针的合成[J]. 精细化工,2004,21(4):245-248.
    SHI Daxin, FENG Yaqing, LI Xiaofang. Synthesis of di-imides as protein fluorescent probes[J].Fine Chemicals,2004,21(4):245-248.
    [21]
    刘涛, 程忠玲, 吴效楠,等. 用于半胱氨酸检测的比率荧光探针的合成与应用[J]. 精细化工,2014,31(7):817-824.
    LIU Tao, CHENG Zhongling, WU Xiaonan, et al. Synthesis and application of the ratiometric fluorescent sensor for cysteine [J].Fine Chemicals,2014,31(7):817-824.
    [22]
    魏荣严, 赵峰, 严世强. 基于罗丹明B的off-on型席夫碱荧光探针的研究[J]. 精细化工,2013,30(10):1 169-1 172.
    WEI Rongyan, ZHAO Feng, YAN Shiqiang. A study of“off-on”schiff-base fluorescent probe based on rhodamine B[J].Fine Chemicals,2013,30(10):1 169-1 172.
    [23]
    丁宝辰, 朱红军, 李小墨, 等. 以香豆素为母体的荧光探针的合成、离子识别及拟合计算研究[J]. 精细化工,2014,31(6):695-698,748.
    DING baochen, ZHU Hongjun, LI Xiaomo, et al. Synthesis,ionic recognition and theoretical calculation of the fluorescence probe derived from coumarin[J].Fine Chemicals,2014,31(6):695-698,748.
    [24]
    王亮, 刘娟, 郑长征,等. 一个新的双核锌(Ⅱ)配合物的水热合成、晶体结构和荧光性质[J].精细化工,2012,29(2):105-108.
    WANG Liang, LIU Juan, ZHENG Changzheng, et al. Hydrothermal synthesis, crystal structure and fluorescence properties of a new dinuclear Zn(Ⅱ) complex[J].Fine Chemicals,2012,29(2):105-108.
    [25]
    彭梦姣, 郭媛, 杨栋,等. 香豆素类亚硫酸氢根离子探针的合成及荧光性质研究[J]. 精细化工,2011,28(3):308-312.
    PENG Mengjiao, GUO Yuan, YANG Dong,et al. Study on the synthesis and fluorescence of coumarin-based bisulfite anion probes[J].Fine Chemicals,2011,28(3):308-312.
    [26]
    韩晓三, 梁高林. 自组装纳米荧光探针用于caspase-3的检测[J].中国科学技术大学学报,2015, 45(8):643-648.
    HAN Xiaosan, LIANG Gaolin. Detection of caspase-3 by fluorescence quenching effect of a self-assembly nanoparticle[J]. Journal of University of Science and Technology of China, 2015, 45(8):643-648.
    [27]
    ZHOU Y, WANG F, KIM Y, et al.Cu2+-selective ratiometric and “off-on” sensor based on the rhodamine derivative bearing pyrene group[J].Organic Letters,2009,11(19):4 442-4 445.
    [28]
    恩达, 孙晓红, 延永. 香豆素-铜离子(Ⅱ)配合物硫醇荧光探针的合成及荧光性质[J]. 精细化工,2014,31(10):1 183-1 187.
    EN Da, SUN Xiaohong, YAN Yong. Synthesis and fluorescence of complex coumarin-Cu(Ⅱ) thiols probes[J].Fine Chemicals,2014,31(10):1 183-1 187.
    [29]
    DEMASA J N, CROSBYG A. Measurement of photoluminescence quantum yields. Review[J].The Journal of Physical Chemistry ,1971,75(8): 991-1 024.
    [30]
    BENESI H A, HILDEBRAND J H. A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons[J]. Journal of the American Chemical Society,1949,71(8):2 703-2 707.
    [31]
    YANNISL L. Multiple complex formation of fluorescent compounds with cyclodextrins: Efficient determination and evaluation of the binding constant with improved fluorometric studies[J].The Journal of Physical Chemistry B,1997,101(24): 4 863-4 866.
    [32]
    JISHA V S, THOMAS A J, RAMAIAH D. Fluorescence ratiometric selective recognition of Cu2+ ions by dansyl-naphthalimide dyads[J].The Journal of Organic Chemistry,2009,74(17): 6 667-6 673.
    [33]
    HAKONEN A. Plasmon enhancement and surface wave quenching for phase ratiometry in coextraction-based fluorosensors[J].Analytical Chemistry,2009,81(11): 4 555-4 559.
    [34]
    ZHU H, FAN J, LU J, et al. Optical Cu2+ probe bearing an 8-hydroxyquinoline subunit: High sensitivity and large fluorescence enhancement[J].Talanta,2012,93(15): 55-61.

    Article Metrics

    Article views (43) PDF downloads(65)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return