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Abstract: Distances between nodes are one of the most essential subjects in the study of complex networks. In this paper,
we investigate the asymptotic behaviors of two types of distances in a model of geographic attachment networks (GANs):
the typical distance and the flooding time. By generating an auxiliary tree and using a continuous-time branching process,
we demonstrate that in this model the typical distance is asymptotically normal, and the flooding time converges to a given

constant in probability as well.
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1 Introduction

A significant amount of research has focused on networks as
a result of the recent increase in interest in social networks!",
communication networks!, scientific collaboration
networks®, biological networks™, and many other types of
networks. To analyze these networks, researchers have de-
veloped a number of models, many of which are widely used,
such as the Watts and Strogatz model and the preference at-
tachment model. Due to various constraints, different models
have different topologies. In this paper, we concentrate on the
model affected by geographical restrictions.

It is a given in social networks that people who relocate
will most likely develop acquaintances with people in the
area, such as their neighbors. Motivated by this idea, a geo-
graphical attachment network (GAN) model was first pro-
posed in Ref. [5]. In this network model, its size (the number
of nodes in it) increases over time, and the newly added nodes
are only connected to the nodes that are closest to them.

The following guidelines can be used to generate the GAN
model presented in this work. We start with an initial state (at
time n = 0) of three nodes distributed on a ring, all of which
are connected to one another. That is, the initial graph
GAN(0) is a triangle; see Fig. la. At time n > 1, the network
GAN(n) is obtained from GAN(n— 1) in the following man-
ner: A new node is placed in an internode interval chosen uni-
formly at random from the n+2 existing nodes along the ring
and connected to its two nearest neighbors (one on either
side). This GAN model is the simplest case in Ref. [5]; see
also Ref. [6]. For convenience in below, here we may define
potential nodes and active intervals. If two endpoints of an in-
terval are adjacent on the ring, the interval is said to be active.
Each active interval corresponds to a potential node, which is
anode that may be chosen as a new node in the future. In-
stead, we refer to nodes that are added to the network as actual
nodes. There are two potential edges that could connect each
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potential node to its neighbors. Fig. | shows an illustration of
this network at times n =0, 1, and 2. For the variants of GAN
models, we refer to Refs. [7-9].

A path in network G is a subnetwork with a sequence of
successive edges that joins a sequence of distinct nodes (ex-
cept, possibly, the first and last node). The length of a path is
the number of edges in it. Despite the fact that the geograph-
ical distance along the ring is used in the generating process
of the GAN model, in this paper, we consider the graphic dis-
tance, i.e., the distance between a pair of nodes is defined as
the number of edges along the shortest path connecting the
nodes. The diameter of a network is the largest distance
among all pairs of nodes.

Several properties of the GAN model are obtained in
Ref. [5] with heuristic arguments and computational simula-
tions, and Ref. [6] using the rigorous probabilistic method.
Let P,, be the proportion of nodes with degree k >2 in the
network GAN(n). It is shown in Ref. [6] that as n — oo,

, 1 2 k-2
P..— 5(5) , k=23, ,n
Then the GAN model is not a scale-free network!'”, in which
the limiting degree distribution is a power law. This indicates
that the network model considered here is essentially differ-
ent from the random Apollonian network model (see, for ex-
ample, Refs. [11-14]), which looks quite similar to the GAN
model. For the diameter of the GAN model, the following
result is also derived in Ref. [6]. We say that a sequence of
events {&,,n > 1} occurs with high probability (w.h.p.) when
P&, — 1 asn— oo.

Theorem 1. As n — oo, the diameter of the network
GAN(n) is with high probability asymptotic to 2clogn with
the constant
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Fig. 1. Illustration of the growing GAN model with potential nodes for time »n =0, 1, and 2, where points e represent nodes in the network, points o are

potential nodes, and red dashed lines are potential edges.
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In this paper, we further investigate another two types of
distances in the GAN model: the typical distance and flood-
ing time. The typical distance of a network is the distance
between a pair of nodes picked in it uniformly at random
(u.a.r.). For the typical distance of other random graph mod-
els, we refer to Refs. [15—-18]. The flooding time of a net-
work is the greatest distance from a randomly chosen node to
other nodes. For more backgrounds and results of flooding
time, see Refs. [19-22].

The rest of the paper is organized as follows. In Section 2,
we analyze the structure of the subnetworks and obtain some
results by building an auxiliary tree and using a continuous-
time branching process. Based on these, we derive the results
of the typical distance and flooding time of GAN models in
Section 3.

2 Subnetworks and auxiliary tree

When the GAN model is in its initial state, i.e., GAN(0), we
can see that the ring is divided into three initial intervals,
1,,1,, and I; (see Fig. 2). We refer to the subnetwork made up
of the nodes and edges in interval I, including the endpoints
of the interval, as GAN;, where i=1,2,3. It goes without
saying that any pair of nodes’ paths involves a maximum of
two subnetworks. There are only two scenarios to take into
account for the typical distance of GAN(n): (A) Two nodes
originate from the same initial internal; (B) two nodes origin-
ate from distinct initial internals. Indeed, we only need to con-
sider the typical distance of one of the subnetworks and the
distance between any initial node and the node selected u.a.r.
in the subnetwork. Therefore, we need to concentrate on the
subnetworks first.

Assuming that there are Y,,,Y,,, and Y5, nodes in each of
the three open intervals at time n, then Y,,+Y,,+ Y5, =n. We
obtain that
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Fig. 2. Initial internode internals in GAN(0).

Y,
—2 5 Beta(1,2), i=1,2.3,

n

as n — oo, where Beta(a,) denotes the beta distribution with
parameters « and 8. With high probability, the random vari-
ables Y,,,Y,,, and Y;, have the same order of order n, as
proven in Ref. [6]. Then, we can use the fact that

logY,, =logn+0,(1). )

The identical distribution of the three random variables is
clear to notice. Without loss of generality, we restrict our at-
tention to the subnetwork GAN,(n). We suppose that
Y,, =n,, where n, >0 is an integer, and that a new node is
added at each step in this subnetwork. As a result, the size of
the subnetwork GAN,(n) can be set to n,+2, where n, var-
ies with n. GAN,(n) has two initial nodes that are linked to-
gether, hence the distances between any given node in the
network and the two initial nodes can differ by up to one.

If we consider the first node added to the subnetwork to be
the root of a binary tree and each time a new node is added,
the two potential nodes produced are the two children of that
node, we can create a binary tree according to this relation-
ship. Afterwards, we may utilize a binary tree to obtain some
of this subnetwork’s characteristics. Moreover, in each step,
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only one potential node is transformed into an actual node,
and two new potential nodes are generated. This network’s
creation resembles a unique continuous-time branching pro-
cess in which each individual splits just once to produce two
offspring.

2.1 Auxiliary tree structure

In this section, we construct an auxiliary binary tree and
embed a branching process in the subnetwork GAN,(n).
There is only one initial interval and one potential node in the
initial state of subnetwork GAN,. An interval becomes two
new active intervals when a new node u is added to it, and
these two new intervals also correspond to two new potential
nodes. The potential node that lies to the left (or right) of
node u is called the left (or right) child of u. Instead, u is the
parent of these two nodes. The ancestral line of node u is a
path that leads from the first nodes added in GAN,(n) to u,
where the previous node is the parent of the next node. The
network in Fig. 3a can be redrawn using the shape of the bin-
ary tree to obtain Fig. 3b. The auxiliary tree in this paper is
constructed in a manner similar to that in Ref. [6], but the
nodes in the auxiliary tree correspond to the edges of the net-
work in the latter. As shown in Fig. 3b, we can embed a
continuous-time branching process (CTBP) (see, for example
Refs. [23, 24]) into GAN,(n).

Consider a CTBP as follows: At the beginning, there is a
single individual who serves as the process’s root. This initial
individual then splits into two individuals (producing two off-
spring) before becoming inactive. Each individual has an i.i.d.
exponential lifespan with a mean of 1. As a result, after birth,
each individual is active for the entirety of its lifespan before
splitting, going inactive, and giving birth to two offspring
who then become active for their own i.i.d. Exp(1) lifespans.
There are n, + 1 active individuals if n, individuals split dur-
ing the process. Let 7, represent the time when the ith indi-
vidual splits.

There is a mapping relation between the subnetwork

(a)

GAN, (n) and the CTBP with n, splitters as follows. The first
node in GAN,(n) (i.e., the first node added to the subnetwork
GAN,(n)) corresponds to the root of the CTBP. When the
nyth individual in the CTBP splits, the already split individu-
als are the actual nodes in GAN,(n), while the individuals
who are still active in the CTBP are the potential nodes in
GAN, (n). This is true because, in each step, two new poten-
tial nodes are created in place of the actual node when a new
node is added to GAN,(n). Furthermore, a potential node is
randomly chosen in each step, which is equivalent to the
CTBP’s next individual splitting being a randomly chosen
active individual due to the memoryless nature of exponen-
tial variables. In fact, there is a maximum difference of one
between any node’s distance from the first node and its dis-
tance from either of the initial nodes.

The generation of an individual in the CTBP is equivalent
to the length of the ancestral line leading to the correspond-
ing node in GAN, (n). For active individuals, we can directly
apply the conclusion of Corollary 1.1 in Ref. [24]. Let L, be
the generation of the individual in the CTBP corresponding to
potential node u selected u.a.r. in GAN,(n). Then as n, — oo,

L,—2logn,

- N(@O,1). 2
ot SN @)

2.2 Shortcuts

Obviously, for each node, there is a shortcut that connects it
to other ancestors in addition to the connection to its parent.
To calculate the distance between each pair of potential
nodes, it is necessary to identify the shortcuts between the
first node and each node.

The ancestral line shows one of the paths from the node to
the first node in GAN, (n), and we can use the ancestral line to
identify the shortcuts. We could also define a sequence for
each node’s ancestral line to discover the rule governing the
existence of shortcuts. First, the left and right child nodes are
denoted by symbols ! and r, respectively. The ancestral line

(b)

Fig. 3. (a) is the subnetwork GAN; after adding several nodes without marking potential nodes where the nodes labeled 0 and 1 are the initial nodes. By
redrawing the network, we can obtain (b). The nodes marked as black circles and the nodes marked as blue squares are actual nodes and potential nodes,
respectively. Except for the blue dotted line, the solid lines and the dotted lines represent the ancestral line of each node and shortcuts, respectively. Fur-
thermore, the black lines and red lines represent existing edges and potential edges, respectively. u, is one of the potential nodes of this subnetwork.
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of each node provides a sequence of [ and r, where the ith
symbol of the sequence denotes whether the (i+ 1)th ancest-
or is the left or right child of the ith ancestor. For instance,
the sequence of the node labeled u, in Fig. 3b is Irirr. The se-
quence of the first node is represented by 0. Each node’s se-
quence is therefore unique, with the exception of the initial
nodes. The sequence is sometimes used to represent the node.
Furthermore, instead of trying to distinguish between the two
initial nodes, we use the symbol A to represent all initial
nodes.

Assuming there are two nodes u and v, we can represent
their sequences using the formulas u = u,...u, and v =v,...v,,
respectively, where u,,v; €{l,r}, i=1,..,p,j=1,...q, and p
and g are the lengths of the sequence, i.e., [u| = p and [v| = gq.
We use 7, to represent the last position of i€ {/,r} ina se-
quence and define a truncation operator T,

u,--u,_,, if symbol i appears in
the sequence of the node;

A, if symbol i does not appear in
the sequence of the node.

Tu =

The parent of u is obviously either T,u or T,u. In particular,
the first node has two parents, both of which are initial nodes.
Along the ancestral line of u, the next node of Tu is (Tu)l,
so u is the left offspring of T,u, i.e., T\u is to the right of u.
Similarly, T,u is to the left of u.

Based on the definition of the sequence of nodes and the
above assumptions, we obtain the following facts:

(a) The prefixes of the sequence of node u refer to the an-
cestors of u, i.e., the nodes with the sequence u,...u,,
k=1,...,p—1, are ancestors of u.

(b) The sequence u Av :={u,..u, :u; =v;, i=1,...k; u, #
Virrs k <min{p,q}} represents the latest common ancestor of
u and v, which can be written as u A v.

(c) The shortest path between u and v must pass through
some of their common ancestors. We must ascend to their
common ancestors to determine the shortest path between
them.

Claim 1. T,u and T,u are two ancestors of u connected to
u, i.e., the neighbors of u when node u is added to the net-
work as a new node.

Proof. We prove this claim by induction. The sequence of
the first node is @, and its children are / and r. Then the res-
ult is valid for the first node. Assume that the claim is valid
for the most recently added node u, that is, u links to 7T,u and
T.u. The endpoints of the interval to the left of u are u and
T.u. When the left child of u, ul, is added to the network,
T(ul) =u and T,(ul) = T.u. These two results are exactly the
endpoints of the interval of the left child of u. Therefore, the
claim holds for u/. Similarly, the claim also holds for ur.

As a result, the shortcut connects any given node u to
either T,u or T.u. For any node u, observe the difference
between the sequence of nodes connected by the shortcut and
the sequence of u. From back to front, this difference collects
exactly two symbols. For example, the shortcut of node u,
with the sequence [rlrr in Fig. 2 connects to the node with the
sequence [r, and their difference is /rr. Consequently, we can
partition the sequence. From the back to the front, when
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exactly two symbols have been collected completely, i.e. the
occurrence of the sequence Ir or rl, we divide them into a
block and obtain a shortcut. The division is then repeated in
the same way to obtain the number of blocks. The last block
may not have a complete collection of two symbols, but this
block represents a node that is 1 away from one of the initial
nodes.

Reverse the sequence and define an event &: the occur-
rence of the sequence Ir or ri. Let Y be the number of sym-
bols needed for event & to occur for the first time in the re-
versed sequence. It is easy to calculate

E[Y]=3 and Var(Y)=1.

When event & occurs for the first time, we remove the sym-
bols in the reverse sequence that precede it and those that rep-
resent it, and then we need to find the location of event & in
the remaining sequence. This operation is repeated until no
event & occurs in the remaining sequence. The number of
times an event & is repeated in the inverse sequence of a node
is equal to the distance between this node and the initial node
minus 1. Suppose there is a sequence of length m and let S,
be the number of occurrences of event & in that sequence. By
(6.8) in Chapter XIII of Ref. [25],

m m
E[S,]~ 3 Var(S,,) ~ 77

where ~ indicates that the radio of the two sides tends to 1,
and S, has an asymptotically normal distribution, i.e., as

nm — oo,

—S'”_m/e’_%/v(o,i). ?3)
\m 27

Furthermore, we use L, to represent the length of the an-
cestral line of node u. If node u is the ancestor of node v,
then the shortest distance between u and v only needs to con-
sider the difference in the two nodes’ sequences, and the
length of the difference is L, — L, .

Lemma 1. Suppose that u is a potential node picked u.a.r.
in GAN,(n) with size n,+2 and let S, be the shortest dis-
tance from u to the first node. If n, — oo, S, satisfies

2
S, —=logn,
— 3 4 (o, E). )
ylogn, 27
Proof. It is easy to obtain from (2), that
E[L,] ~2logn,, Var(L,)~ 2logn,.
We can calculate
1 2
E[S,,1=E[E[S . IL]] ~ gE[Lu] ~3 logny, Q)
Var(S,,) = Var(E[S ,,|L.]) + E[ Var(S . IL,)] ~
’ (6)

1 1 8
§Var(L“)+ §E[Lu] ~ 5 logn,.

To show the asymptotic normality of S,,, observe that
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2
S, —=logn, log ny

3 _ S, —zL, L —L
8
ﬁlogn[J \/_ 10gn0 V3 —logno

210gn0
second term converges to N(0, 3/4) in distribution. Condi-
S, —1/3)L,
VL,
N(0,1/4) in distribution by (3). Since S, |L, is independent
of L,, by Slutsky’s lemma, we can obtain conclusion (4).

According to formula (2), 51, as ny— oo and the

tion on L, with L, — oo, converges to

2.3 Common ancestor

According to fact (c) in Section 2.2, the shortest path between
any two potential nodes must pass through some of their com-
mon ancestors. To find the distance between any two poten-
tial nodes, we need to find the relationship between the dis-
tance of this pair of nodes and their latest common ancestor.
First, we want to divide the shortest path into two parts.

Claim 2. For any pair of nodes u and v with sequences u
and v, respectively,

dist(u,v) = dist(u, u A v) +dist(v,u Av),

or

dist(u,v) = dist(u,u Av) +dist(v,u Av)—1.

Proof. For convenience, we use the sequence of the node
to represent the node in the following.

If u is the ancestor of v or vice versa, then this conclusion
is easy to reach. If not, based on the previous facts in Section
2.2, we can assume that the shortest path between them is
u— .. —x— ..— v where x is either # Av or one of its an-
cestors. For path u — ... = x, each node is the parent of the
previous node; for path x — ... - v, each node is the parent
of the next node. If x is u Av, the conclusion is obvious. If x
is one of the ancestors of u A v, assume that the two nodes of
the child of uAv closest to x are (w Av)w, and (u Av)w,,
where w, and w, represent the sequences where all the sym-
bols are the same. Because of symmetry, we can assume that
w,=L.L,w,=r..r,|w| >0, and |w,| > 0.

Since it is impossible for the left offspring of u Av and the
right offspring of u Av to have a shortcut to the same com-
mon ancestor at the same time, except for u Av, there must be
another common ancestor (defined as y) in this path. Without
loss of generality, we can write the path as

U—..->UAVYW 5x—> ..oy UAYIW, > ... —v. (7)

Obviously, there is a shortcut between (# Av)w, and x and
between (wuAv)w, and y. T.(uAv)w,)=T,(uAv)=x and
T(uAv)w,) =T (uAv)=y means that there is a shortcut
between uAv and x and there is at most one shortcut
between u Av and y. There is a path through u A v,

U— ..o UAVIW, DX DUAY Y > UAVIW, > ... >V,

where u — ...—> (uwAv)w, and (wAv)w, > .. —>v are the
same as those in path (7).

1104-5

Since path (7) is the shortest path and it is possible that
node y is node u Av, the distance between x and y is at least
1. Therefore, if we look for the shortest path through u Av,
the length of this path differs from the length of the path (7)
by at most one. The proof of Claim 2 is complete.

Next, we focus on the length of the sequence difference
between two nodes and their latest common ancestor. For any
pair of nodes u and v picked u.a.r. in GAN,(n) with se-
quences u and v, respectively, assume that the individual in
CTBP corresponding to u Av was born at the 7,,,th split. Ac-

ny

cording to Section 2 in Ref. [24], we can write L, = ZI,-,

where I, are conditionally independent and equal 0 or ["'de-
pending on whether the individual in the ancestral line is new-
born at time #,. Since we know that the number of active indi-
viduals (potential nodes) generated at each split is 2 and the
total number of active individuals at the ith split is i+ 1, we
can see that the indicators I, are independent and

2 1o
P, =1)= 1 In the same way, we define L, = le Note

that the event (,1) = (1,1) means that the ancestral lines of
two nodes merge at the ith split. The joint conditional distri-
bution of ; and I, can be written as

2 i+1-2 26i-1)
P Iy=a1, =
D) =00, <D= 5og— =5y ®
2 i+1-2 26i-1)
P I)= 1 =
D)= O <D= 57— =3y O
. . 22-1 2
P, I) = (1,1), Ty, = iy, < i) = = e
(1) = (1, 1), Typy = ilTupy 1) Gt D iGeD (10)
By Egs. (8)(10),
= = 2
P(t,, = it < —
Z (Tune = Ty S0 = Zl(l”)«w
It follows from
Pz, <k =] [[1-P@,, =i, <),
i=k+1
that Tounw has a limiting distribution, and

(logn,—logt,.,)/logn, converges to 1 in probability. This
also means that L,., has a limiting distribution, independent
of n,. Considering the length of the sequence difference
between a potential node and its ancestor, we can obtain the
following result.

Proposition 1. Suppose u and v are two potential nodes
picked u.a.r. in GAN,(n) with size n, +2, then,

L-L, —2logn, L,—L,,—2logn,

where Z and Z’' are independent standard normally distrib-
uted random variables.

Proof. The joint distribution of L, —
be written as

S@z), (1)

L., and L,—L,, can
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(L= Lo L= L) = (Z LYy 1;].

Using Lindeberg central limit theorem and Egs. (8)—(10) for

linear combinations of Z(al,-+b]lf), where a and b are two

arbitrary constants, the two variables in (11) converge jointly
to a two-dimensional standard normal variable in distribution.

3 Typical distance and flooding time

As prepared in the previous section, we now consider the typ-
ical distance and flooding time in the GAN model. We first
state our main results in the following.

Theorem 2. (Typical distance) Let D, be the typical dis-
tance of GAN(n). Then as n — oo,

4

D,—=logn
;_“)N(o,ﬁ). (12)
ylogn 27

Theorem 3. (Flooding time) Let F, be the flooding time of
GAN(). Then as n — o,

Fn P 2
5z
logn 3

c,

where c is a constant defined in Theorem 1.

To prove these two theorems, we need to use several lem-
mas as follows. In fact, we can define the radius of the net-
work GAN as the length of the longest path from one of the
initial nodes since the longest path of the network GAN must
pass through one of the initial nodes.

Lemma 2., The radius of the subnetwork GAN;(n) is
w.h.p. asymptotic to clogn with the constant ¢ is defined in
Theorem 1.

Lemma 3. Let R, be the distance between the node picked
uw.a.r. in GAN,(n) and either of the initial nodes. If n, — oo,
then

2
R,, — = logn,
— 3 9 N(o,i). (13)
+logn, 27

Proof. For any existing node picked uv.a.r. in GAN,(n),
there is a potential node that makes the distance between
these two nodes equal to 1. By Lemma 1, the conclusion (13)
is easy to obtain.

Lemma 4. Let D! be the typical distance of GAN,(n). If

D! - g logn,

n, — oo, then
-5 9 N(O, E).
+logn, 27

Proof. Pick a pair of potential nodes u and v u.a.r. from
GAN,(n) whose sequences are u and v, respectively, and
u Av is their latest common ancestor with the sequence u Av.
In the following descriptions, we will directly represent nodes
as the sequence of nodes for convenience. Define the distinct
postfixes i,V after u Av by
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u=wAv)ia, v=@Av)7.

By Lemma 1 and Claim 2 (constant 1 can be ignored), the
length of the shortest path between u and v satisfies

distu,v) =S, .. +S, .. (14)

Similar to the proof of Lemma 1 and using the conclusion that
L,,, has a limiting distribution, we calculate

2
E[S .-, ] = B[E[S 1, |1Lu — Lin ]] ~ 3 logny,
and
Var($ ) ﬁ logn
Lu~Luny 27 Zn,.
Observe that

2
S bt = 3 logn,

1/E10
27 g1,

1
SLrLum - g(Lu - Lu/\v)
VLu - L:mv

1 2
Lu _ LMV §(Lu - Lu/\v) - § IOg ny

+
8 1 8
27 08" 25 logn,

Since S, |L,—L,, is independent of L,—L,, and the
lengths of the sequences & and ¥ are independent, we can ob-
tain the following conclusion in the same way as the proof of
Lemma 1.

S Lu=Luny —

By conditioning first on L,,, and using the fact that the sym-
bols in the sequence & and ¥ are i.i.d., it can be shown that
(S, 1, —(2/3)logny, S, 4, —(2/3)logny)/ \logn,  con-
verges jointly to two independent copies of AN(0,8/27) in
distribution.

By Eq. (14), the distance between two potential nodes
picked u.a.r. in GAN,(n) has the following property.

. 4
dlst(u,v)—glognn , (() 16) as)
_— .

vlogn, '27

As shown in Fig. 2, each node in GAN,(n) is connected to
two potential nodes (except the initial nodes). For randomly
selected nodes ' and v in GAN,(n) with sequences u’ and
v’, respectively, suppose that the nearest potential nodes are u
and v, respectively. Obviously, node u’(v) is one of the an-
cestors of potential node u(v). Then,

u=@AVai=uw, v=@AV)I=VWw,, (16)

where w, and w, represent the difference between the two se-
quences. Define the distinct postfixes @’,¥ after u’ Av’ by

u=WAviii, v =W AV)V. (17)
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By Egs. (16) and (17), p R, 2 S el < Var(R,,) 0.
logn, 3 (logn,)*e?
uNv=u Av.
Then, the distance relationship among these nodes can be hes
stated as follows. R, I 2
) ] ) logn, 3’
dist(u',v') = dist(u/, u’ AV')+dist(v',u’ AV),
Using fact (a), as n — oo, we obtain
[dist(u',u’ AV) —dist(u,u Av)| <1,
Ry o, 2 (19)
- =
[dist(v',u’ AV')—dist(v,u Av)| < 1. logn 3

Therefore, the distance between any pair of nodes selected
uv.ar. from GAN,(n) satisfies the asymptotic normality (15).
The proof of this lemma is now complete.

Proof of Theorem 1. For scenario (A), as n — co, since D}
is the typical distance of the subnetwork GAN,(n), we can
use fact (a) and Lemma 4 to obtain

D;—ilogn , 16
3Ty N(O,_)_
vlogn 27

This means that the distance between a randomly chosen pair
of nodes in a randomly chosen initial interval has the above
property due to the symmetry of GAN(n).

For scenario (B), the path between any two nodes that ori-
ginate from two different initial intervals must pass through
one of the initial nodes. Consider these two nodes to have ori-
ginated from I, and I, respectively. Because of the inde-
pendence of each node in GAN, and GAN,, we can see that
the distance between the two nodes has the same distribution
as 2R, , which is mentioned in Lemma 3. By (13) and (1), as

3

n — oo, 2R, satisfies
5 N(O, E).
ylogn 27

Therefore, the distances between any two randomly selected
nodes from two of any randomly selected initial internals sat-
isfy the above property.

After combining the conclusions of these two scenarios, it
is not difficult to conclude that the distance between pairs of
nodes in GAN(n) satisfies (12).

Proof of Theorem 2. The flooding time in GAN(n) can be
expressed as

4
2R, — = logn

max dist(u,v),

where u is a node picked u.a.r. in GAN(n). With high probab-
ility, the node most distant from u is in another initial inter-
val. Therefore,

F, =R, +radius(GAN,). (18)

Without loss of generality, we consider the properties of

2
the distance in GAN,. By Lemma 3, E[R, ]~ glogn0 and

8
Var(R,,) ~ o logn,. If ny, — co, by Chebyshev’s inequality,

1104-7

The radius of the subnetwork GAN;(n) is given in Lemma 2.
Therefore, by (18), (19), and Lemma 2, as n — oo,
Fn p 2

_+ s
logn_)3 ¢

where the constant ¢ is defined in Theorem 1.
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