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Advantages of the proposed framework for predicting heterogeneous treatment effects by matching.

Public summary

m Utilizing the minimum average cost flow algorithm to tackle the optimization problem of multiobjective matching yields
heightened flexibility and accuracy compared to conventional matching methods.

m Constructing an XGBoost tree using the acquired pseudo individual treatment effects yields better prediction accuracy
compared to alternative regression-based methods.

m Both theoretical and experimental results demonstrate that the proposed method boasts a tolerable upper limit of estima-
tion error while incurring minimal average matching costs.
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Abstract: In observational studies, identifying subgroups and exploring heterogeneity is of practical significance.
However, causal inference at the individual level is a challenging problem due to the absence of counterfactual outcomes
and the presence of selection bias. To address this issue, we propose a general framework called TRIMATCH for estimat-
ing heterogeneous treatment effects. First, we find the optimal matching by solving a minimum average cost flow optimiz-
ation problem in a tripartite graph network structure. Second, with the pseudo individual treatment effects acquired from
the previous step, we establish a nonparametric regression model to predict heterogeneous treatment effects for individu-
als with diverse characteristics. Our experiments demonstrate the effectiveness of the proposed matching method and the

interpretability of the results.
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1 Introduction

Traditional causal inference is mainly carried out at the popu-
lation level, focusing on the average treatment effects.
However, this technique may fail to capture the nuanced het-
erogeneity in individual responses. As treatments may elicit
varying effects among individuals, it is significant for re-
searchers to infer heterogeneous treatment effects based on
individual characteristics, enabling them to identify the bene-
ficiary population. Exploration of the heterogeneity of causal
effect leads decision makers to appropriate judgments groun-
ded in the characteristics of individuals. With the deep-going
research on heterogeneous treatment effects, the heterogen-
eity estimation of causal effects plays an increasingly import-
ant role in the fields of precision medicine!, marketing®,
public policy”, and others that involve heterogeneity in the
inference of causal effect at the individual or subgroup level.
The main methods for inferring causality are randomized
controlled trials and observational data studies. Because ran-
domized trials are time-consuming and costly, researchers
mine causality from observational data. In causal inference
studies, we can generally only observe the potential results of
individuals under a single treatment condition; we cannot dir-
ectly know the counterfactual results of individuals. The core
problem of estimating heterogeneous treatment effects is how
to obtain these counterfactual results. In observational studies,
missing counterfactual outcomes and confounding bias are
two major challenges in the evaluation of heterogeneous treat-
ment effects. In the previous literature, many methods have
emerged to estimate heterogeneous treatment effects from
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observational data, such as tree-based methods™ ", matching
methods” ¥, meta-learning methods™ ', and neural networks!'"l.
Although the real treatment effect is unknown, it is still worth
discussing how to estimate it and evaluate the efficacy of
model estimation.

Among the methods for estimating heterogeneous treat-
ment effects, matching is a relatively straightforward and in-
terpretable method, but it does not consider extrapolation re-
gions where there are no reasonable matching pairs. Hence, a
possible solution to this challenge is to employ a hybrid ap-
proach that combines matching with machine learning
methods.

In this article, we adopt a combination of matching and ma-
chine learning methods to detect heterogeneous treatment ef-
fects, introducing a new method we call “TRIMATCH”. Spe-
cifically, we obtain the pseudo individual treatment effects
via the matching method and then establish a nonparametric
regression model based on the pseudo treatment effects. Dif-
ferent from previous literature on matching, TRIMATCH
considers both the closeness of the match and the balance of
the covariates from the perspective of the average distance. It
is necessary to seek a Pareto solution when dealing with mul-
tiobjective optimization problems, which entails minimizing
the average closeness of matched pairs on a multivariate dis-
tance and minimizing the average imbalance. This solution
can be derived by utilizing the minimum average cost flow al-
gorithm, which is a tried and tested approach. In contrast to
the previous method of bipartite matching, we adopt a new
matching network: the tripartite graph proposed by Zhang et
al.l" Based on the tripartite matching structure, Zhang et al.!"”
used the minimum cost flow algorithm to solve the
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multiobjective matching problem from the perspective of the
minimum matching distance. They proved, theoretically and
experimentally, that the tripartite graph matching method is
better than the traditional bipartite graph matching method,
but this method focuses on fixed proportion matching; that is,
the number of matches k of each individual is unified. Fixed
proportion matching has limitations due to its high depend-
ence on the sample distribution.

Drawn upon the tripartite graph, the objective of the
TRIMATCH matching algorithm in this paper is to find the
matching set with variable matching ratios that minimizes the
average matching distance. Theoretical and experimental
findings indicate that the algorithm for minimum average
matching distance surpasses its counterpart, the algorithm for
minimum matching distance, in generating a greater number
of matching combinations while simultaneously minimizing
average matching distance'’. By incorporating this tripartite
structure, we can better consider the matching goals separ-
ately and improve the matching quality of the matching al-
gorithm. Compared with the regression-based estimation ap-
proach, the new approach prioritizes balancing the covariates
between the treatment and control groups in the observed data
using a matching method. Doing so minimizes the impact of
sample imbalance on subsequent predictions. Additionally,
TRIMATCH is suitable for the analysis of heterogeneous
treatment effects in the case of high-dimensional covariates.

The specific contributions of this article are as follows:

( 1) In terms of estimating heterogeneous treatment effects,
we propose a data-driven method for estimating heterogen-
eous treatment effects from observational data by integrating
matching methods in causal inference with machine learning
techniques. This approach, called TRIMATCH, combines the
strengths of both methods to create a robust and accurate es-
timator. On the one hand, machine learning methods have
good generalization performance and can perform reasonable
extrapolation based on matched samples, which is difficult for
traditional matching methods. On the other hand, machine
learning methods are sensitive to sample distribution, and
some “black box models” lack interpretability. The integra-
tion of these matching methods not only reduces the negative
impact of sample imbalance on machine learning method es-
timation but also improves the interpretability of the model.
This study uses simulation experiments to verify the effect-
iveness and accuracy of TRIMATCH and proves theoretic-
ally that the method has a tolerable upper limit of estimation
error. This work’s integration of machine learning and tradi-
tional causal methods is conducive to the development of
causal theory in the era of big data. The work also provides a
reference for exploring the combination of traditional causal
inference methods and machine learning methods.

(II') Regarding research on matching methods, this article
considers the tradeoff between multiple matching objectives
from the perspective of average cost and solves the optimiza-
tion problem using a method for minimum average cost flow.
In previous literature, researchers usually selected matching
samples by minimizing the total distance of matching. Gao et
al.”? proposed a single-objective matching method based on
the minimum average cost flow algorithm. Based on this re-
search, this article extends the research perspective to
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multiobjective matching. We present theoretical and experi-
mental results showing that the matching set obtained by the
proposed method has superior properties compared to prior
methods.

The rest of this paper is organized as follows. Section 2 re-
views methods for estimating heterogeneous treatment ef-
fects using matching techniques. Section 3 introduces a step-
by-step approach to estimating heterogeneous treatment ef-
fects using TRIMATCH. Section 4 discusses the impact of
six different caliper settings on simulated datasets and shows
the proposed method’s performance on simulation datasets. In
Section 5, the method is applied to real-world data, and the
results are analyzed. Section 6 concludes with a discussion.

2 Related work

Matching is an effective method for estimating treatment ef-
fects in observational studies, which can be achieved by
matching treated and control groups with similar covariate
distributions. The match-based approach reduces the estima-
tion bias brought by observed confounders. The keys to solv-
ing the matching problem are to choose a distance metric to
define “closeness” and a matching algorithm to implement
matching.

For distance metrics, the most straightforward way to
match is to perform exact matching based on some discrete
covariates that define the distance as 0 when the covariates
are equal and infinity otherwise. Since exact matching does
not apply to the matching problem on continuous covariates,
Tacus et al."*! proposed a new method known as coarsened ex-
act matching (CEM), which converts continuous variables
into ordered multicategorical variables under the exact match-
ing framework. This method considers the extrapolation re-
gion where unmatched units exist. However, as the covariate
dimension increases, it is challenging to match exactly based
on multiple covariates or coarsened covariates due to compu-
tational complexity and data problems. For multivariate
matching, Euclidean distance” or Mahalanobis distance!
was typically selected in the previous literature. Numerous
studies have shown that matching based on the propensity
score can reduce bias to ensure balance on the variables
highly correlated with the treatment assignment*'*. The pro-
gnostic score can be considered an analog to the propensity
score, and it can be used to produce a balance on prognostic-
ally relevant variables'”. Since both the propensity score and
the prognostic score must be estimated, score model misspe-
cification can result in low-quality matches. Compared to
propensity score or prognostic score matching, matching on
both scores may improve the accuracy of treatment effect es-
timation and enhance robustness to score model misspecifica-
tion"* . In the matching process, previous publications re-
commend including confounding factors associated with
treatment assignment and the outcome variable as much as
possible. They also recommend excluding some variables to
improve the estimate’s accuracy, such as the post-treatment
variables and the instrumental variables™*"*".

Various matching algorithms exist to achieve different
matching goals. Based on a selected distance measure, the
most direct and simple method is nearest-neighbor matching.
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Unfortunately, in cases where the sizes of the treatment and
control groups are disproportionate, utilizing a one-to-one
matching strategy can result in sample wastage. Rubin'* pro-
posed 1 to k (or k to 1) matching where k is a fixed value, and
the choice of k is generally contingent upon the tradeoff
between estimated bias and variance. If some individuals are
spatially distant from their k& nearest neighbors within a given
dataset, a fixed ratio of matches will result in matches of in-
ferior quality. Considering the uneven distribution of observa-
tional data, variable ratio matching has been proposed to en-
hance bias reduction””. To acquire satisfactory matching
pairs with certain desired properties, researchers usually im-
pose constraints on the matching algorithms, such as fine and
near-fine balance, exact and near-exact matching on crucial
nominal variables, or maximum number of matches per indi-
vidual. Soft or hard constraints can be applied to filter out
matching pairs that do not meet the desired criteria corres-
ponding to the matching goal, and there are tradeoffs between
different matching targets”". The problem of optimal match-
ing satisfying specific properties can be expressed as an op-
timization problem subject to constraints, and such problems
can be solved by mixed integer programming or network flow
methods. Yu and Rosenbaum™' explored the connection
between directional penalties and integer programming tech-
nique to improve covariate balance in a matched sample.
Morucci et al.” found hyper-box-shaped regions where the
treatment effects are roughly constant throughout with mixed
integer program method. Another approach to solve the
matching problem is the network flow algorithm, which is
usually reformulated into a minimum cost flow problem®” 1,

3 Methodology

3.1 Overall design of the framework

We follow the potential outcomes framework proposed by
Rubin™. Suppose we have N independent observations from
(Y,W,X), where Y is the observed outcome, W is a binary
treatment of interest, and X is a P-dimensional vector of cov-
ariates, each unit’s potential outcomes are given by
(Y,(0),Y.(1)), whose components represent the outcomes of
units assigned to the control group and the treatment group.
The  potential outcome can be  modeled as
Y, = u(X;)) + W-1(X,) + v, where E(v;) = 0",

For each unit i, the individual treatment effect (ITE) is
defined as

7, := Y(1) = Y(0).

Since two potential outcomes for the same individual cannot
be observed simultaneously, the true individual treatment ef-
fect is unknown. However, it is possible to estimate the aver-
age treatment effect among individuals with the same vector
of covariates X, which is referred to as the conditional aver-
age treatment effect (CATE). Under the following classical
assumptions, the CATE can be estimated to capture hetero-
geneity among causal effects within the population, which is
defined as

7(x):= E(Y(1)-Y(0)|X = x).
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Assumption 1 (Stable unit treatment value assumption).
The potential outcomes for any unit do not depend on the
treatments assigned to other units. There are no different ver-
sions of the treatment.

Assumption 2 (Unconfoundedness). Given the covariates
X, treatment assignment W is independent of the potential
outcome for each unit. (Y (1), Y(0))1LW|X.

3.2 Matching as a minimum average cost flow problem

The matching problem is usually modeled as an optimization
problem subject to various constraints, and it can be solved in
various ways, such as network optimization techniques. Mo-
tivated by Zhang et al.'”, we adopt a tripartite graph tech-
nique to construct the match network structure rather than
using a bipartite graph. In contrast to classical bipartite
matching, tripartite matching can achieve the goals of match-
ing proximity and covariate balance simultaneously without
conflict. The matching problem can be transformed into a
minimum average cost flow problem based on a tripartite
graph, which is solved by general algorithms for that
problem.

3.2.1 Tripartite matching structure

Considering the general structure of the network, the basic
framework of the network comprises a set of vertices N and
edges &, where E C N XN . Each edge e € & is of the form
e = (i, j), which represents the edge between i and j, where
i,je N. In the left part of the tripartite graph, there are T
treated subjects, denoted by 7~ = {t,,...,#}, and C control sub-
jects, denoted by C={cy,...,cc}, where C>T in general.
Each subject (treatment or control) has a duplicate in the right
part of tripartite graph, which is denoted by #; or ¢/. A source
s and a sink s exist in addition to the abovementioned ver-
tices at the beginning and end of the graph, respectively. The
structure of tripartite matching is shown in Fig. 1.

3.2.2 Distance metric

To ensure the efficacy of matching estimators, matching
designs generally aim to achieve covariate balance and
matching closeness within an appropriate matching ratio. The
former ensures that the distribution of covariates observed in
the treatment group is similar to that in the matched control
group, making it closer to a randomized study. The latter re-
quires close pairing for key observed covariates, which can
reduce the estimation bias brought by confounders.

Our proposed matching algorithm considers both of these
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Fig. 1. Tripartite network structure.
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matching goals simultaneously. We use ¢, to represent the
cost of edge (#,c;) as the metric of pairing proximity, and we
use 4, to represent the cost of edge (c/,7) as the metric of
covariate imbalance. The penalty term denoted by A achieves
a tradeoff between the two distances.

Regarding matching closely, when the covariates are high-
dimensional, it is not necessary to match based on all covari-
ates, although Glazerman et al.”" suggest including as many
variables as possible that are highly predictive of outcomes
and treatment assignment. Meanwhile, Pearl™ advise exclud-
ing the instrumental variables affecting only the treatment as-
signment because they tend to amplify the bias of treatment
effect estimators. We implement feature selection via random
forests to screen for covariates with the smallest mean
squared error in predicting outcome variables. For the mul-
tivariate distance, the Mahalanobis distance or robust Ma-
halanobis distance is typically used as the measure of dis-
tance because the Mahalanobis distance is not affected by di-
mension and takes into account the correlation between vari-
ables in multivariate settings, making it superior to the Euc-
lidean distance. When the key covariables are all nominal
variables, we can also utilize the Hamming distance as the
distance measure or use exact matching.

Regarding balance matching, the propensity score is a bal-
ance score that refers to the estimated probability of a subject
receiving the treatment arrangement given the covariates,
defined as e(x) = P(W = 1| X = x). Matching on the propensity
score tends to produce a balance between the treated and un-
treated groups, consequently removing bias that can arise due
to the influence of covariates that are highly predictive of
treatment assignment.

3.2.3 Minimum average cost flow

The network flow optimization algorithm is an important
method for solving the variable ratio matching problem. Un-
like the minimum cost flow-based algorithm matching, our
objective is to minimize the average distance of the matches,
which is equivalent to the minimum average cost flow optim-
ization problem. As suggested by Gao et al.”’, a matching
method that aims to minimize the average match distance res-
ults in a greater number of matched pairs and lower average
distance between the pairs than any method that focuses on
minimizing the total match distance.

The problem of minimal average cost flow was put for-
ward by Chen” to find the feasible flow from a specified
node to another node with the minimum average transporta-
tion cost, which is essentially a problem of flow allocation
and route planning with a given amount of flow. Let
G ={N,&E,b,cap,s,s,B} be a network with |N| nodes, |&|
edges, and fixed cost B. For any edge in &, the transportation
cost per unit flow is b, the capacity of each edge is cap, and
the flow is f. The total flow from the source node s to the
sink node s in network G is F, and the flow between two
nodes u and v in the network is f(u,v) for u,ve N, so the
minimum average cost flow problem can be formulated as
follows:
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min {[Z b(u,v) X f(u, v)] + B} /F
" F if u=s; (1)
s.t. Zf(u,v)—Zf(v,u)z 0if ug¢s,s;
v v —-F if u=ys;
0< f(u,v) <cap(u,v), (um,v)eN.

The minimum cost flow problem is essentially a linear pro-
gramming problem and can be solved by general algorithms
in the previous literature. However, the minimum average
cost flow problem is a nonlinear programming problem for
which no general solution is currently known. Inspired by
Chen'™!, we know that when the marginal cost is equal to the
average cost, the corresponding flow in the flow network is
the optimal solution of the minimum average cost flow prob-
lem. We use binary search to improve the operation effi-
ciency, and we find the optimal solution by reformulating the
minimum average cost flow problem into a minimum cost
flow problem given the optimal feasible flow.

Based on the network flow model, the problem of finding
the minimum average matching distance can be transformed
into a minimum average cost flow problem. In the network
structure depicted by Fig. 1, we use G, to denote the left part
of the graph, consisting of the edges (s,#) and (t;,c;), while
using G, to represent the right part of the graph, comprising
the edges (c’,t)) and (#,s’). Since the objective is to find the
optimal solution that minimizes the matching cost, we only
need to consider the cost between the control group and the
treatment group. In the tripartite graph, the cost of the edge
between the treated units and controls corresponds to the
matching distance, and the cost of all other edges is 0. The
flow of the edge between the treated units and controls,
f(e)e{0,1},e €{(t,,c;)}, indicates whether the individuals
connecting this edge are matched. The minimum average cost
flow problem can be reformulated as follows:

D b fe)+a D A, e, )

. (tie)EG (c}1))eGa (2 )
min a
4 Z ft,c)
(tixcj)
s.t. 0< fe) < 1L,Ve e{(ti,c). (¢, 1)} (2b)
1< fe) <k,Vee((s,t1),(t,s)), (2¢)
0< fle) <k, Ve e({(c;,c)} (2d)

D flst) = fit.s), (2¢)

> faby= ) fbo), VYbeN\(ss) (2D

ax(a,b)e& b:(b.c)e&

The objective function contains two distance metrics rep-
resenting the cost of two parts of the network structure. Part
G, prioritizes pairing individuals who are close on key covari-
ates, and G, gives preference to matching groups with smal-
ler propensity score gaps. The former determines the
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matching set, while the latter forces the matching set to satis-
fy the property of covariate balance. Hence, the resulting
match is represented by the feasible flow of edge (7, ¢;) in G,.
In real-world data, the number of control group individuals is
typically larger than that of treatment group individuals, and
researchers are more concerned with the treatment effects on
treatment groups in practical applications. Thus, in the match-
ing process, every unit in the treatment group is guaranteed to
be matched, while some control group units are allowed to re-
main unmatched. Constraint (2¢) ensures that each treated
unit is matched with at most k& control units and at least one
control unit. Constraints (2d) ensure that each control unit is
matched with at most k treated units. There is a tradeoff
between the matching accuracy and the number of matching
pairs that should be considered in the selection of the k value;
that is, a value of k that is too large will increase the bias of
the estimate and reduce the computational efficiency, while
an overly small k value may impractically decrease the num-
ber of pairs. What is worse, there is no feasible solution for
the target function. Following Brito et al.t*), we choose
k ~log(n) as the maximum number of matches per individual.
Constraint (2e) ensures that the flow out of source s is equal
to the flow into sink s’. Constraint (2f) guarantees that the in-
flow and outflow of each unit are equal, except for the source
and sink; that is, the net flow is 0.

Proposition 3.1. If there is a feasible flow in the above-
mentioned network structure, then:

(i) The flow through G, equals the flow through G,; that is,
the number of pairs generated by the two parts of the net-
work is equal.

(i1) For the same control unit in G, and G,, the number of
pairs is equivalent, but the treated units paired with the con-
trol unit are not necessarily identical.

(iii) The total distance of the optimal solution generated by
tripartite matching is less than or equal to the minimum total
distance generated by bipartite matching.

Proof. Eq. (2¢) constrains the outbound flow from the
source s to equal the inbound flow from the destination s’, so
claim (i) holds. Eq. (2f) implies that for each control group,
the flow out of ¢; equals the flow into ¢}, and f(#,c;) =1 or 0,
so for the same control unit in G, and G,, the number of pairs
of their matches are equal, while the treated units paired with
the control unit are not necessarily identical, which supports
claim (ii). If we force them to match the same set of treat-
ment groups for the same control unit in G, and G,, by adding
constraints f(#,c;) = f(c/,), this is equivalent to bipartite
matching. In other words, under the same conditions, bipart-
ite matching is more stringent than tripartite matching. There-
fore, the optimal solution of bipartite matching must be a
feasible solution of tripartite matching, but it is not necessar-
ily the optimal solution of tripartite matching. Therefore, the
minimum average cost of tripartite matching must be at most
the minimum average cost of bipartite matching, which
proves claim (iii).

As Korte et al.’! showed, the algorithmic complexity of the
minimum cost flow problem is O(INI|IE|+|N*log(IN])),
which ranges from O(IN]*log(JN|) to |N|* depending on the
complexity of the network structure. The network (N,E) is
dense if |E|=O(NP), and sparse if |E|=O(N|). The
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minimum average cost flow problem only takes O(log(|E|+
log(d,))xT(|E,IN])) arithmetic operations (see Ref. [33,
Lemma 9]), where d, is the largest capacity of the edge in our
network, and T'(|&|,|N]) is the time required for solving a min-
imum cost flow problem in a network with |E| edges and |N/|
nodes. In our network structure, we can reduce the complex-
ity of the algorithm by increasing the sparsity of the graph. In
other words, incorporating constraints can reduce the number
of edges in the network. One viable approach to sparsifying
the network is to coerce individuals into exact matches with
key nominal variables. Another option is to impose a
propensity caliper restriction on potential matches, that is, to
discard matching pairs whose propensity score gap exceeds
the given caliper threshold.

Depending on the matching objective, different types and
widths of calipers can be chosen. In previous literature, this
caliper is generally 0.2 pooled standard deviations of the es-
timated propensity score or prognostic score. Leacy and Stu-
art' proved that the model based on the joint use of
propensity and prognostic scores performed better than the
single score model. In our network structure, different cal-
ipers can be used in two parts of the network, with a loose
caliper in G, and a tight caliper in G,. To remove the in-
eligible edges from the network, we can apply hard con-
straints by setting the cost of the edges that do not meet re-
quirements to infinity or setting the capacity cap of the un-
desirable edges to 0. In addition, soft constraints are also used
to remove those ineligible edges with a penalty on the cost of
the edges. When comparing hard and soft constraints in op-
timization problems, the conditions of soft constraints are less
stringent, and the methods employed to satisfy them are more
adaptable. The objective may be feasible even when soft con-
straints are violated, making them a preferable choice in this
paper. Nevertheless, when dealing with large volumes of data,
hard constraints can contribute to simplifying the model and
increasing the efficiency of the algorithm.

3.3 CATE estimation

Based on the result of matching, each unit’s counterfactual
outcome can be estimated by the mean of the outcomes of the
individuals in its matching set. Let /7, be the matching set of
unit i, and | I7; | denote the number of matches of i:

I:=1{j: fG.j)=1,W,=1-W}.

Let 7 be the proxy of the individual treatment effect, which
can be computed by

= 1
Ti_(zw—l)[x—|E|ZY,].

Jet;

Using a potential outcomes framework, Rosenbaum and
Rubin™ proved that ¥ and W are also conditionally inde-
pendent, conditional on the propensity score under the uncon-
foundedness assumption,

(Y1), Y(0) LW | e(x).

Therefore, we can derive an estimator of the conditional aver-
age treatment effect:
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7(x) =E(Y(1) - Y(0) | X, Xir,e(X)) = X YF i=1,-,n, (6)
E(Y(1)-Y(0)| X, e(X)), 3)

where X, refers to covariates relevant to the outcome, and X, e(X;) = expit(yX), ™

refers to covariates irrelevant to the outcome. -

To estimate the conditional average treatment effect of W, '~ Bern(e(X))), ®)
each unit, we build the XGBoost tree for regression on the

pseudo individual treatment effect as the proxy of the true in- Y, =puX)+W,-t(X)+v,, v ¥ N(Q,1). 9)

dividual treatment effect. The regressors include the key cov-
ariates screened for matching previously, which are highly
predictive for the outcome variable. In the matching step, co-
variates that lack correlation with the outcome variable have
been eliminated via implementation of the random forest
methodology. The propensity score summarizes information
highly predictive of the treatment indicator. When using full
covariates for regression analysis, the curse of dimensionality
often arises. To tackle this issue, we can remove variables that
are irrelevant to the outcome variable. This will not only help
to effectively reduce the dimensionality of predictive factors
but also avoid the impact of redundant variables. The
propensity score serves as a useful tool to balance covariates
because it acts as a balancing score. Incorporating the
propensity score into the predictive factors can help control
confounding factors and improve the accuracy of predictions.
Moreover, nonparametric regression that employs propensity
scores resembles “one-to-one” matching based on propensity
scores, establishing a one-to-one mapping relationship.

As stated in Proposition 3.2, the expected error upper
bound of heterogeneous treatment effects can be effectively
reduced by narrowing the distance within the matching group
and the difference in prognostic score. See Appendix A.1 for
a specific proof of Proposition 3.2.

Proposition 3.2. Let g be a regressor based on pseudo
treatment effects 7, and ¥ be the final estimated conditional

A

average treatment effect, defined as 7 =g(X,e(X)). Let
2W, = (-,
bn L Z( )(/J /’l./)

€ := max|g(X,e(X)) -7, T ’
QW,~ 1), -v,) o l

and

— o Let 6 be the kth closest distance

to unit i based on covariates. Assume that 7 is Lipschitz con-
tinuous; that is, there exists some constant L such that
IT(X)) —7(X;)| < L|IX; — X|. Using the basic framework of the
above model, if the tripartite matching problem is solvable
within the caliper denoted by «, then

E7(X) - 1(X)IX) < 2e(X) = Dby + (1 - e(X)LS),  (4)

Jell;

E((#(X) —t(X))’|X) <
{6+ k"kiaz F(1—eX QLY+ B +ef. (5

i

4 Simulation

This section analyzes the results from several simulation ex-
periments carried out to compare the performance of TRIM-
ATCH with some of the canonical models proposed for es-
timating heterogeneous treatment effects, including match-
based and tree-based models. The simulated data were gener-
ated from the following model:

0707-6

Note that e(-) denotes a propensity score, u(-) denotes a pro-
gnostic score defined as E(Y(0)X), and 7(-) denotes the func-
tion we want estimate, namely, the true individual treatment
effect.

We compare the following estimators to TRIMATCH:
(D propensity score matching (PSM); @ prognostic score
matching (PGM); ® 1:k matching on the joint use of
propensity and prognostic scores (PP)"”; (@) variable ratio
matching based on the minimum average cost flow algorithm
of a bipartite graph (COMBO)"; & a nonparametric
Bayesian regression approach using dimensionally adaptive
random basis elements with Bayesian additive regression
trees (BART)"; and ® an estimator based on an R-learner
implemented by random forests with causal forests (CF)™.
For all the 1 : k estimators mentioned above, Ye et al.” sug-
gested that the empirical choice k ~ log(n) yields good estim-
ation accuracy at tolerable computational costs. In our pro-
posed model, the magnitude of the penalty coefficient determ-
ines the tradeoff between the two matching objectives. Not-
ably, a penalty coefficient of 1 yields matching outcomes that
perform well in three crucial aspects: the number of matching
groups, the gap in propensity score, and the distance of key
covariates. We set the penalty coefficient A at 1 for all sub-
sequent experiments. For detailed experimental findings,
kindly refer to Appendix A.2.

We examine the performance of each model in the follow-
ing experimental settings under two scenarios: with linear
confounding factors and with nonlinear confounding factors.

Denote the sample size by n € {1000,2000}, and the num-
ber of features observed for each unit by p €{10,50, 100,200}.

( I) Linear confounders:

X U-1,117, (10)
WIX ~ Bern exp(X, -2X,-1.5) , )
1+exp(X, -2X,-1.5)
7(X) = =2X, — 1.5%, + X, + 0.9X, - 0.2X, + 1, (12)
u(X) = 2X, +1.5X.. (13)
(II') Nonlinear confounders:
X = U-1,117, (14)
exp(X, +2.5X, - 0.3X; +0.4X° - 1.5)
W|X ~ Bern )
1 +exp(X, +2.5X, — 0.3X2 +0.4X: — 1.5)
(15)
7(X) = -2X, - 1.5X, + X; +0.9X, - 02X, + 0.5X: - 0.3X2 + 1,
(16)
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u(X) = 2X, +1.5X, + 0.5X> + 2.4X2 - 0.8X, X,. (17)

We estimate the propensity scores using logistic regression,
which is implemented by the function bart in the R package
dbartst. Each method’s performance was assessed accord-

. 1
ing to mean absolute error (MAE), defined as — Z 1% =i,
n <

and mean square error (MSE) between the true treatment ef-
fects and estimated treatment effects, defined as

% Q=T

4.1 Comparison with different calipers

To determine the best choice of calipers and hyperparameters
for the proposed TRIMATCH method, we compare the res-
ults of matching based on the average difference of the true
propensity score (TP), the average difference of the estimated
propensity score (EP) between the treatment group and the
control group after matching, the average Mahalanobis dis-
tance of the treatment group and the control group based on
key covariates (MAHAL), the distance of each key covariate
between the control group and the treatment group, and the
number of matched pairs (PAIRS). We conduct six simula-
tion settings with different calipers as follows:

a. Matching (z,, c;) without calipers on the graph’s left part,
and matching (c,#;) within 0.2 pooled standard deviations of
the estimated propensity score caliper on the graph’s right
part.

b. Matching (#,,c;) within 0.2 pooled standard deviations of
the estimated propensity score caliper on the graph’s left part,
and matching (c},#;) without a caliper on the graph’s right
part.

c. Matching (#;, c;) within 0.2 pooled standard deviations of
the estimated propensity score caliper on the graph’s left part,
and matching (c’,#;) within 0.05 pooled standard deviations of
the estimated prognostic score caliper on the graph’s right
part.

d. Matching (#,, c;) within 0.2 pooled standard deviations of
the estimated prognostic score caliper on the graph’s left part,
and matching (c’,#;) within 0.05 pooled standard deviations of
the estimated propensity score caliper on the graph’s right
part.

e. Matching (#, c;) within 0.2 pooled standard deviations of

Table 1. Matching performance with different caliper settings.

the estimated propensity score caliper on the graph’s left part,
and matching (c’,#) within 0.05 pooled standard deviations of
the estimated propensity score caliper on the graph’s right
part.

f. Matching (t,,c;) within 0.2 pooled standard deviations of
the estimated prognostic score caliper on the graph’s left part,
and matching (¢’,#,) within 0.05 pooled standard deviations of
the estimated prognostic score caliper on the graph’s right
part.

We generated experimental data with a sample size of 1000
and covariate dimension 10 based on the linear confounder
model, and the simulation experiment was carried out 100
times with each of the above six different caliper settings. The
final experimental results are shown in Table 1. From the
simulation results, matching under caliper setting (a) can ef-
fectively reduce the gap between the treatment group and the
matched control group and significantly improve the match-
ing quality. Among the double caliper settings, matching
under caliper setting (d) shows satisfactory performance in
covariate balance and pairing proximity. The prognostic score
extracts information about the covariates associated with the
outcome, and the propensity score summarizes information
relevant to the treated variables, so we recommend matching
with the prognostic score caliper for closeness, using the
propensity score caliper for balance. That is, calipers corres-
pond to the matching objective function and the matching
goals. Whether using a single caliper or double calipers, it is
advisable to impose a propensity score caliper on the right
part of the graph.

4.2 Comparison with different estimators

Acknowledging the simulation study results in the previous
section, we carry out matching with 0.2 pooled standard devi-
ations of the estimated propensity score on the right part of
the graph to balance covariates. We consider the performance
of each model in the context of linear and nonlinear con-
founders. All experiments were repeated 100 times based on
datasets with a sample size of 1000 or 2000. For all matching
procedures, we use the function bart in the R package dbarts
to estimate the propensity score and the function glmnet in the
R package glmnet to estimate the prognostic score.

The box plots in Fig. 2 depict the prediction performance

original a b c d e f

PAIRS - 1026.43 824.83 755.14 991.39 991.39 755.14
TP 1.16 0.08 0.21 0.16 0.11 0.20 0.15
EP 1.59 0.45 0.14 0.21 0.49 0.14 0.54
MAHAL 10.50 2.32 4.39 3.41 3.03 3.57 2.77
std.diff.X1 0.47 0.04 0.09 0.11 0.04 0.09 0.06
std.diff. X2 1.03 0.03 0.17 0.09 0.05 0.15 0.09
std.diff. X3 0.05 0.02 0.05 0.04 0.03 0.04 0.03
std.diff. X4 0.06 0.02 0.05 0.05 0.03 0.04 0.03
std.diff. X5 0.06 0.03 0.06 0.05 0.04 0.04 0.04

The differences in key covariates and propensity scores between matched pairs are standardized by the pooled standard deviation of the respective

variable. For each evaluation metric, the best experimental performance under different caliper settings is highlighted in bold.
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Fig. 2. Comparison between different methods. (a) Mean absolute errors of 100 simulations for various methods. (b) Mean squared errors of 100 simula-
tions for various methods
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of different estimators under different sample sizes and data
generation models. We use the mean absolute error and mean
squared error to measure the accuracy of the model estimates.
For both linear confounders and nonlinear confounders,
among all the methods, TRIMATCH has the lowest errors in
the evaluation metrics of mean absolute error and mean
square error, and TRIMATCH’s variance is also relatively
low, indicating that the proposed method has the optimal per-
formance in the stability and accuracy of estimation. With in-
creasing dimension and complexity of the data model, TRIM-
ATCH’s accuracy decreases, but only by a small magnitude,
and the standard deviation of the estimation error also main-
tains a low level, which reflects the robustness of our method.
Compared with the fixed ratio matching methods, the error
estimated by the variable ratio matching method based on the
minimum average cost flow algorithm is smaller, which re-
flects the superiority of the variable ratio matching method.
Compared with the COMBO method, TRIMATCH elimin-
ates the influence of irrelevant factors in the measurement of
matching distance and considers the balance between covari-
ables, which reduces the estimation bias compared to the
COMBO method and improves the stability of the estimation
results.

5 Application

In this section, we apply TRIMATCH to a real-world dataset
to study the heterogeneous treatment effects of colleges on re-
ducing low-wage work, which was previously analyzed by
Brand et al.®". The data are derived from the National Longit-
udinal Survey of Youth 1979 (NLSY79), and we use the same
samples and variables as Brand et al.’*. Following their
study, the outcome variable of interest Y; is the proportion of
time in low-wage work over the person’s career, while the
treatment W, denotes whether the individual has completed
college by age 25. The covariates X include O sociodemo-
graphic factors (male, Black, Hispanic, southern residence at
age 14, rural residence at age 14), @ family background
factors (parents’ household income, fathers’ highest educa-
tion, mothers’ highest education, father upper-white collar

100%

Propensity Percentile
8
=

0.7 05 0.3 01 oa 03 05 07
(a) CATE

CATE

occupation, two-parent family at age 14, sibship size), @ cog-
nitive and psychosocial factors (cognitive ability ASVAB,
high school college preparatory program, Rotter’s Locus of
Control Scale, juvenile delinquency activity scale, education-
al expectations, educational aspirations, friends’ educational
aspirations), @ school factors (school disadvantage scale),
and ® family formation factors (marital status at age 18, had
a child by age 18). The dataset consists of 1764 observations,
with 347 in the treated group (W =1) and 1417 in the con-
trolled group (W = 0).

According to the correlation coefficient matrix of covari-
ates, the factor of parental income is associated with several
covariates. It is positively related to father’s or mothers’
highest education, father’s upper-white collar occupation, in-
tact family, high school college preparatory program, educa-
tional expectations, educational aspirations, friends’ educa-
tional aspirations, and propensity score. However, parental in-
come is negatively related to sibship size, Rotter’s Locus of
Control Scale, Black, Hispanic, rural residence at age 14, and
marital and childbearing status by age 18.

Fig. 3a depicts the estimated heterogeneous treatment ef-
fect posterior distributions corresponding to different approx-
imated propensity score percentiles (i.e., to individuals in the
sample whose estimated propensity scores are equal or closest
to the PS percentiles). Apart from the 100th percentile, the
mean of the conditional average treatment effect distributions
corresponding to the other percentiles is less than 0, which re-
flects the positive impact of college completion on reducing
the proportion of time in low-wage work. The distribution of
the estimated heterogeneous treatment effects near the Oth
percentile and 100th quantile of propensity score is more dis-
persed, indicating greater uncertainty in the estimates of indi-
viduals located in the poor overlap region.

When ASVAB cognitive ability is less than —0.5, Fig. 3b
shows a roughly positive correlation between conditional av-
erage and ASVAB cognitive ability, which means that the
lower the cognitive ability, the more significant the effects of
college completion on reducing the proportion of low-wage
work time. When ASVAB cognitive ability is at least 0.5,
the heterogeneous treatment effects fluctuated more

° )

30 25 20 -5 40 05 00 05 10 15 20
(b) ASVAB Cognitive ability

Fig. 3. (a) The graph displays the distribution of estimated heterogeneous treatment effects corresponding to the approximated propensity score percent-
iles. (b) Scatter plots of estimated treatment effect (averaged over the 100 iterations) against ASVAB cognitive ability.
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=013
100%

ASVAB < -1.1

delinquency = 1

-0.29 -0:19 -0.13
5% 2% 73%

ASVAB <-1.3

-0.32 -0.25 -0.15
3% 2% 31%

pscore <0.14

Control >= 10

-0.12
43%

pscore >= 0.61

-0 -0.13 -0.19
19% 11% 2%

Fig. 4. Prediction model of heterogeneous treatment effects.

consistently and were less than zero for most individuals, im-
plying that college education is beneficial in reducing the pro-
portion of time in low-wage work.

As shown in Fig. 4, from the overall sample perspective,
college completion positively impacts reducing the propor-
tion of low-paying jobs in an individual’s career. This effect
is more pronounced for individuals with lower cognitive abil-
ities, as indicated by an ASVAB score of less than —1.1. This
implies that completing college may be particularly benefi-
cial for individuals with lower cognitive abilities, as it may
help them secure higher-paying jobs. Juvenile delinquency
activity scale is also an important node for dividing homogen-
eous subgroups, and those who had delinquent behaviors be-
nefit more from completing college than those without delin-
quent behaviors.

6 Conclusions

In this article, we propose a two-step approach called TRIM-
ATCH for estimating individual treatment effects. First, we
construct a variable ratio matching model based on a tripart-
ite graph, utilize the minimum average cost flow algorithm to
obtain the optimal matching, and create a “near-randomized”
sample by matching to obtain a proxy for the individual treat-
ment effect. Second, based on the matching outcomes, we
employ the extreme gradient boosting tree technique to build
a prediction model for individual treatment effects.

We validate the effectiveness and accuracy of the

0707-10

delinquency =1

School disadvantage >= 1

-0.088 0.019
19% 1%

parents'income < 262

-0.11 -0.096 -0.05
41% 16% 3%

School disadvantage >= 43

-0.15 -0.11
5% 36%

ASVAB >=1.2

=017y -0.1
2% 34%

ASVAB < -0.89

-0.16 0]
1% 33%

proposed approach through both theoretical analysis and em-
pirical experiments. Our experimental findings demonstrate
that TRIMATCH effectively enhances the quality of match-
ing not only by reducing the average distance within the
matching set but also by improving the balance of covariates
between the treatment and control groups after matching. Fur-
thermore, our approach surpasses published alternative meth-
ods in terms of the accuracy of individual treatment effect
estimation.

The variable ratio matching problem is commonly reformu-
lated as a minimum average cost flow problem based on bi-
partite graphs. The minimum average cost flow algorithm of-
fers advantages over the minimum cost flow algorithm be-
cause the former can produce more feasible flows for a lower
average cost. Tripartite graph matching surpasses bipartite
graph matching in its ability to address multiobjective match-
ing problems and yields a lower overall matching cost. Our
proposed TRIMATCH offers flexibility and generality in the
following ways: (1) It does not impose any restrictions on
the type of covariates, making it suitable for both discrete and
continuous variables. (i) The matching ratio is variable and
can be adapted to the data distribution by selecting an appro-
priate matching set size. (iii) In the first step of matching pro-
cess, TRIMATCH can be combined with covariate balancing
techniques such as exact matching and refined balance match-
ing to enhance the balance of the matched covariates. In the
second step, other machine learning methods can replace the
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extreme gradient boosting tree method to construct the
prediction model. Compared to other regression-based causal
inference methods, matching enables the adjustment of the
covariate equilibrium, and the joint use of matching methods
and regression methods helps to reduce the model’s sensitiv-
ity to unobserved confounders.

TRIMATCH exhibits impressive matching quality, but it
requires further optimization in terms of time and space com-
plexity. To optimize the matching algorithm, we can start
from the network structure and the solution algorithm, re-
spectively, and combine the network sparsity method to sim-
plify the network structure, explore the optimization time of
other nonlinear programming solution algorithms and seek
the possibility of further optimization. In the second step of
the proposed method, the extreme gradient boosting tree can
be replaced by other machine learning methods, combined
with meta-learners to explore whether there are more accur-
ate individual treatment effects estimation methods.
Moreover, our method is currently applicable only to the case
of binary treatment variables. However, TRIMATCH can be
extended to the case of multiple treatments by mapping dif-
ferent treatment groups to different layers of the network
structure, where the number of layers corresponds to that of
categories of treatment variables. Furthermore, different
weights could be assigned to network layers to prioritize
matching tasks accordingly.
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By the Cauchy-Schwarz inequality, we continue to obtain

E[(F(X) - T(X))’1X,] < b} + kikjaz + (1= e(X)2F(X)) — (X)) +2b7, - b} ] < b}, + kikLIO'2 +(1-e(X)2L%57) + b}).  (AS)

Summarizing (A2) to (A5), we have

E((#(X) —t(X))’1X) < (VEIGEX) —1(X)PIX]+ ) <{[b] + IQTHO'Z +(1 - e(X)2L*5)) + b?,-)]% +el (A6)

A.2 100 Monte Carlo simulations with different penalty coefficients 4

We compared the matching performance under the linear and nonlinear confounder data models using different A; the results are
shown in the Tables A1 and A2. The coefficient A represents the tradeoff between matching proximity and covariance balance.
The tables illustrate that when A< 10, increasing the A value reduces the difference in estimated and true propensity scores
between the matched treatment and control groups. Meanwhile, the gap of each key covariate between the matched groups in-
creases, and the average Mahalanobis distance of the key covariates also increases. However, when A > 10, the matching results
become insensitive to the penalty coefficient's magnitude.

Upon comparing the matching sets selected by G, and G, for 4 > 10, we observe a high degree of overlap. In other words, the
matching sets with closer covariate matching distances tend to have closely aligned propensity scores, resulting in a relatively
balanced distribution of covariates within the matched treatment and control groups. This result may be attributed to the underly-
ing data generation model, where the covariates linked to the treatment variable represent a subset of the treatment variable’s im-
pact factors. The distance measure used in G, incorporates pertinent information related to the propensity score in G,, leading to a
matching outcome that is not overly sensitive to the value of A. Notably, when A equals 1, the matching method already demon-
strates high performance, leaving limited room for improvement. Additionally, in our matching design, we impose a fixed cost on
edges that violate the caliper setting in G,. Consequently, when A is too large, the initial cost of each edge is also large, and the
fixed penalty cost has little impact on the cost of each edge in G,.

Nevertheless, the analysis highlights a substantial decrease in the distance observed between the covariance and propensity
score of the control group after matching, which also reflects that the tripartite graph model proficiently accounts for both match-
ing proximity and covariance balance.

Table Al. Matching performance with different 1 under linear confounders.

a1 original 0.01 0.1 1 10 100 1000
PAIRS - 773.21 994.48 1025.88 1026.43 1026.43 1026.43
TP 1.16 0.12 0.09 0.07 0.07 0.08 0.08
EP 1.59 0.56 0.51 0.47 0.45 0.45 0.45
MAHAL 10.5 2.04 2.14 2.20 230 2.36 2.37
std.diff.X1 0.47 0.04 0.03 0.03 0.03 0.04 0.04
std.diff. X2 1.03 0.08 0.05 0.03 0.02 0.03 0.03
std.diff. X3 0.05 0.01 0.01 0.01 0.02 0.02 0.02
std.diff. X4 0.06 0.01 0.01 0.01 0.02 0.02 0.02
std.diff. X5 0.06 0.05 0.04 0.03 0.03 0.03 0.03

The note is the same as that of Table 1.

Table A2. Matching performance with different 2 under nonlinear confounders.

A original 0.01 0.1 1 10 100 1000

PAIRS - 813.55 857.65 961.98 969.53 969.7 969.7
TP 0.65 0.03 0.03 0.09 0.13 0.16 0.17
EP 1.3 0.55 0.5 0.36 0.29 0.28 0.28
MAHAL 10.12 1.52 1.55 1.69 1.85 2 2.04
std.diff. X1 0.56 0.02 0.03 0.07 0.11 0.13 0.14
std.diff. X2 0.28 0.02 0.02 0.04 0.06 0.07 0.08
std.diff.X3 0.12 0.01 0.01 0.02 0.03 0.04 0.04
std.diff. X4 0.06 0.01 0.01 0.02 0.02 0.03 0.03
std.diff.X5 0.06 0.03 0.03 0.03 0.04 0.04 0.04

The note is the same as that of Table 1.
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