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® Computational model of DFT
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@ Plausible explanation of regioselectivity

® Analysis of electronic and steric effects

Origin of regioselectivity in nickel-catalyzed hydroalkylation of branched 1, 3-dienes.

Public summary

m The mechanism of Ni-catalyzed hydroalkylation of branched 1,3-dienes was systematically explored with the aid of
DFT.

m Reaction mechanism consists of four main steps: proton transfer, anion dissociation, carbanion attack and ligand ex-
change.

m The selectivity of the reaction was analyzed, which is mainly due to the electronic and steric effects.
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Abstract: With the development of algorithms and theoretical chemistry, quantum chemical calculations have been used
to explain and predict various chemical experiments. The hydroalkylation of conjugated olefins catalyzed by nickel is an
important type of organic chemical reaction, and its mechanism has always been the focus of organic chemists. In this
paper, a hydroalkylation reaction developed by the Mazet research group was studied in detail by means of density func-
tional theory (DFT), and a possible mechanism model of the reaction was obtained. In this context, the attractive regiose-
lectivity of the reaction was explored and rationally explained.

Keywords: DFT; hydroalkylation; 1,3-dienes; nickel catalysis; mechanism
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1 Introduction

C—C bond formation has always been an enduring topic in or-
ganic chemistry!"*. Among various types of C—C bond forma-
tion reactions, the hydroalkylation of alkenes has attracted
much attention due to its advantages, such as high atom eco-
nomy and mild reaction conditions®*. Compared to normal
alkenes, the hydroalkylation of dienes might occur at differ-
ent sites, resulting in a more diverse reaction selectivity.
Therefore, the control of its selectivity has always been a mat-
ter of organic chemistry. Since 2004, Hartwig et al.” has pi-
oneered the palladium-catalyzed 1,4-hydroalkylation of
dienes (Fig. la). In the past two decades, many excellent
works (such as expanding the range of substrate alkenes and
nucleophiles, other catalysts and bimetallic catalysis, control
of regioselectivity, etc.) have made great contributions to hy-
droalkylation reactions™*". For example, Zhou et al.”" intro-
duced an unstable nucleophile to complete the hydroalkyla-
tion under nickel catalysis; Malcolmson et al.”*** extended
the range of diene substrates to branched dienes and internal
dienes; and Zi et al.” developed a copper/palladium dual-
catalyst system to enable the reaction to achieve high enanti-
oselectivity (Fig. 1b—d). In 2020, the Mazet group™ reported
two complementary regiodivergent hydroalkylations of con-
jugated dienes with Ni catalysts by modifying the type of al-
kylation substrate (amide and imide). That is, when amides
are used as nucleophiles, 1,4-hydroalkylation is favored,
while when imides are used, 3,4-hydroalkylation mainly oc-
curs (Fig. Te).

According to the reported literature™ ", the hydroalkyla-
tion of 1,3-dienes generally consists of two processes, hydro-
genation and alkylation. Ligand exchange of catalyst ligands
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by dienes is a common and easily occurring processt*.
After the formation of intermediate A (Fig. 2), Ni-H species
B can possibly be formed by the oxidative addition of meth-
anol to A (proton transfer can also occur to directly form the
M-H species™ ") and then produce metal-n-allyl complex
D via Ni-H migratory insertion with the dienes (Fig. 2, path
I). Furthermore, complex D could also be formed by the con-
certed protonation oxidation addition step of intermediate A
via transitional state C (Fig. 2, path II)'**. After hydrogena-
tion, there are two possible pathways for C—C bond forma-
tion. One is to form a Ni—C bond with nucleophiles to attack
the metal center and then undergo a reduction elimination
step to form product G (Fig. 2, path II)**!. The other in-
volves the nucleophilic attack of the diene with carbonation
from the outside direction (E—G, path IV)¥"* %% Finally,
ligand exchange between G and the diene substrate occurs,
thus realizing the catalytic cycle.

2 Materials and methods

All calculations were performed with Gaussian 16, Rev.
C.01"". The B3LYP functional®*" with the D3 version of
Grimme’s empirical dispersion with Becke-Johnson damping
(GD3BIJ)F** was used for geometry optimization of all struc-
tures. The def2-SVPPP" basis set was employed on all ele-
ments. Frequency analysis was performed at the same level to
confirm that the optimized structures are local minima (have
no imaginary frequency) or transition states (have only one
imaginary frequency) and acquire the thermal correction to
Gibbs free energy. Single-point energy calculations were con-
ducted with the M06 functional®"**>" and the def2-TZVPV*"
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Fig. 1. Examples of the typical hydroalkylation strategies of diene.

basis set. The solvent effects were considered in all calcula-
tions with the SMDP* solvation model (with tetrahydrofuran
solvent). All transition states were further confirmed by in-
trinsic reaction coordinate (IRC)*-! calculations to ensure
that the correct reactants and products were connected. The
relative Gibbs free energy in calculations was corrected ac-
cording to recent studies'®““. Herein, conversion of the com-
puted free energy at the 1 atm standard state (AG®,,) to that
at the 1 mol/L solution state (AG®°y,) follows the equation
AG°y=AG® i+ An R\ TIn(R,T),wherein R, =8.314J-K"-mol ™,
and An denotes the molar change of the primitive step. Mean-
while, artificially increased pressure (P = (d/M) % R,T) pro-
posed by Martin et al. was used to reduce the overestimation
of translational entropy’, in which M and d denote the
solvent molar mass and density, respectively, and R, = 0.082
L-atm-K™"-mol™". For the model reaction in Fig. le, T =
298.15 K, and for the THF solvent, M = 72.11 g'mol™, d =
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786 g'L". To this end, AG®,, = AG° + An R\T InP =
AG®°y + An x 3.3 = AG®,,, + An x 5.2. Unless otherwise
stated, all energies are corrected Gibbs free energy in
kcal/mol. The relevant optimized structures were drawn us-
ing CYLview software.

The studied model experiment. In accordance with
Mazet’s experiments™, the Ni(cod),/L1-catalyzed hydroal-
kylation of 2-phenyl-1,3-diene with amides or imides in
tetrahydrofuran (THF) was used as the modeling reaction in
the theoretical calculations (Fig. 3).

3 Results and discussion

3.1 The hydroalkylation mechanism of the amide system

The reaction mechanism of the amide is first studied (the 1,4-
addition process is favored). Regarding the initial state of the
nickel catalyst, Ni(cod), (cod = cycloocta-1,5-diene) (IN1)
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Fig. 2. Possible reaction mechanism of the Ni-catalyzed hydroalkylation of 2-phenyl-1,3-diene.

| [Ni(cod),], Ligand o
N
Phb N MEOK  Ph | N~
o THF, 23 °C ph | o™
=N
diene amide P1
. . P
] INi(codg, Ligand Py I >cy
N eO N C
Phb .o N Ph ~ Ph A y
o] o THF, 23 °C o o) Ligand
diene imide P2
Fig. 3. Model reaction in the theoretical calculations.
could undergo ligand exchange or coordination with the phos- ated to be helpful” 7\ The structure optimization of the re-

phinooxazoline ligand, solvents, dienes and potential addit-
ives. The results (Fig. S1) demonstrate that Ni-diene (IN2)
formed via ligand exchange with the substrate is more feas-
ible than all other cases. This result is in line with chemical
common sense, and thus, IN2 is set as the energy reference.
Given the plausibility of a prior hydrogenation step in the
hydroalkylation reactions?"*-*"*-%7 we examined the en-
ergy demands for the formation of Ni-H species via the oxid-
ative addition of methanol on IN2. Therefore, the energy cal-
culation of the acid-base reaction between the amide and the
potassium methoxide was carried out, and the generation of
methanol and the zwitterionic K-amide was exergonic by
—1.4 kcal/mol (Fig. 4a). Next, the corresponding transition
state of the oxidative addition of methanol to IN2 needs to
overcome a high energy barrier of 42.3 kcal/mol (Fig. 4b,
TS1-c). In addition to the direct oxidative addition step®“,
it is possible that proton transfer occurs directly from coordin-
ated methanol to the alkene group (Fig. 4b, TS1-a). However,
the energy barrier is still unreachable in the reaction environ-
ment (AGrgy., = 29.8 kcal/mol). Considering that the transition
state is mainly related to the proton transfer of methanol, the
binding of a Lewis base (i.e., K-amide) to oxygen is anticip-
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lated transition state indicates a relatively lower energy barri-
er of 24.6 kcal/mol (Fig. 4b, TS1-b). Herein, it is interesting
to note that the coordination of oxygen of methanol is an en-
dergonic step (Fig. S4, IN-inner, predominantly due to the
significantly increased steric hindrance), so the possibility of
an external hydrogen migration is considered (Fig. 4b,
TS1)" 4, Satisfyingly, the energy barrier is further reduced to
19.6 kcal/mol. For comparison, the hydrogenation of the C1-
site of the substrate is relatively more difficult, with an en-
ergy barrier of 22.5 kcal/mol (Fig. S5, TS1-h1).
Subsequently, the nickel-r-allyl species IN3 was formed
after the hydrogenation step. Herein, IN3 could be viewed as
a tightly bound ion pair, with a positively charged nickel-allyl
moiety and a negatively charged methoxy-potassium amide
moiety (structure IN3 in Fig. 5). From IN3, different path-
ways might be responsible for the alkylation step on the
C1/C3-site, depending on whether the anionic MeO™ and K-
amide is released or not. As shown in Fig. 5, removing the
anionic MeO™ and K-amide generates a slightly more stable
intermediate IN4, while the coordination of the oxygen atom
of anionic MeO™ and K-amide to the nickel center generates a
significantly more stable intermediate IN4-a. From IN4, the
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Fig. 4. The Gibbs free energy profiles of the hydrogenation step start from IN1.

relative Gibbs free energy of the C—C bond formation trans-
ition state on the C1- and C3-site is 25.7 and 30.6 kcal/mol,
respectively (Fig. 5). In contrast, the C—C bond formation
from IN4-a results in a significantly higher energy barrier,
and the Gibbs free energy of the related transition state
reaches 37.7 kcal/mol. The high energy barrier of this pro-
cess is presumed to originate from the high steric hindrance
around the nickel center. For the same reason, the direct C-C
bond formation from the carbonation coordinated intermedi-
ate (IN4-b—TS2-A-¢, Fig. 5) via a reductive elimination
mode is remarkably more energy-demanding.

According to the aforementioned results, in the amide sys-
tem, the hydrogenation of the C4-site (over the C1-site) of the
diene substrate occurs favorably in an outer-sphere mode and
in the presence of the Lewis-base K-amide mediation. The
energy barrier is 19.6 kcal/mol. Next, the formed hydrogena-
tion product dissociates the anionic MeO™ and K-amide moi-

06064

ety, with the formation of cationic intermediate IN4. After
that, C—C bond formation occurs favorably on the Cl-site
(over the C3-site), with an energy barrier of 13.6 kcal/mol.
The final catalyst regeneration step occurs, releasing the 1,4-
hydroalkylation product as a result. For clarity, an overview
of the transformation is shown in Fig. 6. According to this
mechanism, both the rate and regioselectivity determining
steps lie in the C—C bond formation step.

3.2 The hydroalkylation mechanism of the imide system

According to Mazet’s experiments™, different regioselectiv-
ity occurs in the presence of amide or imide substrates, and
therefore, we calculated the detailed energy profiles of the im-
ide system (3,4-addition protocol was developed) (Fig. 7). For
clarity, the full calculation details of the hydrogenation and
alkylation steps are given in Fig. S7 and Fig. S8, respectively.
The overall transformation of the imide system is similar to
that of the amide system. Due to the exothermicity of the acid-
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Fig. 5. The Gibbs free energy profiles for the C—C bond formation steps from IN3.

base interaction of KOMe and the imide substrate, the forma-
tion of K-imide is a thermodynamically feasible process (Fig.
S3). In this context, the photon transfer of methanol to C4 of
the diene substrate in the imide system highly resembles that
of the amide system, except Kimide functions as a Lewis
base. After that, the dissociation of the anionic MeO™ and K-
imide leads to the cationic intermediate IN4.In the sub-
sequent C—C bond formation step, C3-alkylation is more fa-
vorable than Cl-alkylation (see Fig. S8), which is consistent
with the experimental selectivity™. It is worth noting that due
to the low energy barrier of the C—C bond formation steps in
the imide system, the rate-determining step is the first hydro-
genation step (with an energy barrier of 19.3 kcal/mol), while
the regioselectivity determining step is the subsequent C—-C
bond formation step.
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3.3 Discussions on the regioselectivity of the hydroal-
kylation

According to the aforementioned results, the regioselectivity
could possibly be controlled in both hydrogenation (at the C1-
or C4-site) and alkylation (at the C3- or Cl-site) steps.
Herein, the precursors of the C1- and C4-hydrogenation steps
are IN2 and IN2-a, respectively (Fig. 8). The relative energy
of IN2 is 0.5 kcal/mol higher than that of IN2-a, while the
electron density of the C4 atom in IN2 (precursor of TSI,
—0.514) (Fig. 8, C4) is relatively higher than that of the C1
atom in IN2-a (precursor of TS1-h1l, —0.466) (Fig. 8§, C1).
Both the relatively higher concentration of IN2 and the relat-
ively higher nucleophilicity of the C4 atom contribute to pref-
erential C4 hydrogenation (19.6 kcal/mol vs 22.5 kcal/mol).
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After C4 hydrogenation, the Cl- or C3-alkylation step
might generate 1,4- or 3,4-hydroalkylation products, respect-
ively. As shown in Fig. 9a, the nucleophilic attack of the
amide anion on the Cl-site results in an eclipsed conforma-
tion to ensure that the two relatively bulky groups (i.e.,
phenyl and amide groups) keep away from the sterically
hindered ligands on the Ni center (structure I ). In contrast, the
C3-atom bears a methyl and a benzyl group. Great steric
hindrance is present on the reaction center, and in this scen-
ario, the staggered configuration is relatively more plausible

(structure II vs I in Fig. 9a). Due to the relatively higher
steric hindrance, C3-alkylation is less favored than the CI-
alkylation pathway, and thus, the 1,4-hydroalkylation product
dominates in the amide system. The results correlate with the
experimental outcome™..

Compared to the amide systems, the C1- and C3-alkylation
transition states in the imide systems adopt a similar eclipsed
and staggered configuration (structure Il and IV in Fig. 9b).
Nevertheless, distinct from the sterically controlled configura-
tion of the C3-alkylation with amide (structure II in Fig. 9a),

0606-6 DOI: 10.52396/JUSTC-2023-0031
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the staggered configuration of the C3-alkylation with imide
results in a sterically hindered mode. As shown in the struc-
ture in Fig. 8, the imide group in IV lies trans to the hydrogen
on the C3 atom of the substrate, which is anticipated to in-
duce significantly higher steric hindrance in the reaction cen-
ter. However, the relative energy of structure V is lower than
that of the sterically more feasible structure IV (analog of II
in the amide system, Fig. 9). The results indicate that extrasta-
bility induced such an uncommon configuration. Indeed, the
optimized geometry (Fig. 9c) of the C3-alkylation precursor
of the imide system shows a n-n stacking interaction between
the C=0 bond of the imide group and the phenyl group of the
allylic substrate (Fig. S10, and the distance between the
groups is ~3.3 A). The electron-deficient phenyl group (due
to the -1 conjugation and the positive charge on the allylic
moiety) could be stabilized by the electron-rich carbonyl

IN2 0.0 IN2-a 0.5

Fig. 8. The Lewis structure, relative Gibbs free energy (AG® in kcal/mol),
and optimized geometry of IN2 and IN2-a.
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groups. Indeed, the NBO charges of the carbonyl groups in III
and V are 0273 and 0.284, respectively (Fig. 9c),
verifying the electron transfer from the carbonyl groups to the
allylic groups. Therefore, in the imide system, the carbonyl
group of the imide and the benzene ring of the branched diene
form an orbital interaction during the alkylation process, res-
ulting in preferential C3-alkylation. In other words, the elec-
tronic effect results in the predominance of the 3,4-hydroal-
kylation over the 1,4-hydroalkylation pathway in the imide
system. The regioselectivity of this system correlates with the
experimental outcome™’.

To further verify the above conclusions, we performed dis-
tortion/interaction analysis with the transition states of the
selectivity-determining step, and the relevant results are
presented in Fig. S11. As expected, in the amide system, the
distortion promoted the dominance of 1,4-hydroalkylation. In
the imide system, the interaction between the fragments made
3,4-hydroalkylation more favorable.

4 Conclusions

In conclusion, the mechanism of Ni-catalyzed hydroalkyla-
tion of Mazet with amide/imide was systematically explored
with the aid of density functional theory calculations. After
comparing the different pathways, both systems adopt the
same reaction mechanism, consisting of four main steps: hy-
drogenation with an in situ formed Lewis base (K-amide/K-
imide), heterogenous bond dissociation with the formation of
a cationic allylic coordinated intermediate, nucleophilic at-
tack with amide/imide, and the final catalyst regeneration
steps. C4 hydrogenation is favored over C1 hydrogenation in
both systems due to the relatively stable precursor and the
higher electron density on the reaction site. In this context, C1-
alkylation is favored in the amide system due to the steric be-
nefits, while C3-alkylation is favored in the imide system due
to the electronic advantages induced by n-w stacking between
the carbonyl group and the phenyl group of the substrate.

Supporting information

The supporting information for this article can be found on-
line at https://doi.org/10.52396/JUSTC-2023-0031. The sup-
porting information includes nine figures and Cartesian co-
ordinates of the calculated structures.
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