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Graphical abstract

Three different diaCEST contrast agents and their chemical exchange saturation transfer process with bulk water protons.

Public summary

m We summarize several types of diaCEST MRI agents, including glucose, amide protons, salicylic acid and their analogs,
which are promising for the diagnosis of tumors in CEST MRI.

m We present an in-depth discussion of the applications of these contrast agents in tumor imaging in recent years, such as
colorectal tumors and brain tumors.

m We evaluate these three different types of contrast agents and point out their advantages and disadvantages in CEST
MRI
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Abstract: Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is an advanced imaging
method that probes the chemical exchange between bulk water protons and exchangeable solute protons. This chemical ex-
change decreases the MR signal of water and reveals the distribution and concentration of certain endogenous bio-
molecules or extrogenous contrast agents in organisms with high sensitivity and spatial resolution. The CEST signal de-
pends not only on the concentration of the CEST contrast agent and external magnetic field but also on the surrounding en-
vironments of the contrast agent, such as pH and temperature, thus enabling CEST MRI to monitor pH, temperature, meta-
bolic level, and enzyme activity in vivo. In this review, we discuss the principle of CEST MRI and mainly summarize the
recent progress of diamagnetic CEST (diaCEST) contrast agents on tumor imaging, diagnosis, and therapy effect
evaluation.
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1 Introduction

Chemical exchange saturation transfer magnetic resonance
imaging (CEST MRI) is a relatively new MRI technology
with rapid growth. Its underlying principle is applying an in-
tended radio frequency (RF) pulse to stimulate the exchange-
able protons in a specific agent or biomolecule and turn them
into saturated states!’. The saturation then will transfer to sur-
rounding water protons by chemical exchange, resulting in a
partial loss of bulk water signal. With a sufficient chemical
exchange rate and saturation time, the saturated protons will
constantly accumulate in bulk water. Therefore, the signal of
water decreases significantly, which can be quantitatively de-
tected by MR acquisition methods and indirectly reveals the
distribution and concentration of the agent or biomolecule in
vivo. Compared with conventional MRI technology, CEST
MRI is capable of detecting diamagnetic molecules with high
selectivity, sensitivity, and throughput. By virtue of various
rationally designed bioinspired stimuli-responsive exogenous
CEST contrast agents, such as pH, temperature, and metabol-
ic level, CEST MRI has been reported to specifically detect
many types of tissue lesions and tumors in vivo for medical
diagnosis or treatment”. Moreover, the employment of dia-
magnetic contrast agents enables CEST MRI to track drug re-
lease and reveal important information such as the concentra-
tion and distribution of drugs in nanoparticle-based drug
delivery systems (nano-DDS)". Hence, diamagnetic CEST
(diaCEST) has the potential to realize image-guided therapy
and evaluate tumor aggressiveness, drug accumulation, and
therapeutic response. In this review, we summarize the cur-
rent status of diaCEST MRI for tumor imaging and introduce
a series of diaCEST agents that have been reported for medic-
al diagnosis and treatment in recent years, including glucose,
salicylic acid and their analogs.
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2 The wunderlying principle of CEST
MRI

The underlying principle of CEST MRI is similar to that of
magnetization transfer contrast (MTC), which can be simply
explained by the two-pool model (Fig. 1)".

In this model, water protons are classified into two categor-
ies: exchangeable solute protons and bulk water protons. Ex-
changeable solute protons can be resonated by a specific fre-
quency (Aw, w is the saturation pulse frequency), which is
different from that of bulk water protons. The large resonant
frequency difference between exchangeable solute protons
and water protons is preferred in CEST MRI to ensure that
the exchangeable solute protons can be selectively saturated
by using intended RF irradiation without influencing bulk
water protons. The exchange between solute protons and bulk
water protons will increase the number of saturated protons in
the bulk water pool and slightly reduce the MR signal of bulk
water protons. The unsaturated protons that transfer from the
bulk water pool to the exchangeable solute pool can also be
saturated by the intended RF irradiation. When the solute pro-
tons have sufficient exchange rates (k) and saturation times
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Fig. 1. The underlying principle of CEST MRI via a two-pool model.
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(t.0), the saturated protons will continually be produced and
ceaselessly transfer into the bulk water pool, resulting in an
obvious drop in the bulk water signal. The signal loss of bulk
water protons can be quantitatively detected after MRI data
processing and indirectly reveal the concentration and distri-
bution of the agents or biomolecules that exchange protons
with bulk water (Fig. 2a).

The resonance frequency of bulk water protons is assigned
to 0 ppm in CEST MRI, and the MR signal of water satura-
tion (S,) was collected as a function of saturation frequency
and normalized by the signal without saturation (S;), which
yields the so-called Z-spectrum, as shown in Fig. 2b. The fre-
quency offset of the CEST peak (Aw) in the Z-spectrum is de-
termined by the chemical shift between exchangeable solute
protons and bulk water protons and thus is able to identify the
type of solute. Since the water direct saturation is symmetric
at approximately 0 ppm, the magnetization transfer ratio
(MTR) asymmetric analysis of the Z-spectrum can efficiently
eliminate the influence of direct saturation.

The definition of MTR is as follows:

MTR=1- % (1)

0
The definition of MTR asymmetric analysis is as follows:

S sat (A(I)) ) sat (—ALL))
So ’

MTR,,, = MTR (Aw) - MTR (-Aw) =
2)

According to these formulas, the asymmetric analysis spec-
trum is shown in Fig. 2c.

Compared with conventional MRI methods, CEST MRI
has several benefits. Different exchangeable solutes may res-
onate at different frequencies™ (Fig.3); thus, frequency-
specific switchable contrast could be realized to provide in-
formation on multiple solutes independently in a single CEST
image®, which provides an excellent noninvasive strategy for
studying the interlink of two or more biomolecules in a
biological event. The employment of diamagnetic contrast
agents is capable of tracking tumor metabolism!’, drug
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Fig. 2. The signal analysis and related spectrum. (a) The exchange of ex-
changeable solute protons and bulk water protons leads to a decrease in
bulk water signals. Black line: signal intensity of water before RF irradi-
ation; red line: signal intensity of water after RF irradiation. (b) Z-
spectrum or CEST spectrum. (c) MTR asymmetry analysis.
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Fig. 3. Three different diaCEST contrast agents and their MTR,, sig-
nals: Salicylic acid (1), barbituric acid (2), and D-glucose (3). Reprinted
with permission from Ref. [8]. Copyright 2013, Springer Nature Limited.

biodistribution, cell transplantation, and other dynamic
biological processes in vivo.

In addition, the type of exchangeable protons and environ-
mental factors such as pH™, temperature', enzyme activity!'
and metabolic level"" will also affect CEST signals, which
provides new ideas for CEST contrast agent design and
greatly broadens the clinical application of CEST MRI tech-
nology. In more detail, both pH and temperature can accur-
ately influence £, which is sensitive to the Z-spectrum. The
following formula reflects the relationship between k,, and
pH, and the ability of CEST MRI to reflect different pH val-
ues makes it suitable for detecting renal injury, mapping the
pH of tumors, and monitoring the viability of transplanted
therapeutic cells!'”.

K = ke 107 4k, 10775 1k,

where k, is the acid-specific exchange rate, kg is the base-
specific exchange rate, k,, is the proton exchange rate between
water and exchangeable protons, and pK,, is the water dissoci-
ation constant.

In addition, enzyme activity can alter CEST MRI signals
through the reaction of the enzyme with diaCEST agents in
vivo, leading to changes in the structures and functional
groups of the agents. For instance, enzymes can initiate the
self-assembly process of agents and enhance the signal intens-
ity, thereby switching on the CEST MRI signal of the agents
following the reaction™’.

3 CEST MRI contrast agents

Contrast agents are required in clinical MRI to improve the
sensitivity and selectivity in the areas of interest. For CEST
MRI, contrast agents are categorized into two types: paramag-
netic CEST (paraCEST) contrast agents and diamagnetic
CEST (diaCEST) contrast agents. Similar to traditional T,
MRI contrast agents, paraCEST agents are chelates of
lanthanide ions that induce larger chemical shifts of
exchangeable protons in coordinated water or chelate struc-
tures, which can be shifted tens or even hundreds of ppm
away from the solvent water peak, depending on the pseudo-
contact shift (PCS) generated by paramagnetic metal ions
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(Fig. 4)* "1, A large value of Aw for paraCEST contrast agents
permits faster exchange conditions than diaCEST agents;
however, the potential toxicity of paraCEST agents is an im-
portant factor we need to consider, especially that a relatively
high dosage of contrast agent is required for CEST imaging.

Many endogenous substances can be applied as diaCEST
contrast agents, including proteins'*, enzymes!”, and bio-
molecules containing amino and hydroxyl groups (e.g.,
glutamate!®, glucose!'”, glycogen™, and glycosaminogly-
cans!'”), and their labile protons can exchange with bulk wa-
ter protons and produce CEST signals. These endogenous
substances are abundant in vivo and have excellent biocom-
patibility, making them have considerable potentials to be
widely employed in medical diagnosis. In addition, many
drugs and nanocarriers, such as gemcitabine®”, citicoline",
olsalazine (Olsa)™, polyaminoamine (PAMAM)™, and poly-
L-lysine (PLL)™, have abundant exchangeable protons, mak-
ing them capable of producing CEST signals.

It is difficult for paraCEST contrast agents to achieve clin-
ical translation owing to the complex synthesis process of
paraCEST agents and the biotoxicity of lanthanide metal ions.
Hence, diaCEST contrast agents are rapidly becoming a key
point for CEST MRI technology™. Li et al.” reported a series
of diaCEST contrast agents that possess deshielded labile pro-
tons, including salicylic acid and its analogs. Their structures
are as follows (Fig.5). The natural frequency difference
between the diaCEST contrast agent and water is not too
large, such as Aw_oy = 1 ppm and Aw iz = 3 ppm; thus, their
CEST signals are sensitive to B, of the MRI equipment, and
slight fluctuations in B, may greatly influence the result of the
MTR asymmetry analysis. Moreover, the resonance frequen-
cies of the diaCEST contrast agent exchangeable protons are
mostly distributed in a small interval around that of water
protons, which may result in a serious background signal that
cannot be neglected. To solve these problems, diaCEST
agents with large natural frequency differences from water
protons have attracted the attention of MRI researchers.

4 The application of diaCEST MRI in
tumors

The employment of CEST MRI has generated significant in-
terest in the domain of molecular imaging and quantitative
biomarker analysis. This modality offers researchers valuable
information such as the differentiation and grading of tumors,

as well as the pH value of tissues within the areas detected.
Although diaCEST MRI has found extensive application in
neuro-oncology research, its development in body oncology
remains sluggish and requires further advancement™. At
present, there are three major types of diaCEST agents util-
ized for tumor imaging: glucose and its analogs, amide pro-
tons, and salicylic acid (SA) and its analogs.

4.1 Glucose and its analogs

There are many hydroxyl groups in glucose and its analogs
that can provide exchangeable protons for CEST MRI. To
date, glucose and its analogs have been employed many times
as excellent diaCEST contrast agents to reveal the distribu-
tion of tumor cells in vivo. One of the characteristic changes
in the metabolic program of tumor cells is the increase in
glucose uptake and lactate fermentation””. Even though gluc-
ose will be rapidly absorbed and translated into lactic acid by
tumor cells, increased exogenous glucose uptake is a hall-
mark of solid tumors. Moreover, the acidic tumor microenvir-
onment provides favorable conditions for CEST detection of
glucose because it will slow down the rapid exchange of OH
protons to increase the detection sensitivity!”. All these
factors enable CEST MRI based on glucose and its analogs to
be a reliable imaging and diagnosis method for tumors.

Based on this, a natural biodegradable CEST MRI contrast
agent, D-glucose, was employed by Chan et al.'"”? for the de-
tection of human breast cancer cells MDA-MB-231 and MCF-
7 in mice. Obvious CEST signals from glucose (glucoCEST)
were observed in both the MDA-MB-231 tumors and MCF-7
tumors, but the glucoCEST contrast of MDA-MB-231 tu-
mors was significantly lower than that of MCF-7. The differ-
ence between the CEST signals from MDA-MB-231 tumors
and MCF-7 tumors provides a new route to understand the
microenvironment information of different tumor tissues
(Fig. 6a—c), which cannot be identified by contraditional Gd-
enhanced MRI.

In 2013, Walker-Samuel et al.”* used this glucoCEST tech-
nology to detect glucose uptake and metabolism in tumors,
which could develop a simple, noninvasive, and cost-
effective method for diagnosing disease and imaging therapy
effects and provide an ideal substitution for the ["F]-
fluorodeoxyglucose (["*F]FDG) positron emission  tomo-
graphy (FDG-PET) used in the clinic. GlucoCEST can sensit-
ively reflect glucose uptake and accumulation conditions in
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Fig. 4. Analysis of mouse tumors by paraCEST agents. (a) CEST serial MRI of tumor-bearing mice after injection of two different paraCEST agents and
(b) quantitative CEST MRI signals of tumors at different time points. Reprinted with permission from Ref. [13]. Copyright 2009, American Chemical
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Fig. 5. Main structures of salicylic acid-based diaCEST contrast agents. Reproduced with permission from Ref. [25]. Copyright 2016, Wiley-VCH Ver-

lag GmbH & Co. KGaA, Weinheim.

colorectal tumor mouse models and can identify tumor types
(LS174T and SW1222) with different metabolic characterist-
ics and pathophysiologies. They compared the imaging res-
ults of glucoCEST with the widely applied ["*F]FDG and
found that there is a strong consistency between these two
contrast agents. Moreover, glucoCEST is not radioactive,
which gives it more biosecurity than [*F]FDG and has excel-
lent development prospects (Fig. 6d).

Considering that D-glucose is rapidly metabolized through
glycolysis in tumors, its CEST signal may not be stable in
vivo. Some glucose analogs, such as glucosamine, N-acetyl
glucosamine™, 2-deoxy-D-glucose®™, and dextran®', that
cannot be metabolized by cancer cells after uptake were de-
veloped as novel disCEST contrat agents. In 2019, Sehgal et
al.t” reported a new disCEST contrat agent, 3-O-methyl gluc-
ose (3-OMG). Their work demonstrated that 3-OMG can be
used as a novel contrast agent for U87 brain tumor CEST
imaging, and its CEST contrast is approximately 2-fold high-
er than that of D-glucose, benefitting from its nonmetaboliz-
able feature, then it cannot be metabolized to lactate to
quickly reduce the CEST signal. In contrast to D-glucose, the
CEST signal of 3-OMG in tumor tissues was largely located
in the intracellular space. Moreover, 3-OMG does not cause
the accumulation of lactic acid in tumor tissues, which is
more biocompatible than D-glucose (Fig. 6e, f). Based on this
research, Anemone and coworkers”” studied the difference in
CEST signals between D-glucose and 3-OMG in a murine
melanoma tumor model using CEST MRI. The results
showed that both glucose and 3-OMG required a high mag-
netic field strength (7 T) to give better image qualities due to
their small chemical shifts (0.8 ppm for glucose and 1.2 ppm

0601-4

for 3-OMG). The major difference between them is the pH re-
sponsivity; 3-OMG exhibits higher glucoCEST signal intens-
ity in a neutral environment than in an acidic environment,
while glucose is completely opposite. After the intravenous
injection of 3-OMG and D-glucose, the 3-OMG CEST con-
trast remained stable from 0 min to 30 min in the tumor re-
gion, but the glucoCEST signal showed a gradual increase as
a result of the reduced pH value of the extracellular space by
the release of lactic acid™ .

In the work of Nasrallah et al.””, 2-deoxy-D-glucose (2-
DG) and 2DG-6-phosphate (2DG6P) were applied to detect
the uptake and metabolism of glucose via CEST MRI techno-
logy. They assessed the CEST MRI image of the rat brain
with glucose, 2-DG, and 2DG6P and expounded the reasons
for the different glucoCEST signal changes caused by them. 2-
DG is a kind of glucose analog that can enter cells through
the same transporters as D-glucose. It can be phosphorylated
into 2DG6P by hexokinase, and then the formed 2DG6P will
be deposited in the brain cells for several hours®”. Gluco-
CEST signaling processes rapidly decay in the body after the
injection of D-glucose because of rapid insulin secretion, cell
metabolism and low sensitivity. However, 2-DG and 2DG6P
were not affected by these factors. Since both of them will ac-
cumulate in brain cells, the changes in their glucoseCEST
signals can directly reflect glucose assimilation, hexokinase
activity, and other physiological parameters, such as pH and
temperature, which can be applied in the clinical diagnosis
and prognosis evaluation of cancer and inflammation.

Xylose (wood sugar), a kind of pentose sugar, is difficult
for monogastric animal cells to metabolize™. In addition, xyl-
ose can cross the blood—brain barrier, which means that it can
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Fig. 6. Representative CEST MRI images. (a) The anatomical image of mouse, (b) glucoCEST images before infusing agents, and (c) glucoCEST im-
ages after infusing; (d) GlucoCEST images, ["*F]FDG images, and fluorescence images of the same tumor section; (e) the anatomical image and (f) CEST
MRI of tumor after injecting 3-OMG for 3-8 min. (a—c) Reprinted with permission from Ref. [17]. Copyright 2012, Wiley Periodicals, Inc. (d) Reprinted
with permission from Ref. [28]. Copyright 2013, Springer Nature America, Inc. (e, f) Reprinted with permission from Ref. [32]. Copyright 2019, Interna-

tional Society for Magnetic Resonance in Medicine.

accumulate in the brain and be used to study the metabolism
and uptake of sugar (glucose) in brain tumors and neurode-
generative diseases™. Xylose is a kind of natural substance
that is approved by the United States Food and Drug Admin-

istration (FDA) as a sweetener for diabetes. Thus, it has been
considered a more biocompatible diaCEST contrast agent
than 3-OMG for CEST MRI, especially in brain tissues. In
2020, Wang and his coworkers™ investigated the CEST

0601-5 DOI: 10.52396/JUSTC-2023-0027
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sensitivity of xylose in the rat brain at 9.4 T after xylose ad-
ministration (Fig. 7a—c) and compared the results of CEST
MRI and chemical exchange spin-lock (CESL) MRI. They
found that xylose showed better signal intensity, sensitivity,
safety and stability in both CEST MRI and CESL MRI when
compared with D-glucose!' 1. They also compared the CEST
signal with the CESL signal of xylose and found that the
CESL signal was more sensitive than the CEST signal in
vivo.

In general, glucose and its analogs have been used in CEST
MRI technology for a dozen years and have already been re-
garded as a new method to study the glucose uptake and
metabolic mechanism of cells, for example, monitoring the
metabolic changes after neuronal stimulation*!. Good safety,
high resolution and sensitivity, and low cost inspires further
improvements of the glucoseCEST sequence, data processing
methods, and new glucose-like contrast agents. For example,
as an isomer of glucose, mannose can also be used as a
diaCEST contrast agent for cell tracking. Since high-
mannose (HM) N-glycans are abundant on the surface of
human mesenchymal stromal cells (hMSCs) when compared
to most other normal and cancer cell lines, mannose-weighted
CEST MRI can noninvasively track unlabeled hMSCs after
their transplantation (Fig. 7d). This label-free imaging tech-
nique for hMSCs may facilitate the development and
evaluation of stem cell therapies.

4.2 Amide protons

The chemical exchanges between the amino protons in com-
pounds (including proteins, peptides, and polymers) and bulk
water protons can generate CEST signals. CEST MRI using

(@) -10-0min 0-10 min 10 - 20 min 20-30 min

Rat #1

Rat #2

30-40 min

amide protons as contrast agents is usually named amide pro-
ton transfer (APT) MRI. APT MRI is simpler and safer to im-
age tissues than the other exogenous contrast agents, and the
widespread presence of amide protons in the body gives APT
MRI sufficient signal intensity for in vivo imaging. Due to the
increased mobile protein and peptide content in the tumor re-
gions, APT MRI can distinguish tumor tissues from surround-
ing normal tissues to detect and diagnose tumor sites”. To
date, the most common bioapplication of APT MRI techno-
logy is the diagnosis of brain tumors, including grading, ima-
ging, and evaluation of the treatment effect for brain cancers.
The APT, or, more accurately, the APT-weighted (APTw)
MRI, was first proposed by Zhou et al."* in 2003 for imaging
brain tumors. As reported, since gliosarcomas (9 L) appear
diffuse with unclear regional boundaries in the rat brain, they
are hard to distinguish from the surrounding tissues by con-
ventional MRI technologies, such as T,-weighted imaging, T,-
weighted imaging, and diffusion-weighted imaging.
However, APTw MRI can easily differentiate between tumor
tissues and peritumoral tissues to image the tumor region with
a distinct boundary. Moreover, the concentration of proteins
in tumor tissues can be detected by analyzing the signal in-
tensities of APTw MRI, which can help us to estimate the de-
velopmental stage of tumors. They applied the APTw MRI
technology to image gliomas in the human brain and
demonstrated that APTw can improve tumor detection accur-
acy and provide more organizational information without us-
ing exogenous contrast agents (Fig. 8a)*\. These endogenous
contrast agents (proteins, peptides, etc.) guarantee the safety
of patients during the APTw imaging process, accelerating
the clinical translation of APTw MRI for tumor patients.
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Fig. 7. Several images of mouse brains. (a) The glucoCEST imaging, (b) t-map images, and (c) MTR,,,, analysis of rat brain before and after the injec-
tion of xylose. (d) T,-weighted and mannose-weighted CEST MR images of mice after intrastriatal h(MSC transplantation. (a—c) Reprinted with permis-
sion from Ref. [40]. Copyright 2021, International Society for Magnetic Resonance in Medicine. (d) Reprinted with permission from Ref. [45]. Copy-

right 2022, The Author(s), under exclusive license to Springer Nature Limited.
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In 2014, Yuan et al. employed APTw technology to image
tumor tissues in the head and neck regions such as the mas-
seter, parotid, submandibular and thyroid glands and com-
pared the imaging results with the APTw images of normal
head and neck tissues"*’. APTw signals were found to be dif-
ferent between tumor tissues and normal tissues from all or-
gans in the head and neck regions. Furthermore, they ana-
lyzed the Z-spectrum and APTw images of these tissues to
demonstrate the good reproducibility of APTw MRI, which
further proves the potential clinical application of APTw tech-
nology (Fig. 8b). Compared to brain tumors, head and neck
tumor tissues are heterogeneous, and teeth, air-containing
structures, and bone will influence the results of APTw ima-
ging. Thus, a spin echo sequence and localized high-order
shimming were used to mitigate the field inhomogeneity-
induced artifacts to obtain a more accurate signal value and
reduce the influence of background noise. A much wider off-
set frequency sweeping range was required to avoid missing
the APTw signal after B, correction. However, all these se-
quence changes will prolong the scan time of MRI, so the bal-
ance of image quality and acquisition time should be con-
sidered in the clinic.

Except for tumor imaging and diagnosis, accurately and ef-
ficiently evaluating the therapeutic effect of tumors is also
important in clinical research. As we know, concurrent
chemotherapy and radiation therapy (CCRT) is an important
adjuvant treatment for glioblastoma patients after surgical re-
section™, However, CCRT will cause a treatment-related ef-
fect, which is hard to distinguish from tumor progression (TP)
by conventional MRI detection methods, even perfusion MRI
and diffusion-weighted imaging (DWI). As reported by Park
et al.™, the APT,, MRI displayed a significantly higher sig-
nal in the TP than in the treatment-related effect sites, which
results from the increase in endogenous mobile proteins and
peptides from protein expression in the TP. APT,, MRI is a
helpful and facile method to differentiate the TP from the
treatment-related effect regions in glioblastoma patients

(a) T, -weighted

(b)

T, -weighted

posttreatment, and the combination of the contrast-enhanced
T, weighted image, perfusion MRI, and APTw imaging can
efficiently evaluate the therapy response of glioblastomas
(Fig. 9a—c).

Recently, APTw has been widely employed in imaging
other diseases such as stroke”, Alzheimer’s disease (AD)"",
Parkinson’s disease (PD)"**! and traumatic brain injury
(TBI)"". Jokivarsi and his coworkers®” studied APTw ima-
ging of acute cerebral ischemia (ischemic stroke) in 2007.
Ischemic stroke is always accompanied by tissue acidosis that
exacerbates tissue damage, so that the noninvasive measure-
ment of the pH value in stroke tissues is capable of detecting
and grading stroke in vivo. Since the amide proton transfer ra-
tio (APTR) in APTw imaging is influenced by the pH of the
surrounding environment, as shown in Fig. 9d and 9e, the
APTR will decrease during cerebral ischemia, and there is a
correlation between the AAPTR (the APTR changes between
the ipsilateral and contralateral side) and intracellular pH
(pHi) during ischemia. Thus, APTR can delineate acute
ischemic stroke areas in the early stage"™, determine tissue vi-
ability and damage, and have the potential to help subdivide
peri-infarcted tissues. AD is reported to be related to the accu-
mulation of abnormal proteins in the central nervous
system””), such as Tau"™, a-synuclein””, and TDP-43"". Wang
et al.t first reported the APTw imaging results of AD and
compared the APTw signal in the brains of AD patients with
that in normal persons; they found that the APTw signal of
the hippocampus in AD patients was significantly higher than
that in normal persons (Fig. 9f, g). This result showed that the
APTw contrast changes in the hippocampus provide informa-
tion for the diagnosis of AD and even show the severity of
AD.

In conclusion, APTw MRI technology is a very useful ima-
ging method that has been widely applied in imaging and dia-
gnosing cancer, stroke, and several neurodegenerative dis-
eases in clinic MRI. However, there are still some challenges
that remain in APTw technology, such as the hardware con-
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Fig. 8. Representative T/T, and CEST MRI images of tumors at different sites. (a) T,-weighted, T,-weighted and APT-weighted images of rat brain tu-
mors; (b) T,-weighted anatomical image and amide proton transfer-weighted image of pleomorphic adenoma in the right parotid gland. (a) Reprinted with
permission from Ref. [14]. Copyright 2003, Wiley-Liss, Inc. (b) Reprinted with permission from Ref. [46]. Copyright 2014, John Wiley & Sons, Ltd.
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straints of MRI equipment, the complex mechanism of signal
generation, and the artifacts from B, inhomogeneity. Using
similar APTw pulse sequences and data processing strategies
between hospitals is important to ensure the reproducibility
and comparison of diagnosis results®'.

4.3 SA and its analogs

To avoid the body tissue background and the signal distrac-
tion of water, a larger Aw between diaCEST agent protons
and bulk water protons is preferred to provide better imaging
quality and signal intensity. Different from the sugar- and
amide-based contrast agents that possess Aw within approx-
imately 1-3.6 ppm, in 2013, Yang et al®’. pointed out that the
exchangeable protons on SA have a large chemical shift of
9.3 ppm from bulk water protons. The intramolecular hydro-
gen bonding (IHB) in some salicylic acid analogs can even
result in a much larger chemical shift (10.8 ppm) from bulk
water protons'®!. From Fig. 10, a large chemical shift (9.3
ppm) was found at the kidney of mice, which is far away
from the endogenous metabolites™. The signal intensity of the
total water is approximately 25% larger at 9.3 ppm than at 5
ppm as a result of less direct saturation. Therefore, SA en-
hanced the CEST image quality and provided apparent CEST

0.8

0.6

SsarSo

0.4

0.2

Difference

contrast over the whole kidney. Moreover, it is easy to modi-
fy SA with different chemical groups or generate SA nano-
structures such as nanoparticles™ and hydrogels™ to broaden
the application of SA in various drug platforms.

In 2016, on the basis of Yang’s research, Lesniak et al.”"
considered the fact that small diaCEST molecules have a high
requirement for concentration in practical applications and
millimolar levels of contrast agent are required in vivo to pro-
duce CEST signals. To solve this problem, they covalently
conjugated SA onto the surface of PAMAM dendrimers
(Fig. 11a) to build a new kind of diaCEST conjugate with a
large Aw (9.4 ppm) and significantly improved the contrast
signal for tumor imaging. They applied this SA-containing
dendrimer for CEST imaging of transplanted U87 glio-
blastoma in rats and showed that the SA polymer was distrib-
uted over 50% of the tumor regions with a long retention time
of 1.5 h. This method could be used to noninvasively image
the accumulation, distribution, and metabolism of nano-
particles in brain tumors with higher spatial resolution and
depth penetration to provide a new platform for tracking the
process of nano-DDS in tumor treatment. Then, Banerjee et
al.’ developed an amphiphilic smart polymer by grafting SA
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Fig. 9. Different MRI images and related analysis. (a) The contrast-enhanced T,-weighted image, (b) dynamic susceptibility contrast (DSC)-enhanced
MR image, and (c) APT image of TP. (d) The APTw Z-spectrum and (e) MTR,, result of a stroke patient brain. The APTw image of the brain of (f) a
normal person and (g) an AD patient. (a—c) Reprinted with permission from Ref. [49]. Copyright 2016, European Society of Radiology. (d—e) Reprinted
with permission from Ref. [55]. Copyright 2007, Wiley-Liss, Inc. (f, g) Reprinted with permission from Ref. [51]. Copyright 2015, Chinese Medical

Association.
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Fig. 10. MRI images and related analysis of mice administered SA. (a) T,w image, (b) overlay CEST image preinjection, and (c) overlay CEST image at
7 min postinjection of mice administered SA; (d) Z-spectra and MTR g, for the right kidney before injection (black) and 7 min postinjection (light blue);
(e) MTR,,, values of the left kidney and right kidney at different time points after SA injection. Reprinted with permission from Ref. [8]. Copyright

2013, Springer Nature Limited.

onto prostate-specific membrane antigen (PSMA)-targeting
Lys-urea-Glu conjugated polymaleic anhydride to realize
CEST MRI of prostate neoplasia. Fig. 11b shows that this
polymeric CEST agent induced a significantly higher CEST
signal in PSMA-overexpressing prostate tumor cells than in
PSMA-deficient prostate tumor cells, suggesting that it can
specifically detect PSMA-overexpressing tumors and provide
a new platform for CEST imaging of other biomarkers, such
as enzymes and receptors.

Yuan et al.”! combined Olsa, a salicylic acid analog ap-
proved by the FDA for the treatment of inflammatory bowel
disease and ulcerative colitis, and the cell penetrating furin
substrate peptide RVRR with a click chemistry system to
form the “smart” CEST contrast agent Olsa-RVRR (Fig. 11c,
d)“. Olsa was used in this study as an antitumor drug due to
its DNA methylation inhibition effect. Olsa-RVRR can easily
penetrate the cell membrane. When it enters HCT116 colon
cancer cells with high furin expression, it undergoes furin
cleavage and glutathione reduction to expose the 1,2-amino-
thiol group and initiate click chemistry between the 1,2-
aminothiol group and the cyano group of 2-cyanobenzothiazole
to form Olsa dimers after the intracellular self-assembly of
Olsa dimers to Olsa-NPs by noncovalent n-x stacking interac-
tions** !, The CEST signal and the antitumor effect of Olsa-
RVRR were approximately 6.5- and 5.2-fold higher than
those of Olsa for HCT116 tumors, and an excellent “ther-
anostic correlation” was found between the CEST contrast
and the therapy effect, which has potential for imaging tumor
aggressiveness, drug biodistribution, and therapeutic re-

0601-9

sponse in the clinic.

The proteases in the tumor extracellular microenvironment
play important roles in tumor growth, invasion, migration and
angiogenesis'"’. Cathepsin B is a lysosomal cysteine pro-
tease of the papain family that is often excreted into the extra-
cellular microenvironment and regarded as a potential bio-
marker for the early diagnosis of cancers’”. In 2021, Kom-
bala et al.’* reported a kind of diaCEST contrast agent with a
5.0 ppm signal from aryl amide protons and a 9.2 ppm signal
from SA for evaluating the activity of cathepsin B. When this
probe reaches the extracellular microenvironment of the tu-
mor, its aryl amide will be removed by cathepsin B, and the
signal at 5.0 ppm will “turn off” (Fig. 11e, f). The signal ratio
of SA and aryl amide can hence reflect the activity of cathep-
sin B in tumor sites and can induce more sensitive signal
changes than the diaCEST contrast agent with a single CEST
peak.

Due to the large chemical shift from bulk water protons,
SA and its analogs have already been a group of important
contrast agents for CEST MRI technology. However, the
CEST signal of SA is significantly affected by pH, which lim-
its its applications”. Due to its easy modification, conjugat-
ing SA with some functional groups can not only reduce the
influence of pH but also exhibit extra targeting and treatment
effects, which will be an important research interest for SA in
the future.

5 Conclusions and outlook
In conclusion, CEST MRI is a noninvasive imaging tech-
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nique with excellent signal sensitivity, frequency selectivity,
high spatial resolution, and depth penetration. It has been
widely applied in disease imaging, medical diagnosis, nano-
DDS, imaging-guided therapy, prognosis examination, etc.
Different from T;-weighted, T,-weighted, and paraCEST
MRI, which rely on metal ions, or PET and single photon
emission computed tomography (SPECT) imaging, which re-
quire radioactive tracers, diaCEST imaging utilizes endogen-
ous biomolecules, natural biodegradable agents, FDA-
approved drugs, and small organic compounds as CEST con-
trast contributors, thus possesses some unique advantages in
clinical translation, such as low cost, high biocompatibility,
and ease of modification.

To enhance the sensitivity and accuracy of diaCEST ima-
ging, various strategies have been developed to minimize the
background CEST signals generated by endogenous bio-
molecules while simultaneously amplifying the signal from
diaCEST agents. Therefore, recent studies primarily emphas-
ize the development of diaCEST agents that possess high
chemical shifts®), assembled nanostructures’, and multimod-
al imaging capabilities””. These advancements also result in a
reduction in the required contrast agent dosage and associ-
ated biotoxicity concerns. Moreover, imaging of disease bio-
markers such as pH"" and enzymatic activity’”” in vivo has
emerged as a key area of research.

Compared with traditional Gd-based contrast agents that
have potential risks in the pathogenesis of nephrogenic sys-
temic fibrosis™ and iron oxide nanoparticle-based contrast
agents that may induce immune dysfunction”™, diaCEST
agents, particularly natural diaCEST agents (such as glucose,
lactate, and amino acids), have low biological toxicity, are
easily metabolized, and can be effectively modified, indicat-
ing their immense potential for clinical translation. However,
there are still many challenges in the further development of
diaCEST MRI or CEST MRI technology. Novel diaCEST
contrast agents with larger chemical shifts from water are re-
quired to reduce the backgound body CEST signal and direct
saturation. Signal enhancement strategies, including in situ
self-assembly, polymer conjugation, and CEST detectable hy-
grogel preperation, are needed to produce sufficient CEST
signals at clinical MRI scanners, rather than only at scanners
with a high magnetic field. To enlarge the imaging signal and
decrease the dosage of contrast agent, diaCEST contrast agent
can be conjugated with some targeting motifs to increase the
delivery efficiency, such as aptamers, antibodies, receptors,
and exosomes. The employment of dual-locked and mul-
timodal contrast agents will improve the specificity and ac-
curacy of CEST imaging. In addition, the gold standard for
CEST MRI is needed to unify the MRI scanning sequences
and data processing methods between different labs or hospit-
als to guarantee that the imaging results are reliable and com-
parable and to boost the application of clinical CEST MRI in
more diseases.
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