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Graphical abstract

For any function field £ /IF,e, there exists a
function field £/ /IF,e with an isomorphism

¢n : ' — I’ such that ¢y, (a) = a?" "
forany a € Fpe.

Define a map ¢ : 4/ — s by sending
(xp)prepp 1o (Pn(apr))q, (Pyep,, forany
(xpP)prer, € HF.

Letw € Qs (A") forsome A" € Div(F’)
and 7 = ¢;1 o w o 4. Then we have
n € Qr(e; (A7),

Co r(D,G) h = Cq g (pn(D), dn(G)).

Il

A family of h-Galois LCD MDS codes with parameters
k
[n,2r +2 +n — pF. pc — 29 — 1], where [£-] < n < pk
K
,max{p® —n — 1,0} < r < |22 ] and k| gcd(e, h).

The process of representing C,-(D,G)"" as an algebraic geometry code and constructing h-Galois LCD MDS codes.

Public summary

m For any function field F/F,, there exists a function field F’/F,. with an isomorphism ¢, : F — F’ satisfying ¢,(a) = a”"
forallaeF,.

m We showed that the 4-Galois dual code of algebraic geometry code C,.(D,G) can be represented as Cq - (¢,(D), 9,(G)).

m As an application of the above result, we constructed a class of #-Galois LCD MDS codes.
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Abstract: Galois dual codes are a generalization of Euclidean dual codes and Hermitian dual codes. We show that the &-
Galois dual code of an algebraic geometry code C,,(D,G) from function field F/F, can be represented as an algebraic
geometry code C,r(¢,(D),¢,(G)) from an associated function field F’/F, with an isomorphism ¢,: F — F’ satisfying
¢u(a)=a"" for all a€F,. As an application of this result, we construct a family of 4-Galois linear complementary dual

maximum distance separable codes (4-Galois LCD MDS codes).
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1 Introduction

Goppa!"! introduced a class of linear codes from algebraic
curves over a finite field, which are called algebraic geo-
metry codes. Algebraic geometry codes are a generalization
of Reed—Solomon codes. A notable property of algebraic geo-
metry codes is that there exist sequences of algebraic geo-
metry codes exceeding the Gilbert—Varshamov bound”. Al-
gebraic geometry codes have many applications in construct-
ing good codes, such as linear complementary dual codes®,
self-dual near maximal distance separable codes!", and optim-
al locally repairable codes” .

Linear complementary dual codes (LCD codes) are linear
codes intersecting trivially with their Euclidean dual codes.
Massey!'™ first proposed LCD codes. LCD codes with large
minimum distances have applications in dealing with side-
channel attacks” and constructing entanglement-assisted
quantum error correcting codes!”. Therefore, linear comple-
mentary dual maximum distance separable codes (LCD MDS
codes) have attracted much attention from researchers. Carlet
et al.' proved that there exist g-ary LCD MDS codes with
parameters [n,k,d] for ¢>3,0<k<n<g+1, and
g=2",n=q+2, k=3 or g—1. Many classes of LCD MDS
codes were produced via generalized Reed—Solomon
codes!'l. Mesnager et al.”! provided a sufficient condition
for algebraic geometry codes to be LCD codes and construc-
ted several classes of LCD MDS codes via algebraic geo-
metry codes.

As a generalization of the Euclidean dual codes and Her-
mitian dual codes, the /-Galois dual codes were first intro-
duced by Fan and Zhang!". Liu et al.'" introduced h-Galois
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LCD codes, which are linear codes intersecting trivially with
their #-Galois dual codes and hence a generalization of LCD
codes. Moreover, a criterion for linear codes to be the h-
Galois LCD codes was given, and two classes of /-Galois
LCD MDS codes were constructed"®. More generally, the h-
Galois hull of a linear code C is defined as the intersection of
C and its h-Galois dual code. Galois hulls of MDS codes
were studied and many classes of MDS codes with Galois
hulls of arbitrary dimensions were constructed” . By taking
the dimensions of Galois hulls to be zero, the 4-Galois LCD
MDS codes can be obtained.

Let F/F, be a function field with the full constant field
F,..Let D and G be two divisors of F. The usual Euclidean
dual code of the algebraic geometry code C, (D,G) is the al-
gebraic geometry code C,-(D,G). By Lemma 2.3 in Ref.
[18], the h-Galois dual code of C,.(D,G) is the code
Cor(D,G)"". However, the code C,.(D,G)"" is not in the
form of algebraic geometry codes. In this article, we are inter-
ested in representing C,,.(D,G)"™" as an algebraic geometry
code. In particular, we show that the Galois dual code of
C.r(D,G) can be represented as Cq . (¢,(D),¢,(G)) for some
function field F’/F, with an isomorphism ¢, : F — F’ satisfy-
ing ¢,(a) = a”" for all a € F,. As an application of this result,
we provide a sufficient condition for algebraic geometry
codes to be the #-Galois LCD codes and produce a class of &-
Galois LCD MDS codes.

The rest of this paper is organized as follows. In Section 2,
we collect some basic definitions and results on algebraic
function fields over finite fields, algebraic geometry codes,
and Galois inner products. In Section 3, we study the Galois
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dual codes of algebraic geometry codes. In Section 4, we
provide a sufficient condition on the function field F such
that the Galois dual codes of algebraic geometry codes from
F are algebraic geometry codes from F as well. As an
application of this result, we construct a family of Galois
LCD MDS codes. In Section 5, we conclude this work.

2 Preliminaries

In this section, we introduce some basic definitions and res-
ults of algebraic function fields, algebraic geometry codes and
Galois inner products.

2.1 Algebraic function fields

Throughout this article, let p be a prime, ¢ be a positive in-
teger, g = p° be a prime power, and F, be the finite field with
q elements.

Let F be an algebraic function field of one variable over
the full constant field F,, which is denoted by F/F,. The set
of all places of F/F, is denoted by P.. Let O, be the valu-
ation ring of a place P. The degree of P is given by
deg(P) := [0, : F,]. Any place of degree one is called rational.

A divisor G of F/F, is a formal sum Zn,,P, where al-

=

most all n, are zero. The degree of G is defined as

deg(G) := an deg(P). For any x € F\{0}, the principal di-
PePg
visor of x is defined as (x) := va(x)P, where v, is the dis-
PePr
crete valuation of F corresponding to P. Let g be the genus
of F and Div(F) be the divisor group of F. For any
G € Div(F), the Riemann—Roch space of G defined by

L(G) :={xe F'|(x) > -G} U{0} (1)

is a finite-dimensional vector space over F, with dimension
{(G) > deg(G)—g+1.

An adele of F/F, is an element @ = (a;)r, in the direct
product [],., F such that v,(a,) >0 for almost all P €P,.
The set of all adeles is denoted by A,. For any divisor A, let
A(A) = {a € Arlve(@) > —v(A)}. A Weil differential of F/F,
is an F,-linear map w : A, — F, vanishing on A.(A)+ F for
some divisor A. The set of all Weil differentials of F/F, is
denoted by Q.. For AeDiv(F), let Q.(A)={we Q]
w vanishes on A-(A) + F}. For any w € Q:\{0}, there exists a
unique maximal divisor W such that w € Q,(W) which is
called the divisor of w and denoted by (w). We end this sub-
section with the famous Riemann—Roch theorem (Theorem
1.5.15 in Ref. [24]).

Lemma 2.1. Let W be a canonical divisor of F/F,. Then,
for each divisor A € Div(F),

{(A) =deg(A)+1—g+ (W —-A). )
If deg(A) > 2g — 1, then £(A) = deg(A)—g+ 1.
2.2 Algebraic geometry codes

A linear code C is a vector subspace of F,. The integer n is
called the length of C and the dimension of the vector sub-
space C over F, is called the dimension of the code C. For a
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vector a = (aj, - ,a,) in F,, we define its Hamming weight
wt(a) to be the size of {1 <i< nla; # 0}. Denote by 0 the zero
vector (0,---,0) in F. The minimum distance of C is defined
as

d(C) := min{wt(a)|a € C\{0}}. 3)

The dual code of a linear code C is defined by
C*:={ceF,[(a,c)=0 forany aeC}. 4)

A linear code C with length n, dimension k, and minimum
distance d is denoted as an [n,k,d]-linear code. For an
[n,k,d]-linear code C, we have the Singleton bound

k+d<n+1. &)

If the above equality is achieved, then code C is called a max-
imum distance separable code (MDS code).

Let F/F, be a function field over the full constant field F,.
Let P, P,,---,P, be distinct rational places of F and

D= ZP,». Let G be a divisor of F satisfying supp(G)N
i=1

{P,,---,P,} =0. The algebraic geometry code associated with

D and G is defined by

Cer(D,G) :=A{(f(P),--, fF(PIIS € LIG)}. (6)

Lemma 2.2. (Theorem 2.2.2 in Ref. [24]) If 0<
deg(G) < n, then C,.(D,G) is an [n,k,d]-linear code with

k=0G)>deg(G)—g+1 and d>n—deg(G). (7)

There is another way of defining algebraic geometry codes
via Weil differentials. For any Pe€P,, we define a map
tp: F—> A, as follows: for any xe F, ,(x) is the adele
whose P-component is x and all other components are 0. For
any weQ,, we define its local component at P as
wp := wot,. The algebraic geometry code associated with D
and G via Weil differentials can be defined by

Cor(D,G) :={(wp, (1), ,wp,(D)lw € Q(G-D)}.  (8)

Lemma 2.3. (Theorem 2.2.7 in Ref. [24]) Let i(A):=
{(A)—deg(A)+g—1 be the index of specialty of divisor A of
F/F,. Then C,(D,G) is an [n,k’,d']-linear code with

K =i(G-D)—i(G) and d >deg(G)-2g+2.  (9)

Lemma 2.4. (Proposition 2.2.10 in Ref. [24]) Let  be a
Weil differential such that 7,(1)=1,v,(n) =-1 for any
1 <i<n.Then

Cr(D,G)" = Cor(D,G) = Cpe(D,D =G + (). (10

2.3 Galois inner products
Let & be a positive integer with 1 </ <e throughout this

article. The h-Galois inner product on F, is defined as
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n

(@b, =) ab!', (11)

i=1

where a=(a,,---,a,),b=(b;,---,b,) €F,. For a linear code
C, its h-Galois dual code is defined to be the linear code

C* :={ceFa,c),=0 forany aecC)}. (12)

If CNC* ={0}, then C is called an h-Galois linear comple-
mentary dual code (h-Galois LCD code). By Remark 4.2 in
Ref. [17], we have (C*)* = C and dim, (C) +dimg (C*) = n.
For any a=(a,--.a,)€C, let a’=(",---,a’) and
C" ={a”"|a € C}. From Lemma 2.3 in Ref. [18], we have the
following result.

Lemma 2.5. For a linear code C, we have C* = (C*)"".

3 Galois dual codes of algebraic
metry codes

geo-

In this section, we investigate the /#-Galois dual codes of al-
gebraic geometry codes. In particular, we shall show that the
h-Galois dual code of an algebraic geometry code from func-
tion field F/F, can be obtained as an algebraic geometry code
from an associated function field F’/F,. The following pro-
position gives the existence of such a function field F'/F, for
any function field F/F,.

Proposition 3.1. Let F/F, be a function field. Then, there
exists an associated function field F’/F, with an isomorph-
ism ¢, from F onto F’ such that ¢,(a) = @ forany a € F,.

Proof. Let F' = F*" and ¢, : F — F’ be the map defined
by ¢,(z) = 2" for any z € F. From the theory of purely insep-
arable extensions (Proposition 3.10.2 in Ref. [24]), the map
¢, is an isomorphism from F onto F’ with ¢,(a) =a”" for
any a€F,.

Remark 3.1. The associated function field F'/F, satisfy-
ing the property of Proposition 3.1 may be not unique. Let F'
be the rational function field F (x). It is easy to see that the
map ¢, : F — F determined by ¢,(x) = x and ¢,(a) = a*"" for
any a € F, is an automorphism of F.

Proposition 3.2. Let F/F, be a function field. Let F'/F, be
any function field such that there exists an isomorphism ¢,
from F onto F’ satisfying ¢,(a) = a”" for any a € F,. Then
the following statements hold true:

@ ¢,(P)eP, and deg(¢,(P)) =deg(P) for any place
PePy;

@ vy, (@4(x)) = vp(x) forany x € F and P € P,.

Proof. @ Let O be the valuation ring of F corresponding
to place P. Then ¢,(0) is a subring of F’ satisfying
F, S ¢,(0O) C F'. For any ye F'\{0}, we have ¢,'(y) €O or
60 =4 0)" €0, ie. ye$,0) or y' €4,0). By
definition, ¢,(0) is a valuation ring of F'/F,. Since P is the
unique maximal ideal of O, ¢,(P) is the unique maximal ideal
of ¢,(0). Hence, ¢,(P) is a place of F'/F,. From the iso-
morphism O/P = ¢,(0)/¢,(P), we have deg(¢,(P)) = deg(P).

@ LletreF bea prime element of P. For any x € F\{0},
we have x =ru, where s=v,(x) and u is invertible in O.
Then, ¢,(x) = ¢,(t)'¢,(u). Since ¢ is a prime element of P, we
have P =10 and ¢,(P) = ¢,(t)¢,(0). Thus, ¢,(r) is a prime
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element of ¢,(P). Since u is invertible in O, there exists v € O
such that uv = 1. Then, ¢,(u)¢,(v) = 1, and ¢,(u) is invertible
in ¢,(0). Hence, we have v, (#,(x)) = vp(x) = s.

Since ¢, : F — F’ is an isomorphism, it induces a bijection
between P, and P,. This bijection induces a degree-
preserving isomorphism from Div(F) onto Div(F’), which is
also denoted by ¢,.

Proposition 3.3. For any divisor A € Div(F), we have
£(¢,(A)) = £(A). Moreover, the function field F’/F, has the
same genus as F/F,.

Proof. Consider the following two maps:

i Lty L a3
and
g L(¢,(A4)) = L(A),
ye 6, ).

These maps are well-defined by Proposition 3.2 and we have

(14)

fe=idyyu and gf =idgy.,. (15)

Thus, L(A) and L(¢,(A)) are isomorphic as F,-vector spaces.
Since they have the same cardinality, we have
£(¢,(A)) = £(A). By Lemma 2.1, the function field F’/F, has
the same genus as F/F,.

Define a map y, from A, to A :

U, Ay > Ap,
: (16)

(@p)per, P (¢h(al’))¢,,(P)e?F,-

The map y, is well defined. For any adele (@;)pe:, € Ar, We
have v, (¢n(@p)) = ve(ap) =0 for almost all P € P, by Pro-
position 3.2. Hence, (¢,(@)),,pee,, 1s an adele of F'/F,.

Proposition 3.4. (O For any a,8€A,, we have
Uila +B) = ¢ (@) +¢,(B).

@ Forany k € F, and @ € A, we have ,(ka) = k" "y(a).
@ Let weQ.(A) for some A eDiv(F) and 5=
¢, owoy,. Then we have 1 € Q.(¢,'(A")).
Proof. O Let a = (@p)pezrs B=(Bp)pes, € Ar. It is easy to
verify that
Ula+B) =(¢y(ap +ﬁP))¢,,(P)e?,, =
((bh(aP))(ph(P)elP,.-/ +(¢h(ﬂP))q>h(P)€lP,.-/ =
(@) + 1, (B). (17)
@ Letke F, and @ = (@p)pe, - Then we have

Yi(ka) =(¢, (kal"))W((P)E]FFr =
(K™ By, =
ke (& (aP))q)h(P)e]Fp =k Ui(a). (18)

@1t is easy to check that for any a,8€A,,
n(a+pB) =n(a)+n(B). For any k € F, and @ € A, we have

nka) =¢; (wW(ka))) = ¢;' (WE " Y, (@))) =
¢, (k" wy (@) =
¢, (k" ey (@) = kn(a). (19)
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Let a € Ap(p;'(A)). For any P € P, we have

Voury Wi(@) =V, (di(@p)) = vp(ap) =
—vp(,'(A)) = =V, (A). (20)

Thus, ¢,(a) € An(A’). Since w vanishes on A.(A"), we
obtain 1 € Q.(¢,'(A")).

Theorem 3.1. Let F/F, be a function field and F’/F, be an
associated function field with an isomorphism ¢,: F — F’
satisfying ¢,(a) =a”" for any a€F,. Let D=P,+---+P,,
where P,,---, P, are distinct rational places of F. Let G be a
divisor of F such that supp(G)Nsupp(D) = 0. Then the h-
Galois dual code of C,(D,G) can be given by

Cr(D,G)" = Cop ($1(D), $,(G)). @n

Proof. From Lemma 2.4 and Lemma 2.5, we have
C.+(D,G)" = (Co(D,G) Y™ = Cor(D,Gy™". Thus, it suf-
fices to show that Cor(¢y(D),$,(G)) = Cor(D,G)”". Let
we€ Q,(p(G-D)) and n=¢;' cwoy,. From Proposition

3.4, we have n € Q.(G- D) and

(@g0 (D) =0 (@14, (1)) =
¢, (W (s, (D)) = 0, (D) =1, (1) (22)

for 1<i<n, ie, (ww,,(P,)(l),' . ’w¢,7(P,,>(1)) = (UP,(l)pH’,'“ s
-, (1) ™). Hence, we have

Cor ($1(D),$(G)) € Cor(D,G)"". (23)

It remains to be shown that dims Cor (¢,(D),¢,(G)) =
i(G - D)—i(G). By Proposition 3.3, we have

i($i(G)) =U($(G)) ~ deg(¢y(G)) +g— 1 =
6(G)—deg(G)+g—1=i(G). (24)

Similarly, we have i(¢,(G—D))=i(G-D). Hence,
dimg, Co - (¢4(D), $,(G)) = i(¢(G — D)) — i(¢,(G)) = i(G - D) - i(G) =
dimg, Cor(D,G) from Lemma 2.3, i.e., Cor($y(D),,(G)) =
Cor(D,G)"" = Co(D,G)*.

4 Construction of a class of h-Galois
LCD MDS codes

The code C,.(D,G) and its h-Galois dual code
Cor (¢9,(D),9,(G)) are algebraic geometry codes from func-
tion fields F/F, and F’/F,, respectively. If the function field
F/F, admits an automorphism ¢, such that ¢,(a) = a”" for
any a € F,, then we have

Cr(D,G)" = Cor(¢4(D), $1(G)). (25)

Both C,.(D,G) and C,(¢,(D),¢,(G)) are algebraic geo-
metry codes from the same function field. In this section, we
provide a sufficient condition on F/F, such that F admits an
automorphism ¢, satisfying ¢,(a) = """ for any a € F,. First,
we need the following lemma from Theorem 5.2.8 in Ref.
[25].

Lemma 4.1. Let & be a field, E be an algebraic extension
of k, and o : k — k“ be an embedding of & into its algebraic
closure k. Then, there exists an extension of ¢ to an embed-
ding of E into k.

12084

Proposition 4.1. Let F/F, be a function field. If F isa fi-
nite and normal extension of F,(z) for some ze€ F and
k| gcd(e, h), then there exists an automorphism ¢, of F such
that ¢,(a) = a*" forany a € F,.

Proof. Let o be the automorphism of F, given by
o(a)=a"" for any a € F,. The automorphism o induces an

automorphism of F,[z], which sends a polynomial

f (Z)=Za,zi to f”(z)zZa'(a,»)z". This map induces an
i=0 i=0 -

automorphism & of F,(z) which sends @ to @ , where

f(2).8(z) €F,[z] and g(z) # 0. Regard th§ efutomdgrp Z1)sm g as
an embedding from F,(z) into F (z)“. The field extension
F/F,(z) is finite, hence there exists an embedding 7 from F
into F,(z)* extending & by Lemma 4.1. Note that 7 induces
an identity on F,(z) and F,(z2)* = F(z)*. Since F/F(z) is fi-
nite and normal, the embedding 7 has image F. Therefore, T
is an automorphism of F that extends o .
For any G,,G, € Div(F), let

G/ AGy = ) min{vy(G)), vH(G)}P

PePp

be the intersection of G,,G, and

GV Gy =) max{vy(G), v (G)IP

PePr
be the union of G,,G,.

Theorem 4.1. Let F/F, be a function field with an auto-
morphism ¢, satisfying ¢,(a)=a”" for any a€F,. Let

D= Z P., where P; are pairwise distinct ¢,-invariant ration-
i=1

al places, i.e., ¢,(P;) =P, for 1 <i<n. Let G be a divisor of
F/F, such that supp(G) Nsupp(D) =0 and ¢,(G) -G is prin-
cipal. If there exists a Weil differential w of F such that

@ wp, (1) =1,v5(w) =—1 forany 1 <i<n and

@ GAH is a nonspecial divisor of degree g—1, where
H=D-$,(G)+ (),
then C,-(D,G) is an h-Galois LCD code.

Proof. By Theorem 3.1 and Lemma 2.4, we have

CL‘F(D’G)L,' :CQ,F(D’ ¢11(G)) =
C.r(D,D-¢,(G)+ (w)) = Cr(D, H).
It remains to be shown that C,.(D,G)NC,-(D,H) = {0}. Let
f€L(G) and ge L(H) with f(P;)=g(P;) for all 1<i<n.
Denote by h = f—g. It is easy to see that h € L(GV H-D).
Note that GVH+GAH=G+H=D+G -¢,(G)+ (w). From
Lemma 2.1, the dimension of L(GV H—-D) is
UGV H-D)=l(w)-GAH+G - ¢,(G)) =
{((w)-GAH) =
UGANH)—deg(GAH)+g—-1=0. (26)
Therefore, we must have 2 =0, i.e., f = g€ L(GAH). Since
G A H is nonspecial of degree g— 1, we have L(G A H) = {0}.
It follows that f =g =0, i.e., C..(D,G)NC,(D,H) = {0}.

Theorem 4.1 is a generalization of Theorem 4 in Ref. [3].
In the case of rational function fields, we have the following
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result.
Corollary 4.1. Let F =F,(x) be the rational function field
over F, and let ¢, be the automorphism of F,(x) that fixes x

and sends a to @ for any a€F,. Let D = ZP,-, where P,
i=1

are distinct ¢,-invariant rational places of F. Let G bea di-
visor of F with supp(G) Nsupp(D) =0 and 0 < deg(G) < n. If
there is a Weil differential w of F such that

@® wp,(1)=1,v,(w) =—1 forany 1 <i<n and

@ G AH has degree —1, where H = D - ¢,(G) + (w),
then C,r(D,G) is an h-Galois LCD MDS code with
parameters [n,deg(G) + 1,n—deg(G)].

Proof. Since the genus of the rational function field is
g=0and deg(GAH)=-1>2g—-1, we have

G ANH)=deg(GAH)—g+1=0. (27)

from Lemma 2.1, i.e., G A H is nonspecial. Since any divisor
of F of degree 0 is principal from Riemann—Roch theorem,
¢,(G)—G is principal. From Theorem 4.1, the code C,.(D,G)
is an h-Galois LCD code. By Lemma 2.2, C,(D,G) is an
[n,deg(G) + 1,n—deg(G)] MDS code.

.
Theorem 4.2. Let k|gcd(h,e). For any I'%'I <n<pf and
p-

max{p*—n—-1,0}<r<| 2], there exists an Ah-Galois
LCD MDS code with parameters [n,2r +2 +n— p*, p* = 2r—1].

Proof. Let F be the rational function field F,(x) over F,.
Let ¢, be the automorphism of F' that fixes x and sends a to
a’”" for any a € F,. Let P, be the zero of x—a and P, be the
pole of x. It follows that ¢,(P.)=P. and ¢,(P,)=P,,y-
Since ¢,(a) =a”" =a for any a€F,, we have ¢,(P,) =P,
forany a € F,.

Let S be a subset of F of cardinality n and T =F,\S . Let

D=%"P,and G=rP.+ ) mP, where > m, =r+1-|T|

aeS aeT ] aeT
and m,>0 for any aeT. Let w= Ikdx. Since the di-
X — X"
visor of dx is —=2P.,, we obtain
(@)= (P =2)P.= ) P, (28)
acF

H=D-¢,(G)+(w)=(p'-2-rP, —Z(mﬁ DP,, (29)

a€T

GAH = er—Z(ma+ HP,, (30)

aeT

and w, (1)=1 for any a€F,. Since the degree of G is
deg(G) = 2r+1—|T|, the algebraic geometry code C,.(D,G)
is an h-Galois LCD MDS code with parameters
[n,2r+2+n-pt, p* —2r—1] from Corollary 4.1.

Remark 4.1. The parameters in Theorem 4.2 can also be
obtained from Theorem 2.13 in Ref. [18] and Theorem 1 in
Ref. [11] via generator matrices of MDS codes and general-
ized Reed—Solomon codes. To see this, let k|gcd(h,e) and
n < pt If p* <3, then n < 3 and it is easy to construct g-ary h-
Galois LCD MDS codes with parameters [n,/,n—1[+1] for
any 1 </<n.

1208-5

-1
If ph>4, set s=ged(p™+1,p°—1) and ¢t = rP- Then,
s

we have
. P+l

S p-t -l .
pt+1

Tpral T ptyl

€2))

Case 1: k =e. In this case, h-Galois LCD codes are Euc-
lidean LCD codes. Since p* > 4, we have g > 4. By Theorem
1 in Ref. [11], there exist g-ary Euclidean LCD MDS
[n,l,n—1+1] codes forany 1 <I<n.

Case 2: k<e,t > n. In this case, min{r,n}—1=n-1. By
Theorem 2.13 in Ref. [18], there exist h-Galois LCD MDS
[n,l,n—1+1] codes forany 1 <I<n.

Case 3: k<e,t<n. Since k<e, we have 1> p‘—

P+
and t=p‘—1.

>p*—1. Since t<n, we have e=2h=2k, n=p*
k
p=>4, we have % <
min{t,n} — 1 = p* —2. By Theorem 2.13 in Ref. [ 18], there exist
h-Galois LCD MDS [p*,[, p* — [+ 1] codes for 1 <1< p*.

Since

5 Conclusions

In this work, we showed that the Galois dual code of
C,+(D,G) can be represented as C, . (¢,(D),$,(G)) for some
function field F’/F, with an isomorphism ¢, : F — F’ satisfy-
ing ¢,(a) =a"" for all a €F,. Then we provided a sufficient
condition on the function field F such that Galois dual codes
of algebraic geometry codes from F are algebraic geometry
codes from F as well. Finally, we constructed a class of h-
Galois LCD MDS codes. We extend the application of algeb-
raic geometry codes in coding theory by showing that Galois
LCD codes can be constructed from algebraic geometry
codes. For the future research, we may consider constructing
Galois LCD codes with good parameters via algebraic curves
with genus larger than 0, such as elliptic curves, hyperelliptic
curves, and Hermitian curve.
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