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BEV-radar simplifies 3D object detection by aligning camera and radar features in a bird-eye view (BEV) perspective, enhancing fu-
sion through a bidirectional query-based transformer approach for complementary information exchange.

Public summary
m BEV-radar easily align the multi-modality features adaptively, which is more suitable for fusion of radar and camera.
m Bidirectional spatial fusion module make the features’ representations from different domains towards unification.

m BEV-radar performs effectively on velocity prediction and reduces 53% error compared to camera-only model.
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Abstract: Exploring millimeter wave radar data as complementary to RGB images for ameliorating 3D object detection
has become an emerging trend for autonomous driving systems. However, existing radar-camera fusion methods are highly
dependent on the prior camera detection results, rendering the overall performance unsatisfactory. In this paper, we pro-
pose a bidirectional fusion scheme in the bird-eye view (BEV-radar), which is independent of prior camera detection res-
ults. Leveraging features from both modalities, our method designs a bidirectional attention-based fusion strategy. Spe-
cifically, following BEV-based 3D detection methods, our method engages a bidirectional transformer to embed informa-
tion from both modalities and enforces the local spatial relationship according to subsequent convolution blocks. After em-
bedding the features, the BEV features are decoded in the 3D object prediction head. We evaluate our method on the nuS-
cenes dataset, achieving 48.2 mAP and 57.6 NDS. The result shows considerable improvements compared to the camera-
only baseline, especially in terms of velocity prediction. The code is available at https://github.com/Etah0409/BEV-Radar.

Keywords: 3D object detection; sensor fusion; millimeter wave radar
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1 Introduction

The perception system in autonomous driving is usually
equipped with different types of sensors. Complementary
multi-modal sensors avoid unexpected risks but take on new
challenges while sensor fusion. Recent works have focused
on visual sensors'), typically providing dense and redundant
information. However, visual sensors are usually not stable
enough for adverse weather conditions (i.e., rain, snow, and
fog). In addition to the high cost, the fusion of visual sensors
cannot fully sustain the perception system in variable
autonomous scenarios, which requires robustness.

Aside from LiDAR and cameras, radar has aslo been
widely used in autonomous scenes for speed measurement
and auxiliary location prediction, but rarely in visual tasks
due to its physical nature. While stability and penetration be-
nefit from their physical properties, sparse results, noisy fea-
tures, and lack of vertical information are crucial problems
brought by frequently-used automotive radar. Randomly
scattered signals among vehicles, buildings, and obstacles ob-
tain high specular reflectivity and multi-path effects. While
the complementary characteristics of camera and radar are ef-
fective, the fusion strategy faces several challenges. First, the
results of the mm-wave radar projected on the image view
only have direction and range, which does not provide vertic-
al information and leads to some bias when projected on the
camera view. Moreover, the image cannot rely merely on the
projected radar depth, as multi-path effectivity produces
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inaccurate results for radar detection.

Compared to the richer and more accurate information
provided by visual sensors, the alignment of features between
the camera and the radar is a challenging problem. Without
vertical information, some methods™ * rectify the vertical dir-
ection in the front view after projecting radar points to image
planes. Higher performance leverages on first-stage propos-
als from the camera and then constructs a soft association
between objects and features according to the extrinsic mat-
rix, as shown in Fig. 1. Instead of association methods, trans-
forming both features to bird-eye views (BEV) can extremely
relieve the problem, concerning two key points: a more com-
patible decoupled fusion strategy for radar data and a better
promotion for both modalities.

Inspired by BEV fusion methods*, we implement BEV-
radar, an end-to-end fusion approach for radar and cameras,
which can be conveniently used for other BEVs for camera
baselines. Before fusion, radar encoders are used for pillar ex-
traction and tensor compaction. BEV-radar focuses on insert-
ing dense radar tensors into the BEV image features gener-
ated by the camera baseline. Bidirectionally, radar features
and image features are promoted to their respective decoders
according to cross-attention. Despite the simplicity of the
basic idea, the evaluation on the nuScenes dataset performs
outstanding results in the 3D object detection benchmarks. It
achieves an improvement over the camera-only baselines and
performs well even compared to other radar-camera fusion
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Fig. 1. Comparison between the two alignment methods. (a) Radar fusion methods relying on the first stage proposals: after generating the initial propos-
als, association methods to their corresponding radar regions is necessary, leading to ignoring of objects which are not detected in the first stage. (b) Our
adaptive radar fusion view: instead of aligning proposals from the first stage, features are directly aligned in BEV, thus prediction is guided by multi-

modality features.

studies. Besides, for the original intention of the experiment,
radar fusion behaves stably with +10% mAP and +15% NDS
boost in adverse scenes.

We make the following contributions:

(I) We construct an end-to-end BEV framework for radar
and camera fusion. Instead of relying on the first-stage detec-
tion results provided by the camera, this integral network in-
structs a portable and robust type that does not depend
strongly on the camera.

(II) We propose a novel bidirectional fusion strategy com-
pared to vanilla cross attention, which is suitable for multi-
modal features with spatial relationships. It performs effect-
ively despite the huge diversity of radar and cameras.

(III) We achieve a comparative camera-radar 3D detection
performance on the nuScenes dataset. Compared to a single
modality, we solve the difficult problem of velocity predic-
tion, which is non-trivial in autonomous.

2 Materials and methods

2.1 Related work

Camera-only 3D detection. Monocular 3D detection
requires the estimation of 3D bounding boxes while using a
monocular camera. The key question is how to regress the
depth information on the 2D view. Earlier works relied on 2D
detection networks with additional sub-networks for 3D pro-
jection®”. Several works have attempted to convert RGB in-
formation into 3D representations, such as pseudo-LiDAR"*!
and orthographic feature transform!”. Several studies!" intro-
duced key point detection for centers and used 2D object de-
tection prediction as regression auxiliary. In recent works,
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camera-only methods directly predicted results on 3D spaces
or BEV features”™ > "". They operated directly on the BEV fea-
tures transformed from the front view according to
calibration.

Camera-fusion 3D detection. The key point of the associ-
ation modality fusion methods is to find the interrelated spa-
tial relationships among multi-modal sensors. In recent years,
fusion approaches have mainly focused on LiDAR and cam-
eras. Some earlier works!* " mapped the data from multi-views
into unified types like image or BEV. Pointpainting!" creat-
ively proposes the segmentation of information from images
onto point cloud. Due to the sensitivity to adverse weather
conditions, MVDNet"? first designed a fused area-wise net-
work for radar and LiDAR in a foggy simulated environment.
Motivated by the cost of LiDAR, Ref. [17] researched the im-
provement of fusion on tiny objects with camera and radar,
and Ref. [18] introduced the transformer for feature-level fu-
sion. However, the 2D convolution of the projected radar
points comes with useless computations and does not take
into account the sparsity of the radar. Restricted by the front
view, spatial relationships between different modalities rely
on the results predicted during the first stage. By transform-
ing features from their respective views to a unified BEV,
BEVFusion' predicted the depth probabilities for image fea-
tures and projected the pseudo-3D features to the BEV based
on their extrinsic parameters. Transfusion”” compressed cam-
era features along the vertical axis to initialize the guiding
query and the align results of the first stage back to image
planes.

2.2 Approach

In this work, we present BEV-radar, a radar-camera fusion
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framework based on camera-only 3D object detection. As
shown in Fig. 2, given a set of multi-view images and sparse
radar points as inputs, we extract respective BEV features
separately and then decode the features using bidirectional at-
tention modules as inserted fusion decoders called BSF (bid-
irectional spatial fusion). Instead of simple cross-attention,
BSF performs better fusion for both modality features and
aligns features from different domains effectively. In the fol-
lowing subsections, we first review the preliminaries for re-
lated tasks and then elaborate on the implementation details
of the BSF.

2.2.1 Preliminary

Generation of BEV features. Traditional sensor fusion
operates on separate views so that the perspective front view
and BEV are aligned on the actual pixel-to-pixel spatial rela-
tion. However, even with a high-precision extrinsic calibra-
tion, projected radar points deviate from the true positions
due to the absence of vertical information. Moreover, this
pixel-to-pixel spatial alignment is not tight enough due to the
geometric distortion of the camera and the sparse attributes of
the 3D points. Therefore, a unified BEV representation in-
stead of a geometric association is crucial for sensor fusion.

Transformers for 2D detection. Vision in transformer
(ViT)* proposed patched images with positional encoding
instead of 2D convolution, which makes progress on image
feature based on original natural language processing
(NLP)®!. The original attention mechanism is formulated as
follows. Given a query embedding f9, key embedding f*,
value embedding f*, and dimension of key embedding d,
these inputs will be computed in a single-head attention layer
as:

qfk
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As for the prediction decoder, the promoted detection
transformer (DETR)™ and transformers'**** are widely used
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for detection tasks based on reforming a set of matched
bounding boxes. Thus the usual 3D regression problem is
transformed into a bipartite matching problem and the non-
maximum suppression (NMS) algorithm is no longer needed.

2.2.2  BEV unified representation

In this part, we state the details of the representation of the
two sensors. Transforming raw features extracted from their
original data type to BEV is nontrivial for alignment.

To camera. Following BEVDet", the BEV camera
baseline predicts the depth of multi-view image semantic fea-
tures from the backbone and feature pyramid network and
then transforms all features into a unified BEV grid space re-
lying on the associated extrinsic matrix. Thus, the baseline
forms a BEV camera feature map F, € RV  which is
downsampled from the origin size by 8%, and H, W describe
the size of the BEV map. BEV image features provide a glob-
al representation for multi-view transformations.

To radar. The radar data format has a completely differ-
ent style compared to the camera, similar to LiDAR but spars-
er, with about 300 points per 6 frames. To avoid overly sparse
inputs, a sequence of points R € R is accumulated,
where X and Y denote spatial coordinates, d denotes attrib-
utes including velocity, and N is the size of the point set. In
the absence of vertical information, pillars™ as feature
extraction considerably alleviates the computation of sparse
radar data to traverse the BEV plane. Naturally, the unified
BEV radar features F, € R™"" are formed after a linear
transformation.

2.2.3 Bidirectional BEV alignment

Traditional sensor fusion first concatenates individual fea-
tures directly and then uses attention or convolution blocks to
extract features from different modalities and align them ac-
cording to their spatial relationships. However, for BEV radar
and image features, sparsity makes it non-trivial to align both
modalities spatially only, so we need to generalize each
sparse feature. In this section, we instruct a module

Detection head
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BEV radar feature
(G H W)
—_—

Radar backbone
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Fig. 2. Overall architecture of framework. Our model is constructed on separate backbones to extract the image BEV features and the radar BEV features.
Our BSF (bidirectional spatial fusion) blocks consist of several blocks sequentially: First, a shared bidirectional cross-attention for communicating both
modalities. Spatial alignment is followed to localize the radar and camera BEV features. After all blocks, both outputs will be sent in a deconvolution

module to descend the channel.
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consisting of cross-attention and convolution blocks to pro-
gressively embed the duplex features in each other, which res-
ults in better alignment.

Specifically, a block consists of two parts: an interaction
module to communicate each feature, and a convolution-
based fusion operation. As shown in Fig. 2, the fusion part
can be divided into N equal blocks, and the positional embed-
ding operation is applied before fusion. For the camera
branch in the ith block, given a C dimensional camera BEV
feature map F € R*" as query, the radar BEV feature map
F e R is used as key and value, and vice versa for the
radar branch. We use deformable cross-attention™ to remedy
the computational cost caused by the sparsity of BEV fea-
tures, which can be formulated as follows:

Fi. = H(Attn(norm(F:"), norm(F;;"))&®

A i-1 i—1 (2)
ttn(norm(F; "), norm(F "))).

Fi, = G(Attn(norm(F;"), norm(F:"))). )

Different from the NLP vanilla transformer, spatial inform-
ation obtaining objects’ location is vital for detection tasks
F,.. Designed for 2D structures, convolution kernels are bet-
ter at extracting local spatial correlations than 1D attention.
F,, is transformed to image style again and sent to convolu-
tion blocks, which are then patched again before the next
(i + 1)th block. At the same time, a transform block for F; re-
mains synchronized with F,, for F., and they are returned
separately as the next inputs. In this way, multi-blocks in-
crease the fitness of F. and Fj, while bidirectional design up-
dates obtain the alignment of feature domains. In each block,
convolution layers are required to extract the local spatial re-
lations, see Section 3.2.2 for a related verification.

2.2.4 Prediction heads and losses

The BEV fusion features are applied to 3D object detec-
tion prediction heads. Referring to transfusion'”, we simply
use the class embedding heatmap transformed from the fu-
sion features as query initialization to predict the centers for
all objects in each scene. A vanilla transformer is used as the
decoder for DETR prediction parts through the Hungarian
algorithm™, and we set the regularized matching loss func-
tion by a weighted sum of the classification, regression, and
IoU calculation:

Llol = /ll‘Lcls + /lZ‘EIeg + /lzllou, (4)

where 4,, 1,, and A; represent each coefficient parameters,
and L., L., and L, are individual loss function for above.

3 Results and discussion

3.1 Implementation details

Training. This end-to-end work is implemented on the
open-sourced MMDetection3D"" in PyTorch. For nuScenes,
following M’BEV®, we use a pre-trained model on Nulmage
with swin-transformer as the camera backbone. BEVDet™ is
chosen as our image BEV baseline, and the settings keep the
same. Considering the synchronization of the real systems,
we accumulate a sequence of radar points around 6 frames to
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resolve its sparsity and eliminate the effect of ego-motion.
Pillars™’ are generated from radar points and scattered onto
the BEV grids as a pseudo image. The pillar size is set to (0.1 m,
0.1 m, and 8 m). We adopt the random flip, the rotate
strategies, and CBGS (class-balanced grouping and sampling)
dataset configuration on the data augmentation. Optimization
is set to AdamW with official weight decay and the learning
rate is 0.0001 for 4 NVIDIA RTX A6000.

Testing. As a result of the transformer detection head, we
use all the outputs through a bipartite matching algorithm in-
stead of traditional NMS. Evaluation metrics are formed as
mean average precision (mAP) across 10 foreground classes
and the nuScenes detection score (NDS) without test-time
augmentation.

3.2 Experiments

In this section, we compare our work with other state-of-
the-art methods and fusion strategies on nuScenes firstly.
Then we evaluate the ablation studies for the modules de-
signed. Moreover, we design extra variable weather condi-
tions to compare our visual baseline to show its robustness
against severe scenes. The visual baseline is BEVDet-Tiny
for camera-only detection. By the way, as a separate fusion
module, our framework can be easily extended to support
more Sensors.

NuScenes dataset. The nuScenes dataset is a large-scale
outdoor autonomous-driving dataset for various 3D visual
tasks. For our work, particularly, nuScenes is the unique data-
set whose sensors include radar while with 3D ground truth. It
consists of 700, 150, and 150 scenes for training, validation,
and testing, respectively. Particularly, 6 calibrated multi-view
cameras cover the surround horizontal field of view (FOV)
with overlapping, while 5 calibrated radars are also distrib-
uted around ego on average. The model is evaluated accord-
ing to mAP and NDS for 10 common classes. Instead of 3D
IoU, AP for nuScenes is defined as the BEV center distance,
concerning 0.5 m, 1 m, 2 m, and 4 m across 10 classes, and
NDS is a weighted sum of mAP and other attribute metrics
including velocity.

3.2.1 Main results

Our model is submitted to the nuScenes evaluation server
and achieves competitive performance on its metrics. As
shown in Table 1, our model outperforms camera-only
baselines by 17% mAP with a 10.2 FPS inference speed. In
contrast to other camera-radar fusion methods, BEV-radar
achieves 7% mAP and 5% NDS boost in the test split.
Moreover, the mean average velocity error (mAVE) metric is
attractive due to the complementary fusion motivation.
However, accurate velocity prediction is quite difficult for
single-frame camera methods. Thus, radar fusion should rem-
edy this burden for camera-only detection. Our results show a
large improvement in velocity prediction of 14%-24% com-
pared to other radar fusion models. In addition to evaluating
the robustness, one of the complementary attributes provided
by radar fusion, we design several experiments in different
weather conditions, as shown in the Section 3.2.3.

Table 2 shows the per-class mAP comparison with meth-
ods in various modalities on the val set. With a similar
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Table 1. State-of-the-art comparison on nuScenes fest set. “L”, “C”, and “R” denote LiDAR, camera, and radar, respectively. i represents test time aug-

mentation. Particularly, BEVDet-Tiny is our BEV camera-only baseline, and CenterNet is for CenterFusion and CRAFT. § represents a SECOND™ net-

work as decoder compared to base version. The bold numbers represent the optimal values for the respective indicator.

Method Modality NDS?T mAP?T mATE| mASE/| mAOE| mAVE] mAAE] FPS
CenterPoint"! L 67.3 60.3 0.262 0.239 0.361 0.288 0.136 61
PointPillars L 453 30.5 0.517 0.290 0.500 0.316 0.368 30
FCOS3D!'" C 372 295 0.806 0.268 0.511 1315 0.170 1.7
PGD" ' C 44.8 38.6 0.626 0.245 0.451 1.509 0.127 1.4
CenterNet"™ C 40.0 33.8 0.658 0.255 0.629 1.629 0.142 -
BEVDet-Tiny"'{ C 39.2 31.2 0.691 0.272 0.523 0.909 0.247 15.6
CenterFusion® C+R 449 32.6 0.631 0.261 0.516 0.614 0.115 -
CRAFTO¥ C+R 523 41.1 0.467 0.268 0.456 0.519 0.114 4.1
Ours C+R 54.3 443 0.501 0.261 0.492 0.408 0.129 10.4
Ours-6 C+R 57.6 482 0.444 0.262 0.452 0.371 0.126 102

performance of BEVDet-Tiny and CenterNet for camera-only
baselines, our fusion work achieves significant progress for
radar fusion. Considering velocity attribute, for dynamic
types (i.e., car, truck, bus, pedestrian, motorcycle, and bi-
cycle) and static (i.e., barrier and traffic cone) classes divided
separately, results also show a gap (14%-20%), since the
valid radar points of dynamic objects are distinguished from
background interference. More precisely, radar fusion per-
formance is better for metallic and large objects (i.e., car,
truck, and bus) than non-metallic and small objects (i.e., ped-
estrian and bicycle), caused by RCS (radar cross section). Ac-
curacy for non-metallic and static objects is more camera de-
pendent, and radar less helpful. In particular, though trailers
and construction vehicles belong to the large, metallic, and
dynamic classes, it is hard to achieve comparable satisfactory
performance as they occur infrequently in the nuScenes
dataset.

3.2.2 Ablation studies

We conduct several ablation studies on the nuScenes valid-
ation set to verify the effectiveness of the proposed compon-
ents. Table 3 reports the improvement of bidirectional fusion
(BF) or bidirectional spatial fusion (BSF) under the different
settings of the model depth and training epochs. ( i ) The first
row shows the result of the model which uses the concatena-
tion followed by convolution layers instead of BF or BSF as

the fusion module. (ii, iii) When the concatenation is
removed and BF is added, mAP and NDS boost together as
the number of layers increases. To compare BF and BSF, (iv)
shows the performance of the gap with respect to the spatial
policy. Specifically, we set the number of fusion blocks to 3,
showing that the model performs better in this setting.
( 1 -V ) show our BSF blocks work well for both modalities,
though the features are not similar.

To support the idea that radar can enhance the accuracy of
long-range object detection, Table 4 plots the improvement
brought by radar fusion. The accuracy of the car gradually de-
creases as the distance increases on account of image resolu-
tions. Our fusion method provides a performance boost for
distant regions, where radar points are able to travel but
hardly for the visual camera. Even for objects with a distance
of 40 m, the AP of car brings 20% gain. As we discuss in
Section 3.2.1, benefit from dynamic velocity and metallic
large size, the classes in this table are promoted more in the
range of 20-40 m (+14%-20%), where radar works unaf-
fected by distance.

3.2.3 Robustness against weather conditions

We design two experiments to demonstrate the robustness
of the proposed fusion model. Since only three submissions
are allowed for the evaluation of the nuScenes dataset for the
test dataset, the special experimental dataset is selected from

Table 2. Per-class AP comparison on nuScenes val set. Mod. represents modality. “C.V.”, “M.C.”, and “T.C.” represent construction vehicle, motorcycle,

and traffic cone evaluation, respectively. The bold numbers represent the optimal values for the respective indicator, and the numbers in parentheses rep-

resent the improvement that the method brings compared to its baseline.

Method Mod. Car Truck Bus Trailer C.V. Ped. M.C. Bicycle T.C. Barrier
PointPillars™! L 79.9 35.7 42.8 26.1 5.5 71.7 39.4 10.6 33.4 52.0
FCOS3D!"" C 479 233 314 11.2 5.7 41.1 30.5 30.2 55.0 455
CenterNet!™ C 48.4 23.1 34.0 13.1 35 37.7 24.9 23.4 55.0 45.6
BEVDet-Tiny"! C 51.2 22.3 31.3 16.0 7.2 345 273 22.5 50.0 49.8
CenterFusion™” C+R 524040y 265034 362322 154423 550200 389¢12  30.5use 229050 563113 47.0424
CRAFT® CHR  69.6(1212) 37.60145) 4730133 20170 107475 4620550 3950146 31.0076  S57.1gan  Slilgss
Ours C+R 721029 4300507 49.0¢177) 216456 14.0u65 44.5u100 41.1G138) 424G100) 574ua0 53904
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Table 3. Ablation of the bidirectional fusion module. BF: bidirectional
fusion base module. BSF: bidirectional spatial fusion.

Concat BF BSF #Layers #Epochs mAP NDS
i v 3 12 384 487
ii v 1 12 390 450
iii v 3 12 413 500
iv v 3 12 026 524
v v 3 20 433 534

Table 4. The AP breakdown over BEV distance between object center
and ego vehicle on the camera-only model, while decreases slowly on fu-

sion model.
Class Modality <20 m 20-40 m >40 m
C 76.2 57.3 46.4
Car
C+R 874112 76.9+19.6) 66.5(120.1)
C 42.6 29.4 20.3
Truck
C+R 61.1¢155 49.1(+10.7) 372169
C 58.6 38.8 28.8
Bus
C+R 64.2(56) 544115 42914,
. C 40.2 229 19.9
Bicycle
CiR 49205  368ume 3330

the validation dataset based on the description of each scen-
ario. There are 5417, 602, and 1088 samples separately for
the day, night, and raining times. All the mentioned paramet-
ers are kept the same as before except for dataset type. Table 5
shows the robustness to weather and sight conditions, with
the performance for night (+10%) and raining (+12%) times
providing an intuitive comparison.

The camera-only model is severely affected by the sight

Base prediction Fusion prediction

==

=
s P B = = Y === =]

CAM_FRONT

(a) Night time

Fig. 3. In the first row, base prediction and fusion prediction separately represent the camera-only model and the radar-fusion model on BEV. The ground
truth is plotted as blue boxes and the prediction boxes are plotted as yellow boxes, with lighter colors indicating higher confidence scores. The bottom
row shows a visualization of the camera views for this frame, with the corresponding regions of interest marked by dashed boxes of the same color.
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Table 5. mAP breakdown while camera is influenced by weather or
sight. This experiment dataset is separated from nuScenes va/ dataset ac-
cording to descriptions for scenes’ attributes.

Modality Day Night Rainy
C 322 13.2 32.8
C+R 433011 2324100 45204124

condition, which is reduced by 20%. The sight condition does
not mean that prediction error occurs only in dark
environments but also in illuminated scenes due to the reflec-
tion of headlights, as shown in Fig. 3a. On rainy times, the
HD waterproof camera is almost unaffected by the rain, ex-
cept when the raindrops fall right on the camera lens, as
shown in Fig. 3b. The examples above have one thing in com-
mon: the radar can still work well, therefore accurate dis-
tance prediction boosts the fusion. Compared to the camera-
only model, our fusion model brings a better performance
mainly when the camera is working as normal, which means
that the fusion between the camera and the radar, the camera
determines the lower bound of the accuracy of the fusion
model. As a non-visual sensor type, the task of 3D object de-
tection is a challenge for sparse radar sensors alone. However,
the detection results ignored by the camera but provided by
the radar fusion obtain an unsatisfactory confidence score,
due to the nature of the radar that can not work alone but
serve as a supplementary sensor.

3.2.4 Qualitative results

The visualization of compared results between camera-only
and camera-radar fusion models are shown in Fig. 4. By con-
trast, the fusion method precisely refines the image proposals
and completes the objects which are not correctly recognized
by the camera-only model. The front perspective view of the

Base prediction Fusion prediction

(io) Rainy time
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camera may exhibit some errors, which are attributed to calib-
ration inaccuracies and height discrepancies. The distinguish-
ing characteristic of BEV-radar lies in its precise representa-
tion of position and dimensions in the BEV angle. Con-
sequently, subsequent systems will also work on the BEV
framework, making the projection error in the frontal view
tolerable.

Most of the objects are detected by the camera-only model,
however, there are errors in either the center or the size. In
particular, the radar-fusion model is better at orientation pre-
diction due to the accurate velocity auxiliary. As we dis-
cussed in Section 3.2.3, the radar-fusion method can remedy
some errors made by the camera, but not all. Although some
of the ignored objects are successfully detected by the radar,
the fusion method gets lower confidence scores without cam-
era judgments.

4 Conclusions

In this paper, we propose an end-to-end robust camera-
radar 3D detection framework with a Dbidirectional
transformer-based fusion strategy to adaptively embed radar
features while preserving their spatial relationship. Unlike
other radar fusion methods, which typically require prior 3D
object detection from camera baselines, our approach does
not completely rely on visual results. However, as comple-
mentary BEV features enhance visual sensors, it is portable to
other multi-sensor frameworks. Our work sets high-
performance results on the nuScenes detection, and extensive
experiments demonstrate the robustness of radar fusion. We
also discuss the effectiveness of sensor fusion in different
weather or sight conditions that realistic system concerns, and
we hope that BEV-radar will inspire practical applications.
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Fig. 4. Qualitative analysis of detection results. 3D bounding box predictions are projected onto images from six different views and BEV respectively.
Boxes from different categories are marked with different colors and without ground truth. For BEV visualization, yellow means predicted boxes and
blue ones are ground-truth, while LiDAR points are visualized as background.
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