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Bioinformatic analysis screened a 7-IncRNA signature that predicted M1 macrophage infiltration and prognosis.

Public summary
m A total of 7 prognosis-related IncRNAs were screened and constructed as a prediction signature.
m The 7-IncRNA signature precisely predicts the tumor-associated immune microenvironment.

m The tumor mutation landscape was depicted based on the 7-IncRNA signature.
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Abstract: Long noncoding RNAs (IncRNAs) are considered crucial molecules associated with the tumor microenviron-
ment (TME) and tumor immune microenvironment (TIM). Macrophages are important members of the immune system,
and M1 macrophage function-associated IncRNAs still need to be further investigated. In this study, a IncRNA signature
was constructed based on transcriptome differences between high and low M1 macrophage infiltration cohorts. This
IncRNA signature included seven IncRNAs: LINC01494, ZDHHC20-IT1, LINC01450, LINC00871, EVX1-AS, KIF25-
AS and AADACL2-ASI, and all of them were upregulated in patients lacking M1 macrophages, indicating their roles in
inhibiting macrophage infiltration and polarizing to the M1 subtype, leading to an immune exclusion TME, which has been
demonstrated to be closely correlated with poor prognosis. This IncRNA signature not only predicted undesirable clinical
outcomes but was also associated with the immunosuppressive environment of the tumor region, which is mediated by
hindering antigen presentation and processing progress. In addition, the predictive value of this IncRNA signature for im-
mune checkpoint inhibition (ICI) therapy was also evaluated, which further enriched and strengthened the power of

IncRNAs in predicting the immunotherapy response rate.
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1 Introduction

A total of 1.9 million colon cancer patients were newly dia-
gnosed in 2020, causing over 900,000 deaths, ranking second
in all cancer-related deaths"!. The incidence rate continues to
rise around the world. Studies have identified that bad life-
styles and habits, such as smoking™ !, high-fat diet"" and alco-
holism", increase the incidence risk of colon cancer. Apart
from external environmental factors, approximately 2% to 5%
of colon cancer patients are derived from intestinal familial
genetic diseases such as Lynch syndrome and familial adeno-
matous polyposis (FAP)*". Gene mutations in hMSH2 and
hMLH]1, which are responsible for mismatch repair (MMR),
were detected in most Lynch syndrome patients, which
greatly increases the risk of colon cancer oncogenesis if left
untreated™. APC loss or mutation is a hazard factor that con-
tributes to Wnt-B-catenin signaling pathway dysregulation,
further leading to FAP or even colon cancer’™ .

Long noncoding RNAs (IncRNAs) are defined as >200 nt
noncoding RNAs that cannot be translated into functional
proteins. Recently, IncRNAs, as regulatory molecules, have
displayed attractive prospects in the functional regulation of
cells, especially in the field of cancer research. Abnormal
IncRNA transcription has been found in various types of can-
cer. For instance, PCGEM1 and PRNCRI1 can bind to the an-
drogen receptor and promote prostate cancer progression'”.
In pace with the development and rise of immunotherapy,
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light has been shed on the relationships between IncRNAs
and the tumor immune microenvironment''~"*.

Macrophages play a crucial role in innate and adaptive im-
mune processes, which work for pathogen or senescent cell
clearance and homeostasis maintenance. A classic classifica-
tion of macrophages is based on specific functions, categoriz-
ing macrophages into M1 and M2 subtypes. M1 macro-
phages are generally responsible for pro-inflammatory func-
tions and kill cancerous cells'* '), while M2 macrophages
mainly exert repairing or anti-inflammatory activities in in-
jured tissue!>'"'¥ and pro-tumor function in the background
of cancer!”*". Tumor-associated macrophages (TAMs) are
now attracting increasing attention. Studies have demon-
strated that a complex TME can reprogram macrophages into
different subtypes” ™. At the same time, the question about
where TAMs originate also arose, and many studies have de-
scribed that TAMs are recruited by chemotactic factors
secreted from tumor cells®, such as CCL2%, CCL5™, and
CXCL1207,

In this study, we mainly focused on TME M1 macro-
phages, and bioinformatic approaches were used to find dif-
ferences in transcriptome levels between different COAD pa-
tient populations, which were divided by M1 proportions. M1
macrophage-related IncRNAs were identified and further
screened by survival analysis. The remaining IncRNAs were
collected into a signature to test its prognostic value and per-
formance in the TCGA-COAD cohort and other independent
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validation datasets.
2 Materials and methods

2.1 Data collection

Count and fragments per kilobase of per million (FPKM)
RNA-Seq data of colon cancer (TCGA-COAD, n=453) and
corresponding clinical phenotype information were obtained
from UCSC XENA (http://xena.ucsc.edu/). Independent val-
idation microarray datasets with clinical information and sur-
vival data were downloaded from the GEO database (https://
www.ncbi.nlm.nih.gov/geo/) under accession numbers
GSE14333 (n=226, https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE14333), GSE17537 (n=55, https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE17537), GSE17536
(n=177,https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE17536), GSE17538 (n=244, https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE17538), and GSE39582 (n=
585,  https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE39582).

2.2 Tumor microenvironment infiltrated immune -cell
proportion

The CIBERSORT algorithm™ was used to deconvolute im-
mune cell proportions from bulk RNA-Seq data based on the
LM22 immune cell signature, which contains B cells (naive
and memory), plasma cells, CD8 T cells, CD4 T cells, follicu-
lar helper T cells, regulatory T cells (Tregs), gamma delta T
cells, NK cells (resting and activated), monocytes, macro-
phages (M0, M1, M2), dendritic cells (resting and activated),
mast cells (resting and activated), neutrophils and eosinophils.
M1 macrophages were extracted for further evaluation and
analysis.

2.3 Differentially expressed IncRNA detection and
IncRNA signature construction

DESeq2*! was used to find differentially expressed genes
between the high (M1-Mo"#") and low (M1-Mg"*) M1 macro-
phage infiltration groups, which were stratified by the surviv-
al package and survminer package in R. |logFC| > 1 and ad-
justed p value < 0.05 were set to filter upregulated and down-
regulated genes. LncRNA information was downloaded from
the LNCipedia database (https:/Incipedia.org/)*". The upreg-
ulated genes in the M1-Me"" group were intersected with the
IncRNA list to obtain upregulated IncRNAs in the M1-Mg"™"
group. These IncRNAs were further narrowed by survival
analysis to filter survival-correlated IncRNAs for IncRNA
signature construction.

2.4 Gene set enrichment analysis and functional enrich-
ment analysis

The score of the IncRNA signature was calculated by GSVA,
and differential biological processes (BPs) between the
IncRNA score"" and IncRNA score™ groups were analyzed
through gene set enrichment analysis (GSEA) software de-
veloped by the Broad Institute”"*l. Gene sets were down-
loaded from Molecular Signatures Database v7.5.1, GSEA of-
ficial website (http://www.gsea-msigdb.org/gsea/msigdb/
index.jsp), C5 ontology gene sets and H hall mark gene sets
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were queried for downstream analysis. In addition, mRNAs
negatively correlated (cor < —0.3, p value < 0.05) with the
IncRNA signature were selected for further gene ontology
(GO) and functional enrichment analysis, which were per-
formed by the online enrichment tool g:Profiler (https://
biit.cs.ut.ee/gprofiler/gost)F.

2.5 Genomic mutation profile

Mutation information of TCGA-COAD was downloaded
from the TCGA official website, and the package maftools®
was used to visualize the mutation profile. The top 30
mutated genes in IncRNA score™" and IncRNA score®™ pa-
tients were extracted for further analyses.

2.6 Statistical analysis

Kaplan—Meier survival plots and log rank p values were car-
ried out to identify different survival probabilities between the
M1 and MI1"" groups, which were determined by the
“surv_cutpoint” function in the “survminer” R package. Mul-
tivariate Cox regression analyses were performed by the
“coxph” function in the “survival” R package. The Spearman
correlation coefficient and corresponding p values were cal-
culated by the “cor.test” function. Mann—Whitney tests were
performed to distinguish differences between two different
groups. Statistical analyses were performed using R v4.1.3
with the necessary R packages and GraphPad Prism 7.0.

3 Results

3.1 Identification of differentially expressed IncRNAs
between M1-Mo"*" and M1-M@1"*"

To discover the relationship between infiltration of M1 mac-
rophages in the tumor microenvironment and patient prognos-
is, the M1 macrophage (M1-Mg) proportion of each TCGA-
COAD patient calculated by Cibersort was grouped into two
cohorts, the MI1-M¢“" (n=47) group and the MI-Mg"*"
(n=369) group, which were divided by the “surv_cutpoint”
function  from  the  survival package in R
(cutpoint=0.007690675). Patients with lower M1 macro-
phage infiltration had significantly shorter overall survival
times than patients with higher M1 macrophage infiltration
(Fig. 1a, log rank p=0.0082). The same result was obtained in
another independent validation dataset (Fig. 1b, GSE14333,
log rank p=0.0068, cutpoint=0.0453332; Fig. lc, integrated
dataset of GSE17536 and GSE17538, log rank p=0.0472;
Fig. 1d, GSE39582, cutpoint=0.003866829, log rank
p=0.0088, cutpoint=0.005733291). To investigate the differ-
ences between the M1-Me"" and M1-Me"*" groups, differen-
tially expressed genes were calculated by the DESeq2 pack-
age, and a total of 1634 DEGs were detected, which con-
tained 194 upregulated genes and 1440 downregulated genes
in the MI-Me"" group. Then, differentially expressed
IncRNAs (DEIncRNAs) were extracted by intersecting DEGs
with the IncRNA list from the LNCipedia database, and a
total of 71 DEIncRNAs were obtained (Fig. 1¢), which con-
tained 13 upregulated IncRNAs and 58 downregulated
IncRNAs (Fig. 1f, Wilcoxon rank sum test). Here, upregu-
lated IncRNAs in the M1-M@"" group were selected for fur-
ther analysis, and the overexpression of these IncRNAs may
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Fig. 1. M1-Mg predicts the clinical prognosis of colon cancer patients and DEIncRNA detection. (a—d) Kaplan—Meier curve of TCGA-COAD dataset,
GSE14333, integrated dataset of GSE17536 and GSE17538, GSE39582, respectively, stratified by M1 macrophage proportion. (¢) Venn diagram shows
DEIncRNAs through intersecting DEGs (n=1634) with the IncRNA list (#=13076), 71 DEIncRNAs containing 58 downregulated IncRNAs and 13 upreg-

ulated IncRNAs. (f) Volcano plot of DEIncRNAs, with upregulated IncRNAs shown in red (n=13), downregulated IncRNAs shown in blue (n=58, Wil-
coxon rank sum test) and nonsense IncRNAs shown in gray (n=1180, Wilcoxon rank sum test).
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be responsible for lower M1 macrophage infiltration in the
TME.

3.2 IncRNA signature construction and evaluation

Survival analysis of 13 upregulated IncRNAs was carried out.
7 IncRNAs stood out (Fig.2a—g): LINC01494 (log rank
p=0.0011, cutpoint=0.04112853), ZDHHC20-IT1 (p=0.0043,
cutpoint=0.3504403), LINC01450 (p=0.012, cutpoint=
0.01601357), LINCO00871 (p=0.0013, cutpoint=0.081546),
EVX1-AS (p=0.034, cutpoint=1.016255), KIF25-ASI
(p=0.0013, cutpoint=0.07708173), AADACL2-AS1
(»=0.0037, cutpoint=0.1166067), as their overexpression sig-
nificantly correlated with shorter survival time. These
IncRNAs were collected into a IncRNA signature for further
evaluations and studies.

To assess the IncRNA signature performance on prognosis
prediction, the IncRNA signature score of each TCGA-
COAD patient was calculated by the GSVA package in R. All
scored patients were stratified into 2 groups based on the me-
dian IncRNA signature score (median score = —0.04486603),
and the Kaplan—Meier curve showed that patients with higher
IncRNA signature scores had significantly shorter overall sur-
vival times (Fig. 2h, left, log rank p=0.00024). Additionally,
in the IncRNA score"" group, patients had lower infiltration
of M1 macrophages, suggesting that the IncRNA signature
score is negatively correlated with M1 macrophages in the
TME (Fig. 2i, p<0.0001, Mann—Whitney test). In the valida-
tion cohort of GSE17537, the IncRNA signature score also
correlated with a shorter overall survival time (Fig. 2h, right,
log rank p=0.011, cutpoint=—0.4367792).

Multivariate Cox regression analysis of the IncRNA signa-
ture showed that it served as an independent risk factor that
significantly correlated with patient prognosis (Fig. 2j). A
lower IncRNA score acted as a protective factor, which is
consistent with earlier survival analysis results. In addition,
with the progression of colon cancer stage, the IncRNA score
increased (Fig. 2k). The analysis above indicated that the
IncRNA signature is a significant risk factor correlated with
patient prognosis.

3.3 IncRNA signature correlates with immune inertness

GSEA was performed to detect differentially activated path-
ways or biological processes between the IncRNA score™s"
and IncRNA score" groups. Notably, in 50 hallmark gene
sets, IL2-STATS signaling (NES=—2.12, FDR q val=0.001),
interferon gamma response (NES=-2.11, FDR q val=0.000),
IL6-JSK-STAT3 signaling (NES=-2.08, FDR q val=0.001),
interferon alpha response (NES=—1.90, FDR q val=0.008)
and complement (NES=-2.09, FDR q val=0.001) were signi-
ficantly enriched in the IncRNA score* group (Fig. 3a), in-
dicating that the IncRNA score"" cohort was weak in antigen
presentation-associated pathways.

The tumor immune microenvironment was assessed via the
ESTIMATE package in R. The tumor immune score of
TCGA-COAD patients was calculated, and its correlation
with the IncRNA signature score was also tested. The results
suggested that a higher IncRNA signature score was negat-
ively correlated with the immune score (Fig. 3b, Rs= —0.302,
p=3.935%107"), indicating a lack of immune cells within the
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TME of colon cancer. Commonly, IncRNAs exert their func-
tions by manipulating mRNAs to regulate corresponding
downstream pathways. Hence, we calculated the relation-
ships between protein-coding gene expression and the
IncRNA signature score. mRNAs with a Spearman correla-
tion coefficient < —0.3 and p < 0.05 (n=141) were removed
for GO enrichment and functional enrichment analyses. Not-
ably, the results showed that these mRNAs were largely en-
riched in immune-associated reactome pathways (Fig. 3c,
Fisher’s exact test) and biological processes (Fig. 3d, Fisher’s
exact test), indicating that members in the IncRNA signature
may impede immune-associated gene expression and func-
tion.

3.4 IncRNA signature negatively correlates with antigen
presentation and processing and immune cell
chemotaxis

Immune cell recruitment to the TME depends on tumor-
related antigens that can be recognized by antigen-presenting
cells such as DCs and macrophages. In addition, chemokines
secreted by tumor cells or stromal cells in the TME mediate
extratumor boundary immune cell chemotaxis. Antigen
processing- and presentation-related gene sets were included
to evaluate their relationship with the IncRNA signature. The
results showed that the higher the IncRNA set score was, the
lower the score for antigen presentation and processing
(Fig. 4a, Rs=—0.307, p=2.054x107"?). Additionally, the chemo-
taxis score of each sample in the IncRNA score"™" and
IncRNA score®" groups was assessed, and the results showed
that the IncRNA score"" group had a lower chemotaxis score,
which indicated an immune exclusion microenvironment
(Fig. 4b, Mann—Whitney test). These results provide addition-
al evidence that patients with a high IncRNA score may also
have an immune-cold TME. In addition, we tested the rela-
tionship between the IncRNA score and genes that positively
regulate antigen processing and presentation and positively
regulate chemotaxis. We found that these immune-positive-
regulating genes were mostly negatively correlated with the
IncRNA score (Fig. 4c, d), which further confirmed the inert-
ness of the immune-related pathway in IncRNA score"
patients.

3.5 IncRNA signature predicted immune checkpoint
inhibition therapy

We then investigated the performance of the IncRNA signa-
ture in predicting immune checkpoint inhibition (ICI) ther-
apy outcomes. The immune checkpoint genes PD1 and PD-
L1 were extracted, and their correlations with the IncRNA
signature score were calculated. The differences in PD1 and
PD-L1 expression between the IncRNA score"™" and IncRNA
score™ groups were tested, which revealed that patients with
lower IncRNA scores also had higher PD1 and PDL1 expres-
sion (Fig. 5a, Mann—Whitney test). To verify the predictive
value of the IncRNA score for ICI responses, we queried the
immunophenoscore (iPS) of TCGA-COAD patients in The
Cancer Immunome Atlas (TCIA) database. LncRNA set
score"®" patients had significantly lower PD1 blocker scores
(Fig. 5b, Student’s ¢ test), indicating an undesirable response
to ICI therapy compared to the other group of patients. Then,

DOI: 10.52396/JUSTC-2022-0185
JUSTC, 2023, 53(9): 0903



ust¢’

Wu et al.

(6) 1o ©) 1o @
——  LINC00871"(n=43)
——  LINC00871"(n=387)
s 754 s 75 S 75 o7 Log rank p=0.0013
L [ Py L3
EE E s 8
= 504 Z 50 Z 50 2 5
« © [ =
2 = 2 g
1— AADACL2-AS1"(n=72) 25 —i—  EVX1-AS"® (n=52) 25 —i—  KIF25-AS1"" (n=67) @ 25
—i—  AADACL2-AS1'™ (n=358) == EVX1-AS™ (n=378) ——  KIF25-AS1"°" (n=383)
Log rank p=0.0037 Log rank p=0.0338 Log rank p=0.0013
T T T T 1 v 0
AN NG N N N N Q N N > N N ) S QQ S > > Q 0y () 0y ()
S & S S N AR S S I A S R
Time (d) Time (d) Time (d) Time (d)
(e) (f) (9)
100 100 100
—— LINC01450"" (n=76)
—— LINCO1450"" (n=354)
Log rank p=0.0117
s 7 7 g
ol 2 L
il o el
— 50 — 50 — 50
T T T
= 2 =
s s 2
D 25 @ 250 NGO r=70) P28, o pcanim (netss)
o LINCO1494* (n=360 ~i= ZDHHC20-T1™ (n=235)
N | Log rankp=00011 Log rank p=0.0043
AN 3 3 3 N N N N 3 o O O B $ 3 3 o 3
S & & &S S & & & & & &S
(h) Time (d) Time (d) . Time (d) po0.0057
(|) 0.25 (k) p =0.0426
100 1004 p<0.0001
& . 1.0 ns
§_ 0.20+
g g o 2 0.5 T
o Y o 0.5 3
[ ® =) »n
= 50 % 50 E <Zt 0.04
< 3 S 0.104 ¥
a 5 5] £ 0.5
251 i 1ncRNA score™ (n=208) @» 25 IneRNA score™ (21 g = - 1
o o oy INcRNA score"™ (n=41) 0.05-
. ‘TR}‘DADZZ?E (n —— IncRNA score'™ (n=14) —
0g rank p= Log rank p=0.0106 = l -1.0 T T T T
D N N RN 0.001— > & &
$ $ $ S N T T e
& & & S © S & & High  Low F &° éo& Q@&
Time (d) Time (months) LncRNA score Tumor Stage
0 Hazard ratio Hazard ratio
= W <0.007 *** :
Age (N= 415)(1 02- 1.06) Age  (N=55) (0986 1.08) m 0228
Lymphatic ("10231) reference n .
YES 1.20 . 0.504 s ’ : i
(N=145) (0.70 - 2.06) ) :
al . IncRNA  high reference n
Gender (ﬁ,mw%) reference - score  (N=41) :
low 0.12 - 0.037 *
male 88 |—.—| 0.596 -
(N=225) (0 56 - 1.40) (N=14) (0.015-0.87)
Tumor stage i - # Events: 20; Global p-value (Log-Rank): 2.6276e-05
reference |
stage (N=72) . AIC: 133.91; Concordance Index: 0.8
stageii 1.43 - 0.521
(N=160) (0.48 - 4.22)
stageiii 3.26 I—I—l 0.034~
(N=115) (1.09 - 9.70) :
stage iv 7.83 - <0.001 ***
(N=57) (2.60 - 23.60)
IncRNA  high "
score  (N=z0g 'ererence :
low 050 +—— 0.006 **
(N=207) (0.30 - 0.82)
# Events: 76; Global p-value (Log— Rank) 1.0441e-10
AIC: 737.86; Concordance Index: 0.7!

Fig. 2. The constructed IncRNA signature is closely associated with clinical outcomes. (a—g) Kaplan—Meier curve of 7 survival-related IncRNAs. (a) AA-
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Fig. 3. The tumor immune microenvironment is negatively correlated with the IncRNA signature. (a) GSEA plots of differentially enriched cancer hall-
mark pathways between the IncRNA score"" and IncRNA score” cohorts. (b) Spearman’s correlation between IncRNA score and ESTIMATE immune
score (Rs=—0.302, p=3.935x107"). (c) Reactome enrichment plot of mRNAs that negatively correlated with the IncRNA set (n=23, Fisher’s exact test).
(d) GO:BP enrichment plot of mRNAs that negatively correlated with the IncRNA signature. The top 20 enriched biological processes are displayed

(Fisher’s exact test).
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we grouped TCGA-COAD patients into PD1"" and PD1""
groups and PD-L1"¢" and PD-L1"" groups based on the medi-
an expression of PD1 and PD-L1, respectively. Then, we
combined the PD1/PD-L1 groups with the previous IncRNA
score groups to investigate the cross impact of the IncRNA
score and immune checkpoint gene expression on patient pro-
gnosis. The results suggested that patients with low IncRNA
scores and high PD1 (Fig. 5c, left, log rank p=0.0042) or PD-
L1 (Fig. 5c, right, log rank p=0.0046) expression had pro-
longed survival times compared with the remaining 3 groups,
while for patients with high IncRNA scores, even if they had
higher immune checkpoint expression, their prognosis was
still undesirable.

Studies have reported the relationship between MSI sub-
types in colon cancer and their potential value in predicting
ICI therapy outcomes” *”. MSI information of TCGA-COAD
patients was downloaded and combined with the IncRNA sig-
nature score. In the IncRNA score"" group, only 10 patients
had the MSI-H phenotype, while in the IncRNA score""
group, 59 patients had the MSI-H phenotype, suggesting that
the IncRNA score"®" and IncRNA score groups showed dif-
ferent MSI phenotypes (Fig. 5d, p<0.05, chi-square test).
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These results further support that the IncRNA signature score
might serve as a predictor for ICI therapy response.

3.6 LncRNA score indicates tumor mutation landscape
differences

Tumor mutation burden (TMB) is considered a biomarker for
predicting ICI therapy outcomes”™ *!, and tumors with higher
TMB tend to load more neoantigens that can be recognized by
immune cells such as T cells"”. The TMB of IncRNA
score"" and IncRNA score"™ samples was calculated via the
maftools package, and the results showed that TMB in the
IncRNA score®” group was significantly higher than that in
the IncRNA score"™" group (Fig. 6a, p = 0.0029, Mann —
Whitney test). This feature was consistent with the analyses
above that a lower IncRNA score is correlated with a higher
immune score, indicating a better immune cell infiltration
level due to more loading of neoantigens. The genome muta-
tion landscapes of IncRNA score"" and IncRNA score” were
inspected and visualized. The top 30 mutated genes were se-
lected and are displayed in Fig. 6b. After excluding shared
mutated genes (n=21, APC, TP53, KRAS, TTN, PIK3CA,
SYNE1, MUC16, FAT4, RYR2, DNAHS, FLG, ZFHX4,
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CSMD1, LRP1B, PCLO, USH2A, OBSCN, DNAH11, AD-
GRV1, LRP2 and NEB), the remaining genes were extracted.
In the IncRNA score"™" group (n=9): ABCA13, CCDC168,
FAT3, TRPS1, PCDH17, SDK1, FBXW7, VCAN, SCN9A.
IncRNA score®™ group (n=9): BRAF, CSMD3, RYR3,
MACFI, SPTA1, KMT2B, DCHS2, CSMD2, MUCS5B. MSI-
related gene mutation rates were queried as well. As expec-
ted, MSI-associated genes were more frequently mutated in
the IncRNA score®™ group (Fig. 6c, MLHI: 4% in the
IncRNA score”™ group, 1% in the IncRNA score"™" group;
MSH2: 4% in the IncRNA score*™ group, 2% in the IncRNA
score"" group; MSH6: 6% in the IncRNA score™ group, 2%
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in the IncRNA score" group; PMS2: 4% in the IncRNA
score™ group, 1% in the IncRNA score™" group). This result
further proved that frequent MSI-associated gene mutations
induced MSI features in the IncRNA score” group, leading to
a better prognosis.

4 Discussion

Immune cell infiltration in the TME is closely correlated with
tumor progression and has been widely recognized as an
important factor in predicting the prognosis of cancer pa-
tients. However, clinical identification of immune cells basic-
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ally depends on pathologists’ diagnosis via hematoxylin and
eosin (HE) staining or immunohistochemistry (IHC) staining,
which introduces diagnostic bias of individual pathologists.
With the rapid increase in transcriptome data, immune cell-
specific signatures have been discovered, and their relation-
ship with patient prognosis has been described in detail. In
addition, with the development of sequencing techniques,
some noncoding RNAs have been detected, and their regulat-
ory functions on protein-coding mRNAs have attracted in-
creasing attention. IncRNA molecular markers have been re-
ported and validated. Recent studies have also discovered that
IncRNAs are correlated with tumor-infiltrating immune cells.
Huang et al.'”! reported that the IncRNA NKILA induced T-
cell death to escape immune killing. Zhou et al."" built a B-
cell-based IncRNA signature as a prognostic predictor for
bladder cancer.

M1 macrophage infiltration in the tumor region is con-
sidered a factor that predicts better clinical outcomes™ . In
addition, the role of noncoding RNAs in macrophage polariz-
ation cannot be ignored™!. In our work, patients with lower
M1 macrophage residence were closely focused on, and their
differentially expressed IncRNAs were queried and investig-
ated. Seven significantly upregulated IncRNAs were identi-
fied in the M1"" cohort. As we assumed, this 7-IncRNA sig-
nature correlates with worse patient prognosis. When the
IncRNA signature score was combined with other clinical
characteristics, it still acted as an independent prognostic
factor. The functions of individual members in the IncRNA
signature were also reported in some articles. LINC01494
promotes glioma development via the miR-122-5p-CCGN1
axis™, and the overexpression of LINC01494 can inhibit the
sponge of miR-122-5p and further upregulate CCGNI1, a cell
cycle-related gene, causing glioma progression. The relation-
ship between EVX1-AS and colon cancer was predicted in
the IncRNADisease v2.0 database (http://www.rnanut.net/
Incrnadisease/index.php/home) ). However, the role of these
IncRNAs in macrophage development and polarization is still
unknown, and more experimental evidence is needed to con-
firm this hypothesis. According to the canonical function of
IncRNAs, they may affect macrophage function in a direct
way, which regulates macrophage differentiation and polariz-
ation** or in an indirect way, IncRNAs affect tumor cell
metabolism or export by exosomes to modulate macrophage
functions!”*.

The colon cancer immune environment was reported as an
important feature that predicts ideal outcomes>*". The ES-
TIMATE immune score, an index indicating the immune cell
infiltration level, was negatively correlated with the IncRNA
signature, suggesting an immunodeficient environment in the
highly scored IncRNA signature group. We investigated
factors that affect TME immune cell infiltration, and the po-
tential cause of such an immune-excluded TME might be me-
diated by impeding antigen presentation and weakening the
recruitment of various immune cells.

ICI therapy is a novel and prospective approach for cancer
treatment, and even if limited patients could benefit from
ICIFY, it still attracts many researchers’ attention. Meanwhile,
biomarkers used to evaluate ICI response still need further
discovery and assessment. Currently, the immune checkpoint
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molecules PD1 and PD-L1 and their inhibitors are widely
used and investigated in clinical and research situations.
Hence, an effect evaluation signature is crucial for predicting
ICI therapy outcomes. By combining PD1 or PD-L1 expres-
sion with the IncRNA signature score, we identified that low
IncRNA score cohort patients had significantly higher expres-
sion of PDI and PD-L1 than patients with higher IncRNA
scores. By comparing survival time among the IncRNA
scorehe-PD1"e/PD-L1%Me"  IncRNA score"s-PD1°¥/PD-L1"",
IncRNA  score®-PD1"#/PD-L1"" and IncRNA score""-
PD1"*/PD-L1"" groups, patients with low IncRNA scores and
high PD1/PD-L1 expression showed better prognosis than the
other three groups. Notably, patients with low IncRNA score,
even if higher PD1/PD-L1 expression detected, their overall
survival time still significantly shorter than low IncRNA score
patients, which provided evidence that PD1/PD-L1 expres-
sion alone was not enough for predicting ICI therapy out-
comes, linking PD1/PD-L1 expression level with IncRNA
score could serve a robust predicting result with enhanced
precision. MSI, especially MSI-H, as a predictor of better
prognosis of colon cancer has been reported™*. MSI colon
cancers deficient in the DNA mismatch repair (IMMR) sys-
tem are responsible for monitoring and rectifying microsatel-
lite-associated genome errors. MSI colon cancer generally
possesses mutations in MLH1, MSH2, MSH6 and PMS2,
which are crucial for the IMMR system”". Loss of function
of these four genes leads to mismatch repair dysfunction, and
cancer cells are prone to display more neoantigens that can be
detected by immune cells. In addition to colon cancer, studies
have found that MSI is a general phenomenon across various
tumor types, such as endometrial cancer™, gastric cancer™,
and ovarian cancer”’. Grouping patients via IncRNA signa-
ture score, we found that MSI patients, especially MSI-H pa-
tients, were mostly grouped into the IncRNA score*™ group
(n=59), while only 10 patients were characterized as MSI-H
in the IncRNA score"" group, indicating better clinical out-
comes in IncRNA score"" patients.

Tumor mutation burden, which is considered a better pro-
gnostic factor, was significantly higher in IncRNA score""
group patients, concordant with previous survival analyses.
Additionally, four MSI-related genes (MLH1, MSH2, MSH6
and PMS2) were more frequently mutated in the IncRNA
score™ group, causing MSI in colon cancer and further linked
to an ideal clinical prognosis. Notably, FXBW7, a gene that
was previously reported to be closely related to anti-PD1 ther-
apy resistance in melanoma, was highly mutated in the
IncRNA score™" group (16% vs 10%)"*. Loss of function of
FXBW7 changed TIM by inhibiting IFN-I and MHC-I ex-
pression, and restoration of FXBW?7 rescued PD-1 blockade
therapy. This result provided evidence that IncRNA score™"
patients may be resistant to ICI therapy due to high mutation
of FXBW7, which is consistent with the analysis that the
IncRNA signature and PD-1/PD-L1 expression together could
predict ICI therapy outcomes.

With the development of single-cell RNA sequencing, the
classification of M1 and M2 macrophages is now overly
simple and rough. More newly discovered and defined sub-
populations of macrophages have been discovered and invest-
igated. For example, SPP1™ macrophages together with FAP*
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fibroblasts promote the progression of colorectal cancer™”.
The infiltration of TREM2® macrophages remodels an im-
munosuppressive microenvironment in the tumor region!® ',
In contrast, FOLR2" macrophages could boost the immune re-
sponse, leading to better clinical outcomes™ 1. However, the
roles of IncRNAs in macrophage development and differenti-
ation are still unclear. Therefore, more experiments and bioin-
formatic analyses are needed to elucidate how IncRNAs
regulate the development and transformation of macrophage
subtypes.
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