N
+

UST
http://justc.ustc.edu.cn Received: December 05, 2022; Accepted: February 27, 2023

Online confidence interval estimation for federated heterogen-
eous optimization

Yu Wang, Wenquan Cui >4 and Jianjun Xu =

International Institute of Finance, School of Management, University of Science and Technology of China, Hefei 230026, China

>ICorrespondence: Wenquan Cui, E-mail: wqcui@ustc.edu.cn; Jianjun Xu, E-mail: xjj1994@mail.ustc.edu.cn
© 2023 The Author(s). This is an open access article under the CC BY-NC-ND 4.0 license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Graphical abstract

‘ Non-IID data ‘ ‘ Non-identical number of local iterations ‘

Federated heterogeneous optimization

\_
~

NG

Rescaled federated averaging Separated plug-in method

Confidence intervals about the minimizer of
the global risk function

An online confidence interval estimation method called separated plug-in via rescaled federated averaging.

Public summary
m Develop online statistical inference in federated learning for heterogeneous optimization.
m Propose an online confidence interval estimation method being separated plug-in by rescaled federated averaging.

m Establish the asymptotic normality and show the asymptotic covariance being inversely proportional to the client parti-
cipation rate.
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Abstract: From a statistical viewpoint, it is essential to perform statistical inference in federated learning to understand the
underlying data distribution. Due to the heterogeneity in the number of local iterations and in local datasets, traditional
statistical inference methods are not competent in federated learning. This paper studies how to construct confidence inter-
vals for federated heterogeneous optimization problems. We introduce the rescaled federated averaging estimate and prove
the consistency of the estimate. Focusing on confidence interval estimation, we establish the asymptotic normality of the
parameter estimate produced by our algorithm and show that the asymptotic covariance is inversely proportional to the cli-
ent participation rate. We propose an online confidence interval estimation method called separated plug-in via rescaled
federated averaging. This method can construct valid confidence intervals online when the number of local iterations is dif-
ferent across clients. Since there are variations in clients and local datasets, the heterogeneity in the number of local itera-
tions is common. Consequently, confidence interval estimation for federated heterogeneous optimization problems is of

great significance.
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1 Introduction

Federated learning is a privacy-preserving machine learning
framework that allows multiple clients to collaboratively train
a global model without transferring local data. For estimation
and prediction problems, statistical inference is an indispens-
able method for measuring uncertainties' . However, compu-
tation constraints, memory restrictions, and communication
budgets make traditional statistical estimation and inference
methods incompetent under federated settings'. In addition,
variations in the local datasets and heterogeneity in the num-
ber of local iterations make it difficult to perform confidence
interval estimation under federated settings.

Suppose that there are N clients and a central server. Each
client labels with an unique number in [N] = {1,2,---,N}. The
feature space X is a finite-dimensional Euclidean space R?
for some positive integer d. In regression, the response space
is Y =R. For the classification problem, the label space is
Y ={1,2,---,J} for some positive integer J. The ith client
has a local dataset consisted of identically and independently
distributed (IID) samples from some unknown data distribu-
tion p;(z) over Z=XxY, where 7 =(x,y), ¥ €X, and
y' €Y. The federated learning system intends to optimize a
sum of risk functions, with only access to local stochastic
gradient updates.

The federated optimization problem is to minimize the
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global risk function
N
R®) = )" pR(O), ()
i=1

where R,(6) =E._,1(6;7)) is the local risk function at the ith
client. Here, 1,(0;7) is a client-specified loss function, where
7' € Z represents an independent realization from local data
distribution p,. The weight of the ith client is p,, which satis-

N
fies p, >0 and Zi:lp, = 1. In this research, 6 is the model

parameter and we assume that the parameter space is @ C R”.
The minimizer of R(6) is denoted by 6 and the minimizer of
R,(0) is denoted by 6;. In the non-IID problem, the data distri-
butions at each client {p,}} may vary. Therefore, 8, typically
does not coincide with 6 for i € [V].

A typical method to solve Eq. (1) is federated averaging
(FedAvg)"l. To reduce communication budges, only a subset
of clients are selected in each communication round in
FedAvg. The selected clients perform multiple local updates
before these local models are aggregated to collaboratively
train a global model. It is widely applied in many federated
learning applications'"'l. Federated learning has been widely
studied on non-IID data. Zhao et al.'* has shown that the ac-
curacy of federated learning decreases significantly, by up to
55% for neural networks trained for highly skewed non-1ID
data, where each client trains only on a single class of data.
Several approaches, such as CSFedAvg!"*! and FL+HC!", can
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promote the accuracy of FedAvg on non-IID data. Some
works are interested in the convergence of FedAvg on non-
IID data. For instance, Li et al.'! has developed convergence
guarantees for FedAvg estimates on non-IID data under cer-
tain regularity conditions.

A batch of recent works"*"*! analyzing the convergence of
federated optimization algorithms assume that E; (number of
local stochastic gradient descent (SGD) iterations at client i)
is identical, i.e., E, = E; for any i, j € [N]. However, this as-
sumption is unrealistic for real word datasets. The clients are
usually very different. The size of datasets and the computa-
tion speeds of these clients typically vary. To make full use of
the the local data, we perform SGD at each client with data
arriving in a given time interval. Due to the streaming data,
the number of SGD iterations is proportional to the number of
arrived data. Since the size of their local datasets as well as
their computation speeds is different, the number of local iter-
ations is typically different. When the batch size is the same
across clients, E; is certainly proportional to #;. In the semin-
al paper”, McMahan et al. proposed federated averaging in
which each client performs E epochs of local updates. Then,
the number of local iterations is E, = |n,E/B] at client i,
where B is the mini-batch size, and n; is the number of
samples at the ith client. In this case, the number of local iter-
ations can vary widely across clients. In short, clients update
local parameters in a given time interval using datasets ar-
rived in this period of time, which makes E; proportional to
n;. Wang et al.”” first analyzed FedAvg on non-IID data when
the number of local SGD iterations is nonidentical across cli-
ents. They have shown that the heterogeneity in the number
of local iterations will result in objective inconsistency. That
is, the FedAvg estimate does not converge to 6°. Some meth-
ods that are proposed to solve non-IID data, such as
FedProx®, SCAFFOLD"”, and VRLSGD?, can be used to
reduce the inconsistency to some extent. However, these
methods require additional memory and slow down the con-
vergence. They proposed the federated normalized averaging
(FedNova) algorithm which eliminates the inconsistency and
preserves fast convergence.

In the big data era, many classical optimization methods for
statistical problems, such as gradient descent, need great
memory storage and computation power. Hence, online op-
timization methods, such as SGD, for statistical problems are
of interest. From a statistical viewpoint, it is essential to per-
form confidence interval estimation in federated learning and
online learning. However, only a few papers have considered
confidence interval estimation problems in online learning,
and statistical estimation problems have been even rarely
studied in federated learning. In the online fashion, Ruppert™*!
and Polyak et al.” have proven that the averaged SGD path is
asymptotically normal with unknown asymptotic covariance.
To conduct online confidence interval estimation, there are
many studies trying to estimate the unknown asymptotic cov-
ariance. Zhu et al.” introduced a fully online overlapping es-
timate of the asymptotic covariance using only the iterates
from SGD and its nonoverlapping variant. Fang et al.”” intro-
duced an online bootstrap procedure for estimating confid-
ence intervals. In federated learning, Li et al.”® showed how
to perform statistical inference via local SGDU. They
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proposed two online confidence interval estimation methods
under federated settings. However, they assumed that the
number of local iterations is identical across clients. The
identical number of local iterations violates the imbalanced
nature of federated learning. More importantly, local SGD re-
quires full client participation. The server needs to wait for
the slow clients to upload the parameters if all N clients parti-
cipate in aggregation, which is time expensive. These slow
clients are regarded as stragglers. Li et al.'"! explained that the
full client participation requirement in local SGD suffers from
a serious “straggler effect”. Meanwhile, Wang et al.* poin-
ted out that the local SGD or FedAvg estimate does not con-
verge to 6" if the number of local iterations is nonidentical.
Hence, it is inappropriate to estimate the confidence interval
of 6" via local SGD or FedAvg when the number of local iter-
ations is nonidentical on non-IID data in federated learning.

Our research aims to give a confidence interval of 6" in an
online fashion when the number of local iterations is non-
identical. We denote the global parameter at the rth round by
6, and the averaged path by 6, = 2119,, where T is the max
number of rounds. Since it is impossible to use FedAvg, we
perform confidence interval estimation via rescaled FedAvg
which is a special case of FedNova. Wang et al.’"” gave the
convergence guarantee for FedNova with a constant learning
rate. However, they did not analyze the statistical properties.
In our research, we give a nonasymptotic convergence rate of
the rescaled FedAvg estimate and prove that 8, converges 6
in L,. Moreover, we give the asymptotic distribution of the
averaged estimate 6,. Furthermore, we propose the rescaled
plug-in method to estimate the confidence interval of 6 in an
online fashion. In summary, this work makes the following
contributions:

First, under certain regularity conditions, we prove that the
rescaled FedAvg estimate 6, is a consistent estimate of 6,
and give a nonasymptotic convergence rate for the estimate.

Second, we prove that 8, = %Z:IH, is asymptotically nor-
mal under some regularity conditions. Our research shows
that the asymptotic covariance of 8, is inversely proportional
to the client participation rate v.

Third, we propose the separated plug-in method to con-
struct a confidence interval of 6 on non-IID data when the
number of local iterations is nonidentical. Additionally, we
experimentally prove the effectiveness of the method.

The rest of this paper is organized as follows. Section 2 be-
gins with some general definitions and notations used
throughout the paper and introduces the rescaled FedAvg al-
gorithm. In Section 3, we start by stating some assumptions
essential to our theoretical proofs. Then, we analyze the stat-
istical properties of the rescaled FedAvg estimator and pro-
pose an online confidence interval estimation method. In Sec-
tion 4, we investigate the empirical performance of the pro-
posed method by numerical simulation. Section 5 gives the
conclusions of this research.

2 Problem formulation

Throughout this paper, we use the following notations. For a
vector a € R?, |la|| is defined to be the vector L, norm
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llal| = (Zizla?) . For vectors x,y € R”, the inner product is

defined as (x,y) = Z_p_]x,-y,-. For matrix A € R, ||A]| is the
operator norm of A, /i.e., lAll = sup,,,, lAx|]| where x € R”.
For positive sequences {x,} and {y,}, x, = O(y,) indicates that
there exists a constant C such that x, < Cy, for large n. In ad-
dition, x, = o(y,) represents lim, x,/y, = 0. For stochastic se-
quences {«,} and {B,}, B, = 0,(@,) means B,/@, converges to
0 in probability. Moreover, we use 5 to denote convergence
in distribution, use — to denote convergence in probability,
and use — to denote almost sure convergence.

We consider the problem of performing confidence inter-
val estimation for the federated heterogeneous optimization
problem. The “heterogeneous” here means the number of local
iterations is different across clients. The federated heterogen-
eous optimization aims to solve the following problem:

6" = argminR(6),
0e6
on non-IID data when the number of local iterations is non-
identical. In this research, we suppose that the samples arrive
one by one in an online fashion at each client, which is the
same as Refs. [27, 29].

In the rth communication round, suppose that there are E,
samples arriving sequentially at client i within a given wall-
clock time interval. At the ith client, these samples are de-
noted by z,.z,,-*,2,_,. The sample z;, is an input/output
pair (xi,,y;,). As the samples arrive sequentially, the ith cli-
ent updates as the following formula:

91‘

kel 0;‘1( - anli(gik;ZikL k=0,1,--- E -1,

where 6, denotes the local model parameter of client i after
the kth local update in the ¢th round. By convention, 6/, = 6.
The learning rate in the rth round is 75,. FedAvg simply ag-
gregates local parameter updates by averaging at the end of
each round. The global parameter is updated as 6, =

1 v o .
6,— ;Zies, p;. Here, 4, =6, -6, is the local parameter up-

date of client i in the ¢th round. As mentioned before, only a
subset of clients update their local models in a round. The set
of these selected clients in the ¢th round is denoted by S,. The
constant v is the fraction of updated clients. Therefore, the
number of selected clients is K = [vN]. These clients are se-
lected without replacement from [N] with probability

{1, pal
For instance, the global risk function in the linear model is

N
RO)= ) pE., (0% -y,

i=1

where 7' = (x',y’) is the input/output pair. Suppose that the
true local parameter of client i is 6/, which means
Y =(0))"x'+¢&, where & is random noise with zero mean.

1 N
Consequently, the minimizer of R(0) is 6" = Nz_ilé);. Wang
et al.’” has shown that the global estimate 6, converges to

-3

_DiE;
Jj=1

6:. However, 6" = ¢ if and only if E, = E;
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for all 7, j € [N]. Hence, there is inconsistency in estimating 6*
using FedAvg. It is not reasonable to construct a confidence
interval using this estimate because it is not unbiased or
consistent.

It is not effective to perform confidence interval estimation
via a federated averaging algorithm due to the inconsistency
caused by non-1ID data and heterogeneity in the number of
local iterations. To overcome this ineffectiveness, we have to
perform confidence interval estimation via new federated
algorithms.

To eliminate the inconsistency, Algorithm 1 rescales the
local parameter updates and tries updating the global model
parameter by averaging the rescaled local parameter updates:

1 ZN E .
0r+ = 9»‘_ - i_Al’
1 v - pEI t

where E is the average of {E;}). We call this algorithm res-
caled federated averaging (rescaled FedAvg). Actually, it is a
special case of FedNova™” which updates local parameters by
stochastic gradient descent. Although the convergence of Fed-
Nova has been guaranteed, the statistical properties remain
unexplored. Li et al.”* allows E;’s to grow with the commu-
nication rounds. From their work, growing E;’s converge
faster than fixed E;’s in terms of communication round. If the
number of samples is the same, increasing E;’s will reduce the
communication round. In addition, it will enlarge the hetero-
geneity in the number of local iterations and slow down con-
vergence. Thus, we set the number of local steps E;’s to be
identical across different rounds. In the next section, we give
a nonasymptotic convergence rate of the resclaed FedAvg

Algorithm 1. Rescaled federated averaging

Input: Initial point 6y, client participation rate v, learning rates {r],}g ;
forr=0to7T—-1 do

Sample subset S; of K = |vN] clients from [N];
Communicate 6, to all client i € S;;
for client i € S; in parallel do
Initialize local parameters: Hﬁ,o =6
for k=0to E;—1 do
After the sample z;" . arriving, update local parameters:
9ﬁ,k+l = ei,k -Vl (Gi,k;zi,k);

end

Local updates: A§ = 9;‘, E Oy

/* E is the average of {Ei}]l\’ */

. E
Communicate EA; to the central server;
i
end

On the central parameter server, update global parameters:

1 piE ;.
Or+1 _9’+;Zies, 5 Vil

end

T
1

~ 1
Output: 67 and averaged rescaled FedAvg estimator 67 = ?Z

t=1
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algorithm. In addition, we prove the asymptotic normality of
the averaged rescaled FedAvg estimate 6,.

Therefore, we construct confidence intervals online based
on Rescaled FedAvg in this research.

3 Theoretical results

In this section, we first introduce some assumptions that are
essential to our theoretical proofs. Second, we will prove that
the rescaled FedAvg estimate is consistent. Then, we propose
an online confidence interval estimation method called separ-
ated plug-in. This method leverages the asymptotic normality
of the averaged rescaled FedAvg estimate.

Assumption 1. For each client i € [N], assume that the loss
function [(-) is continuously differentiable. At client i, as-
sume that E[”W;(@ka;Zﬁ\k)Hz] <G, where 0<k<E, and
0<t<T.

Assumption 1 is also assumed in Ref. [15]. Assumption 2
is standard, and is widely assumed in many papers®™”*!.

Assumption 2. Assume that the risk functions {R,(-)}Y, are
p-strongly convex. The loss function /() is assumed to be L-
average smooth, i.e., for any vectors 6,,6, € O,

E||Vi6::2) - VIO )| < L2116, - 6,1,

where 7' is an independent realization from p;.

By Jensen’s inequality, {R,(:)}Y, are all L-smooth. The
functions {R,(:)}¥, are u-strongly convex and L-smooth by
Assumption 2. Global risk R(f) is also L-smooth and u-
strongly convex because it is a linear combination of {R,(-)}Y,.

The next assumption considers the Lipschitz continuity of
V2R,(-) in the neighborhood of 6".

Assumption 3. Assume that the Hessian matrix of R,(-) ex-
ists and that there exist some §, >0 and L > 0 such that for
all i € [N]

IVR.(6) - V'R(@)II < L'NI6 - 61,

whenever || —6|| < ;.

Define &,(0) = V1,(0;7') — VR,(0) to be the gradient noise at
the ith client, where 7' is an independent realization from p,.
Note that E[g(0)] =0 for all § € @. The covariance of the
gradient noise at 6" is E[£,(6")&;(6")7]. We denote it by S;. De-
note the Hessian matrix V>R(6") by H.

Next, we assume that the difference between the covari-
ance of &(6) and S, is bounded by the quadratic polynomial
of ||6—6||. Thus, it ensures the continuity of the covariance of
&) at 6. The term [|@— 6|* controls the growth speed of the
covariance. The boundedness of the (2 +d,) moment of gradi-
ent noise is first assumed by Ref. [28].

Assumption 4. Assume that there exists some constant
L, > 0 such that for every i € [N],

[E(e(@)&(O)") = Sill < Lo(10 = &°[| + 116 = 6°II").

Moreover, suppose that there exists a constant §, >0 such
that sup, E|le(8)|[*** is finite.

Assumption 5. There exists some constant C such that for
all i e [N],

11034

ElIV’1(6;2) = VL6 ) < Cllo- 6],
where 7' is an independent realization from p;.

3.1 Statistical properties

When the learning rates {n,}; satisfy some conditions, Li et
al.’  established a nonasymptotic convergence rate
E|8, — &|* < Cyn, for local SGD, where C, is a constant. Our
results give a convergence rate O(T ) for rescaled FedAvg
when the learning rates are 1, = 8t, where a € (0.5,1) and
B > 2/u. Furthermore, our results show how the difference in
the number of local iterations influences the convergence.

In the SGD and local SGD algorithms and their variants,
decreasing learning rates are critical. Li et al.'"! has shown
that FedAvg with a fixed learning rate does not converge to
6. To reach the minimum, the decay of learning rates is es-
sential in FedAvg. The convergence to the optimal of local
SGD is guaranteed with a fixed learning rate when E; = 1 for
all i € [N]"". However, the FedAvg estimate 6, does not con-
verge to 6" if E; > 1. Hence, the learning rates are decreasing
and satisfy some regularized conditions in our analysis. We
give the following theorems with decreasing learning rates.

Theorem 1. Let the learning rates be n, =8t with
a €(0.5,1), where B8>2/u. Under Assumptions 1-4, there
exists a constant 7, such that whenever ¢ > 1,

E|l6, — 11" < com,s
2 2
co=%max{2i3,thA,ﬂ}, B=@+CLT,
u us -2 v 2Nv
T =Z:Ef, E4,, =E[R(6,)—R(6)], and C is a constant.

Theorem 1 in Wang et alP has shown that
min,, E[[VR(G)|* converges to 0 with a fixed learning rate
determined by 7. In addition, it has proven that the conver-
gence rate is O(T"?). Nevertheless, this cannot ensure the
consistency of 6,. Compared with that, Theorem 1 showed
that E||6, — 6"|]* converges to 0 with decaying learning rates.
The convergence rate is O(T ™). Moreover, our theorem is
under the assumption of convexity while their work can be
applied to nonconvex cases.

Theorem 1 implies that the convergence of the estimate is
related to v and {E;}Y,. When v is large, the convergence is
fast. Intuitively, a large v indicates that more clients paticip-
ate in aggregation. Consequently, the estimate converges
faster with more information. From Theorem 1, 7 is a good
measure to quantify the heterogeneity in the number of local
iterations when E (the average of {E.}Y) is fixed. With smal-
ler 7, the estimate 6, converges faster. When there is no het-
erogeneity in the number of local iterations, 6, converges the
fastest.

In a recent work, Toulis and Airoldi”” proposed the impli-
cit SGD procedures and analyzed the asymptotic distribution
of averaged implicit SGD iterations. Similarly, Li et al.*! ana-
lyzed the asymptotic distribution of the averaged local SGD
iterates on non-IID data and performed confidence interval
estimation using the asymptotic distribution. We formulate
the asymptotic normality of the averaged rescaled FedAvg es-
timate 6, in the following theorem.

Theorem 2. If the learning rates are the same as those in

where
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Theorem 1 and Assumptions 1-4 hold, the averaged rescaled
FedAvg estimate @, is asymptotically normal,

_ 1
VTG, —6)> N,(0.-H"'S'H"),
4

N p?
where H = V’R(#"), S* = ZH E’Si, S. =E[&(6")e(0")], and
v is the client participation rate. '

Theorem 2 reveals that 8, is asymptotically normal with an
asymptotic covariance depending on {E.}), local gradient
noise variance {S.}), and Hessian matrix H = V*R(6"). As
shown in Ref. [28], the effect of data heterogeneity does not
appear in the asymptotic distribution. However, this theorem
shows that the heterogeneity in the number of local iterations
appears in the asymptotic distribution.

In the federated learning system, the central server only has
access to the global iterates {6,}]. To construct a valid confid-
ence interval, we may leverage the asymptotic distribution of
averaged estimator 6, under the federated learning constraints.

3.2 Separated plug-in method

To perform confidence interval estimation, a good and expli-
cit estimate of the asymptotic covariance is necessary. There
are several methods”**"-**1 to estimate the asymptotic covari-
ance in the SGD statistical inference problem. However, these
methods cannot be directly applied in federated settings.
From Theorem 2, the asymptotic covariance is determined
by the second order derivative H and the covariance of
stochastic gradient error S;. Note that $* is different from the
covariance of &(6"). Hence, we separately estimate S* and H
to construct an estimate of the asymptotic covariance instead
of estimating the asymptotic covariance directly. More pre-
cisely, we can separately estimate each S, by some estimate

S. and use ZN

We assume that {Z Jock<r,0a<r are 1ID from the local data
distribution p;. In the rth round, the input/output pairs
T2y 52, artive at client i sequentially, which simu-
lates real-world data streams such as mobile phone data and
IoT device data. In addition, we assume that z/ from distribu-
tion p, is independent with z/ from distribution p; if i # j.

Since 6, converges to 6° in probability, an intuitive way to
estimate H is to use the sample estimate

o= Z DWARIAE) )

=1 ieS;

i=

2
%Si as an estimate of S*.

where S, is the set consisting of clients participating in the 7th
aggregation step and v is the fraction of participating clients.
Due to partial client participation, information about the
second-order derivatives of all clients is not always access-
ible. For this reason, we only have access to the derivatives of
clients that are selected in the current round. In fact, the prob-
ability of each client being selected in a round is v. The ex-
pectation of the number that a client has been chosen in the
training process is v7 .

The estimation of S* is similar to the estimation of H but
there are some additional problems in estimating S*. First, we
rewrite S; as

1103-5

S; =E[VI(O;DVLO )] — [VROIIVR(O]I".  (3)

Due to the features of federated learning, we cannot dir-
ectly estimate S*. An estimate of §* can be obtained by com-
bining estimates of §,. As is known before, partial participa-
tion makes direct estimation of VR() difficult. More import-
antly, it is infeasible to calculate the expectation of local loss
functions. We then estimate S; by

1 « v v
Sri= ﬁ ;[Vl[(ez;zi)] [VI6,;:z)I'I(i € S) — [grllgr] s 4

LZT VI(6,;z)I(i € S,), and {7} are independ-
VT &=t
ent realizations from p;. An advantage of the above estimate
(4) is that it can be updated online, which is the main purpose
of rewriting S..

Since S* is a linear combination of {S;}), it is natural to es-
timate S” by

where g;,; =

N2
S, = Z %STJ’ (5)
i=1 !

where S;, is estimated in Eq. (4).

From the above discussion, H; and S; are estimates of H
and S*, respectively. Furthermore, H, and S; can be updated
recursively in the spirit of SGD. Next, we prove the consist-
ency of the two estimates under some additional assumptions
in addition to Assumptions 1-4. Assumption 5 assumes that
the second-order derivatives of local risk functions {R,(:)}} in
the neighborhood of 8 are Lipschitz continuous. This as-
sumption is critical in the following theorem.

Theorem 3. Under Assumptions 1-5, HT—p> H and
S,.— S, for all i € [N]. Hence, S, converges to S* in probab-
ility, and H;'S,H;' converges to H'S*H™' in probability.

Although we cannot give an exact confidence interval of
6", we can form an asymptotic confidence interval by Theor-
em 3. Denote 67, = (H;'S; H}");; and §; jth coordinate of 6.
From Theorem 3, we can directly derive Corollary 1. Based
on Corollary 1, we proposed a new online confidence inter-
val estimation method. Since we separately estimate S;, we
call this method the separated plug-in. Details about the al-
goroithm are in Algorithm 2.

Corollary 1. Under the same assumptions as Theorem 3,

= a2 4 . _ 7 a2 A
(A Nor e <O <O+ \/ﬁo'm) - 1-a,
where z,,, is the 1 —a/2 quantile of the standard normal dis-
tribution, and 6y is the jth coordinate of ;.

When E; = E for all i € [N] and v =1, there is no need to
estimate S* separately. In this case, the covariance becomes

EH"SH’1 , where S is the covariance of gradient noise. This
is the same as that in Ref. [28].

3.3 Other methods

In addition to the separated plug-in, we extend the random
scaling method proposed by Lee et al.” and extended to the
federated setting proposed by Li et al®. We theoretically
prove that the random scaling method is also effective in our
setting. In the previous subsection, we propose the separated
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Algorithm 2. Separated plug-in method
Input: Participation rate v, number of clients N, learning rates
{Ut}lr-
forr=1to T do
Sample a subset of clients from [N] denoted by S; with
ISil =T 15
for each client i € S, in parallel do

Initialize local parameters ¢/ ) = 6;;
Update estimators:
8; =81y + VIO VIO DI
Hyi=H i+ V(637

t—1 1 .
8= gt—l,i‘*’?Vli(et;Zl);

for k=0to E;—1 do

Update 9;"“1 = 9;',k - ’hWKHQk;ZQk)?
end

. E .
Send parameter update 4. = E_(H;, £, — 0 to server;
end
Server update global parameter by 6,1 =6, + ZE&A{;

t—1_ 1
61+ —6;;
; t—1 th

Update 6, =
end

Send 6r, Si., Hr;, and gr; to the server. Compute Hy and Sy
following Egs. (2) and (5);

_ 1 T
Output: 67 = szlg” Hr,and S7;

plug-in method and give the statistical properties of the pro-
posed estimate 6, and ;. In fact, the asymptotic normality of
6, can be extended to a more general form. The following
theorem is a general case of Theorem 2.

Theorem 4. Under the same assumptions as Theorem 1,
the following random function weakly converges to a scaled
Brownian motion as 7 — oo, i.¢.,

LrT)

1 N —1. Q)2
WZ(Q—QH 7S BA,
t=1

where B,(-) denotes p-dimensional standard Brownian mo-
tion, S* is the same as that in Theorem 2, H = V*R(§") and v
is the client participation rate.

Based on Theorem 4, we can then construct a confidence
interval using an online procedure the same as Algorithm 2 in
Ref. [28].

4 Numerical studies

The numerical studies are divided into three parts. In the first
part, we will research how the heterogeneity in the number of
local iterations influences the convergence on simulated data.
In the second part, we compare the separated plug-in method
with the random scaling method to show the effectiveness of
the proposed method on simulated data. In the last part, we
show how to use the proposed method on two real datasets.

4.1 Effect of the heterogeneity in the number of local
iterations

The first simulation experiment shows how the heterogeneity
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in the number of local iterations influences the convergence
in linear regression. The feature space here is X = R”, and the
label space is M/ = R, where p = 5. For simplicity, we do not
consider intercepts. Hence, the parameter space is © = R”.
We set the learning rates as 7, = 0.2¢°°% in this experiment.
At client i, the true model parameter 6; is generated from
N,(0,1,). The input/output pair zj, = (xi,,),) is a realization
from local data distribution p;. Here, xi, is generated from
multivariate normal distribution N,(0,1,), and the response
i, is generated according to the linear model y,, = (6;)"x], +&
where € ~ N(0,1). The average number of local iterations is
fixed at 4. Instead, we set different degrees of heterogeneity
in the number of local iterations. We set three different de-
grees of heterogeneity (“Balance”, “Small”, “Large”). Note
that we have a measure 7= Z:ILE2 to quantify the hetero-

i}

geneity in the number of local iterations. In the “Balance’
case, the number of local steps is E; =4 for all i € [N]. The
measure is 160 in the “Balance” case. In the “Small” case, the
number of local iterations {E;} is IID from a discrete uniform
distribution on {3,4,5}. The expected measure is Er = 500/3
in this case. In the “Large” case, the number of local steps
{E;} is 1ID from a discrete uniform distribution on
{1,2,3,4,5,6,7}, and the measure is Er =200 in this case.
The results are shown in Fig. 1.

From Fig. 1, 6, converges the fastest in the “Balance” case.
In the “Large” case, Et is the largest in the three cases and
the estimate converges the most slowly. This indicates that
the heterogeneity in the number of local iterations slows
down convergence. The empirical results coincide with the
theoretical results in Theorem 1.

4.2 Separated plug-in and random scaling

In the second simulation experiment, we show the effective-
ness of the proposed separated plug-in method. In the experi-
ment, the nominal coverage probability of the confidence in-
tervals is 95% in both linear regression and logistic regres-
sion models. The learning rates are set to 7, = 0.2r*" in
linear regression and 7, =0.5r"" in logistic regression,
which is fine tuned in advance. Here, 7z, = (x],,y;,) is an
input/output pair. The predictors x], is generated from

— Balance
Small
100k — Large

1072

0 1000 2000 3000 4000 5000

Fig. 1. Impacts of = based on 1000 replications. The x-axis and y-axis are
the number of rounds and |@;-¢°, respectively. “Balance” means
identical number of local iterations, where E;=4 for all ie[N] and
7=160. “Small” means a small degree of heterogeneity in the number of
local iterations, where E; is IID from a discrete uniform distribution on
{3,4,5}, and Er=500/3. “Large” represents a large degree of heterogen-
eity in the number of local iterations, where E; is IID from a discrete uni-
form distribution on {1,2,3,4,5,6,7}, and Er = 200.
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Table 1. Separated plug-in method in linear regression based on 1000 replications. In brackets are the standard deviations.
Items y T = 1000 T =2000 T =3000 T = 4000 T = 5000
0.2 0.934 0.942 0.950 0.949 0.952
Coverage 0.3 0.958 0.944 0.953 0.955 0.952
rate 0.4 0.948 0.934 0.943 0.957 0.949
0.5 0.953 0.956 0.951 0.949 0.951
0.2 10.830 (0.616) 7.587 (0.297) 6.116 (0.196) 5.325(0.149) 4.757 (0.120)
Average 0.3 8.725 (0.377) 6.140 (0.193) 5.004 (0.131) 4.328 (0.097) 3.867 (0.077)
radius 0.4 7.532 (0.298) 5.299 (0.148) 4.319 (0.098) 3.736 (0.072) 3.340 (0.058)
(x107%) 0.5 6.712 (0.223) 4.733(0.114) 3.860 (0.075) 3.339 (0.057) 2.985 (0.045)

Table 2. Random scaling method in linear regression based on 1000 replications. In brackets are the standard deviations.

Ttems v T = 1000 T =2000 T = 3000 T = 4000 T = 5000
0.2 0.955 0.937 0.934 0.942 0.952
Coverage 0.3 0.937 0.948 0.944 0.944 0.944
rate 04 0.938 0.948 0.948 0.951 0.944
0.5 0.940 0.935 0.946 0.952 0.955

0.2 16.430 (8.498) 10.960 (4.857) 8.749 (3.605) 7.507 (3.157) 6.536 (2.734)

Average 03 11.790 (5.347) 8.297 (3.604) 6.760 (2.816) 5.754 (2.384) 5.145 (2.193)

radius 0.4 9.865 (4.311) 6.866 (2.904) 5.678 (2.228) 4.874 (2.051) 4318 (1.797)

(x1072) 0.5 8.665 (3.556) 6.056 (2.538) 4.980 (1.982) 4313 (1.739) 3.851 (1.503)

N,(0,1,) and the response y!, is generated according to the
local model, where p = 5. Assume that samples from differ-
ent clients are independent, and that samples from the same
client are IID. Details about the data generating and paramet-
ers generating approach are as follows:

(1) In the linear regression, the response at each client is
generated according to y,, = (6))"x], +¢&!,, where & is IID
from N(0,1). The true local parameters 6; and x], are both
generated from N(0,7,). In this case, the minimizer 6" is the
average of {6/}Y .

(II') In the logistic regression, the response y;, is generated
to be 1 with probability o((6;)"x;,) and 0 with probability
1-0((6;)"x.,). The true local model parameter 6; is also gen-
erated from N(0,1,). The first 5 clients have parameter 6,
and the rest have the same parameter 6. To calculate the em-
pirical coverage rate, we have to precisely compute the min-
imizer 6". We use the stochastic gradient descent method to
iteratively estimate 6 in a centralized setting on a dataset that
is a mixture of data from client 1 and client 6. Half of the
dataset is from client 1, and the rest is from client 6.

In both linear and logistic regression, we generate {E,}Y
from a discrete uniform distribution on {1,---,5}. Naturally,
the parameter space is @ = R” since we do not have inter-
cepts in linear regression and omit the constant term in logist-
ic regression here.

In both cases, the coverage rate and the average radius of
the confidence intervals are two main aspects used to evalu-
ate the effectiveness of the methods. The coverage rate and
the average radius is computed by averaging based on 1000
replications.

Linear regression: Tables |1 and 2 show the empirical
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performance of the two methods with different participation
rates and different maximum numbers of rounds 7'. Both ran-
dom scaling and separated plug-in have good performance in
the linear regression model with different participation rates.

From the two tables, the average radius of the separated
plug-in method is smaller than that of random scaling. Fur-
thermore, the standard deviation of the plug-in confidence in-
terval radius is much smaller than that of random scaling.
This is because the plug-in method takes advantage of the
first and second derivative information, while random scaling
only uses first-order derivatives.

From Table 1, the average radius decreases as T increases.
Similarly, the average radius is smaller with more clients par-
ticipating. For instance, the average length of v=0.2 is ap-
proximately 1.4 times the average radius of v =0.4. This is
consistent with the theoretical results. The two methods have
similar average coverage rates under linear regression.

Logistic regression: In Tables 3 and 4, the plug-in method
also has a smaller average radius and standard deviation than
those of random scaling. The random scaling and separated
plug-in methods also have similar coverage rates. The cover-
age rates of both separated plug-in and random scaling are
close to the nominal coverage rate of 95% under the logistic
regression model. In the logistic regression model, the aver-
age radius of the confidence interval also decreases as T and
v increase.

The above experiments showed that the two methods are
efficient and applicable in this problem. The separated plug-in
method constructs a smaller confidence interval, and the
standard deviation of the radius is smaller than that of ran-
dom scaling. In addition, the two methods have approximate

DOI: 10.52396/JUSTC-2022-0179
JUSTC, 2023, 53(11): 1103



Zzsrg "

Online federated learning for interval estimation Wang et al.
Table 3. Plug-in method in logistic regression based on 1000 replications. In brackets are the standard deviations.
Items v T = 1000 T =2000 T =3000 T = 4000 T = 5000
0.2 0.944 0.949 0.939 0.955 0.946
Coverage 0.3 0.938 0.942 0.945 0.945 0.958
rate 0.4 0.941 0.942 0.952 0.955 0.953
0.5 0.956 0.944 0.954 0.944 0.956
0.2 8.248 (0.287) 5.773 (0.135) 4.690 (0.088) 4.051 (0.064) 3.616 (0.051)
Average 0.3 6.651 (0.179) 4.668 (0.088) 3.800 (0.059) 3.286 (0.043) 2.935(0.035)
radius 0.4 5.718 (0.135) 4.027 (0.064) 3.280 (0.044) 2.837(0.033) 2.536 (0.026)
(x1072) 0.5 5.087 (0.109) 3.587 (0.051) 2.924 (0.034) 2.531 (0.026) 2.009 (0.020)
Table 4. Random scaling method in logistic regression based on 1000 replications. In brackets are the standard deviations.
Items v T =1000 T =2000 T =3000 T = 4000 T =5000
0.2 0.941 0.944 0.938 0.953 0.951
Coverage 0.3 0.942 0.948 0.947 0.945 0.951
rate 0.4 0.953 0.958 0.949 0.952 0.952
0.5 0.945 0.944 0.944 0.947 0.948
0.2 9.904 (4.834) 7.090 (3.315) 5.876 (2.759) 5.099 (2.364) 4.563 (2.075)
Average 0.3 7.819 (3.713) 5.868 (2.770) 4.836 (2.220) 4.170 (1.875) 3.691 (1.619)
radius 0.4 6.924 (3.392) 5.003 (2.282) 4.104 (1.805) 3.551(1.502) 3.232 (1.4006)
(x107%) 0.5 5.993 (2.809) 4.213 (1.889) 3.506 (1.556) 3.139 (1.405) 2.852(1.269)

empirical coverage rates. Hence, the separated plug-in is bet-
ter than random scaling considering the empirical coverage
rate and averaged radius.

4.3 Real data applications

In this section, we apply our proposed methods to conduct
confidence interval estimation in linear regression for the
power consumption of the Tetuan city dataset”. In logistic re-
gression, we conduct confidence interval estimation for the
Skin Segmentation dataset”.

The power consumption of the Tetouan city dataset”” is re-
lated to the power consumption of three different distribution
networks of Tetouan city, which is located in northern Mo-
rocco. This dataset consists of 52416 samples. We fit a feder-
ated linear model to investigate how the variables “temperat-
ure”, “humidity”, “wind speed”, “general diffuse flows”, and
“diffuse flows” influence the response variable “Zone 1
Power Consumption”. To simulate the non-IIDness and het-
erogeneity in the number of local iterations, we allocate the
dataset into 10 clients according to the variable “DateTime”.
The time of a day is divided into 10 parts: Hour 0-1, Hour
2-4, Hour 5-5, Hour 6-9, Hour 10-11, Hour 12-13, Hour
14-16, Hour 17-17, Hour 18-19, and Hour 20-23. Each cli-
ent only possesses samples in spcific hours. For example, the
Ist client only have samples in Hour 0—1.

The Skin Segmentation dataset is constructed over B, G, R
color space. Skin and Nonskin dataset is generated using skin
textures from face images of diversity of age, gender, and
race people. This dataset has 245057 samples and each
sample labels with “skin” or “nonskin”, out of which 50859 is
the “skin” samples and 194198 is “nonskin” samples. We fit a
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logistic model to observe the relationship between the indicat-
or of skin and the three predictors: B, G, and R. The dataset
is also partitioned into 10 parts, each part is related to a client.
The datasize at each client is 20000, 30000, 10000, 40000,
4000, 20000, 30000, 10000, 20000, 45057.

Corresponding to the related hours, the number of local it-
erations is 2, 3, 1, 4, 2, 2,2, 3, 1, 2, and 4 in linear regres-
sion. So the total number of rounds is 7 = 2184. The learning
rates are still i, = 0.2r°°, For logistic regression, we follow
the same setting in the previous simulated data experiment.
The learning rates are set to be n, = 0.5¢°°%. The total num-
ber of rounds is 7' = 5000 in this case, and the number of local
iterations is 4, 6, 2, 8, 8, 4, 6, 2, 4, and 9, in accordance.
The participation rate is v =0.5 for both cases to get better
performance according to the previous simulated data experi-
ment. The results of our real data analysis are shown in
Tables 5 and 6

From Table 5, we see that the power consumption in Zone
1 is greatly influenced by the “temperature”. From Table 6,
we conclude that the variable B is positively related to the
response and the other two variables G and R are negatively
related to the response.

5 Conclusions

This study shows how to perform online confidence interval
estimation for federated heterogeneous optimization

(D The dataset is at http://archive.ics.uci.edu/ml/datasets/Power+con-
sumption+of+Tetouan-+city.

@ The Skin Segmentation data is at https:/archive.ics.uci.edu/ml/data-
sets/skin+segmentation.
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Table 5. Point estimates and 95% confidence intervals (CI) for the power
consumption of the Tetuan city dataset for separated plug-in (Sepa.) and
random scaling (Rand.) methods in linear regression.

Variable Estimate Sepa. CI Rand. CI
Temperature 0.4807 (0.4657,0.4957)  (0.3283,0.6331)

Humidity 0.0440 (0.0312,0.0568) (0.0307,0.0573)
Wind speed 0.0547 (0.0410,0.0684)  (0.0264,0.0830)

General diffuse flows —0.0360 (=0.0493,-0.0227) (-0.1320,0.0600)

Diffuse flows —0.1005 (=0.1125,-0.0885) (-0.1867,-0.0143)

Table 6. Point estimates and 95% confidence intervals (CI) for the Skin
Segmentation dataset for separated plug-in (Sepa.) and random scaling
(Rand.) methods in logistic regression.

Variable Estimate Sepa. CI Rand. CI
B 0.8758 (0.7087,1.0429) (0.2439,1.5077)
G —0.3485 (-0.5160,-0.1810) (—1.1258,0.4288)
R —0.3864 (-0.4922,-0.2806) (-1.1616,0.3888)

problems. We first proposed the rescaled FedAvg to estimate
6 . The research gives a nonasymptotic convergence rate of
the estimate. This result also revealed that the heterogeneity
in the number of local iterations slows down the convergence.
Furthermore, we proved that the averaged rescaled FedAvg
estimate is asymptotically normal with unknown covariance.
Based on its normality, we proposed the separated plug-in
method to estimate the asymptotic covariance. The separated
plug-in method estimates the covariances of local gradients
separately and constructs an estimate of the asymptotic cov-
ariance matrix by these estimates. Additionally, we have
proven a functional CLT and applied it to extend the random
scaling method to the federated heterogeneous setting. Fi-
nally, the simulation showed that the heterogeneity in the
number of local iterations slows down the convergence and
investigated the empirical performance of the two methods
via the Monte-Carlo experiment. The simulation results have
shown that the plug-in interval has a smaller radius than the
random scaling interval, and is more stable. From the experi-
ment, the average length of the confidence interval decreases
when performing more aggregations. In addition, the average
length and its variance will decay if there are more clients
participating in the aggregation step each round.

Supporting information

The supporting information for this article can be found on-
line at https://doi.org/10.52396/JUSTC-2022-0179. It  in-
cludes proofs of all theorems.
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