N
+

UST
http://justc.ustc.edu.cn Received: November 14, 2022; Accepted: May 09, 2023

Dual-modality smart shoes for quantitative assessment of hemi-
plegic patients’ lower limb muscle strength

Huajun Long', Jie Li*, Rui Li’, Xinfeng Liu’, and Jingyuan Cheng’ >

'Department of Data Science, University of Science and Technology of China, Hefei 230027, China;
’Department of Neurology, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China;,
3Department of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China

>™Correspondence: Jingyuan Cheng, E-mail: jingyuan@ustc.edu.cn
© 2024 The Author(s). This is an open access article under the CC BY-NC-ND 4.0 license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Graphical abstract

Frame features

Feature extraction

.Preprocessed

Step features

Features
——

Patient-healthy »| muscle strength
classification estimation

Pressure data

Pressure data Whole features

IMU data

The overall framework for assessing lower extremity muscle strength using walking data.

Public summary

m We propose a two-step method to assess lower limb muscle strength in hemiplegic patients. The result is even closer to
the ground truth than the scores of individual physicals.

m We propose the dual-modality fusion features and prove the importance of these newly proposed features.

m We extend the 5 m walk test including the left and right turns, and demonstrate the muscle strength’s regression results
that this extension is essential.

Citation: Long H J, Li J, Li R, et al. Dual-modality smart shoes for quantitative assessment of hemiplegic patients’ lower limb muscle strength. JUSTC,
2024, 54(1): 0105. DOI: 10.52396/JUSTC-2022-0161


mailto:jingyuan@ustc.edu.cn
http://creativecommons.org/licenses/by-nc-nd/4.0/

N

UST
http://justc.ustc.edu.cn

Dual-modality smart shoes for quantitative assessment of hemi-
plegic patients’ lower limb muscle strength

+

Received: November 14, 2022; Accepted: May 09, 2023

Huajun Long', Jie Li*, Rui Li*, Xinfeng Liu’, and Jingyuan Cheng’ >

'Department of Data Science, University of Science and Technology of China, Hefei 230027, China;
’Department of Neurology, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China;,
3Department of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China

>Correspondence: Jingyuan Cheng, E-mail: jingyuan@ustc.edu.cn
© 2024 The Author(s). This is an open access article under the CC BY-NC-ND 4.0 license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Read Online

Cite This: JUSTC, 2024, 54(1): 0105 (9pp)

Abstract: Stroke can lead to the impaired motor function in patients’ lower limbs and hemiplegia. Accurate assessment of
lower limb motor ability is important for diagnosis and rehabilitation. To digitalize such assessments so that each test can
be traced back at any time and subjectivity can be avoided, we test how dual-modality smart shoes equipped with pressure-
sensitive insoles and inertial measurement units can be used for this purpose. A 5 m walking test protocol, including the
left and right turns, is designed. The data are collected from 23 patients and 17 healthy subjects. For the lower limbs’
motor ability, the tests are performed by two physicians and assessed using the five-grade Medical Research Council scale
for muscle examination. The average of two physicians’ scores for the same patient is used as the ground truth. Using the
feature set we developed, 100% accuracy is achieved in classifying the patients and healthy subjects. For patients’ muscle
strength, a mean absolute error of 0.143 and a maximum error of 0.395 are achieved using our feature set and the regres-
sion method; these values are closer to the ground truth than the scores from each physician (mean absolute error: 0.217,
maximum error: 0.5). We thus validate the possibility of using such smart shoes to objectively and accurately evaluate the
muscle strength of the lower limbs of stroke patients.

Keywords: stroke; machine learning; smart shoes; lower limbs’ muscle strength

CLC number: TP391 Document code: A

1 Introduction continuous assessment at home. To map the large amount of

. . o . test data to the motor ability of the lower limb, we follow the
With approximately 12.2 million new cases worldwide in

2019, stroke has become one of the most prevalent diseases!".
It is difficult to cure, prone to recurrence, and slow to recover.
Patients need regular clinical assessments to measure their re-
habilitation progress after the acute phase of in-hospital treat-
ment"”. One of the main purposes of rehabilitation is to im-
prove independent mobility, where the assessment of lower
limb muscle strength is essential®.

Two types of methods are used for the muscle strength as-
sessment: medical scales and equipment. The MRC scale
(Medical Research Council scale for muscle examination)™ is
often used to grade the patients’ lower limb muscle strength.
The patient was observed by a physician and given a score
ranging from 0 to 5. The results might be biased, as different
physicians might give different scores to the same patient. To

general data mining process, first building the general feature
set and then converting the feature set into the motor ability
using the regression method. To obtain the ground truth, two
physicians observed the tests and provided their independent
scores using the MRC scale.

Our work validates the possibility of using dual-modality
smart shoes to objectively evaluate the stroke patients’ lower
limb muscle strength. The main contributions are as follow:

* We extend the 5 m walk test including the left and right
turns, and demonstrate with the muscle strength’s regression
results indicating that this extension is essential.

» We propose the dual-modality fusion features and prove
the importance of these newly proposed features.

» We propose a two-step evaluation method. A subject is

digitalize the assessment, equipment can be used, such as a
muscle testing dynamometer, an optical motion capture sys-
tem or a force plate (additional details in Section 2.1). The
whole process can be traced back, and subjectivity can be
avoided.

We use the double-modality smart shoes as our measuring
device, because they are small in size, easy to use, and com-
paratively inexpensive; thus, they have the potential for
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first classified as patient or healthy. If classified as a patient,
the lower limb muscle strength is then calculated using our
feature set and the regression method. Based on the data col-
lected from 23 patients and 17 healthy subjects, 100% classi-
fication accuracy is achieved. The regression result (mean ab-
solute value error: 0.143, maximum error: 0.395) is even
closer to the ground truth than the individual physical scores
(mean absolute value error: 0.217, maximum error: 0.500).
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2 Related work

2.1 Devices for assessing lower body mobility

Various devices have been developed for assessing motor
abilities, including muscle strength meters, optical motion
capture systems, force plates, inertial sensors, and smart
shoes. Mentiplay et al.”! demonstrated that handheld plyomet-
rics can measure muscle strength reliably and effectively.
However, these measurements require the assistance of other
people, and only muscle strength at rest can be obtained. Ras-
tegarpanah et al.) used the VICON MX force plate system
with an optical motion capture system to analyze spatial-
temporal gait parameters in healthy and stroke groups. Wang
et al.” used F-scan insoles to study temporal changes in each
gait phase over four weeks in hemiplegic patients. Although
an optoelectronic system and a pressure carpet are commonly
combined, these devices are expensive and require the profes-
sional operation, making long-term continuous monitoring
difficult.

Wearable systems enable measurement at any place. For
example,Yang et al.” attached multiple inertial measurement
units (IMUs) to the legs to study walking speed on the hemi-
plegic side versus the non-hemiplegic side. Smart shoes are
another option, as people normally walk with shoes on. Smart
shoes equipped with IMU and/or pressure sensors can be
cheap, easy to use, and suitable for monitoring individual gait
patterns for a long time. In Table 1, we provide an overview
of the existing smart shoes and the shoes we’ve developed
and used in our research. Our system features 6-axial IMUs
and a pressure-sensitive matrix covering the whole plantar,
providing multi-modality and detailed data for gait
monitoring.

2.2 Experimental design

Experimental design plays an important role in data gather-
ing. Current test protocols include the treadmill walking
test!"), up-and-down stair test!"”), long straight corridor walk-
ing test™') and time up-and-go test!'”. Walking on a tread-
mill allows strict control of the walking speed but requires an
extra device. The walking up and down staircase test can bet-
ter test the walking ability under extreme conditions, but also
brings greater safety risks. The 5 m walk test is closely re-
lated to daily life, easy to perform, and has a decreased risk of
safety. Because Bonnyaud et al.l'” reported that walking para-
meters during patient turning were related to lower limb
motor ability, we extend the 5 m walk test to include the right
and left turning.

Table 1. Smart shoe systems.

Smart insole IMU  #Sensor Battery life  Sampling rate
Moticon insole!” Yes 16 N/A 100 Hz
Fazio et al.' Yes 48 N/A 100 Hz
F-scan!" No 960 2h 100 Hz
Pedar-X Insole!”! No 99 45h 100 Hz
Digitsole!"”! No N/A 7hor8h 208 Hz
Ours Yes 400 12h 60 Hz
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2.3 Data processing algorithms

We take the early works using pressure sensors and IMU as
the basis of our algorithms. Galli et al."* calculated the walk-
ing speed of both feet and the difference in acceleration and
angular velocity at the joints to quantitatively compare the
hemiplegic children’s walking ability. Wang et al.'"’ calcu-
lated the acceleration parameters from the inertial sensors and
proposed the gait normalization index to evaluate the lower
limb motor ability. Echigoya et al.*” calculated the changes in
the center of plantar pressure and analyzed the important
parameters that allow independent walking. Chisholm et al.”"
calculated the spatial-temporal parameters of the center of
plantar pressure and analyzed the correlation with the sever-
ity of the sensorimotor impairment by comparing the hemi-
plegic side of the patient with the non-hemiplegic side. Chen
et al.'" calculated gait phase duration, walking speed, step
length, and step width. We adopted several of these paramet-
ers. Because our hardware offers two sensing modalities, we
propose the dual-modality fusion features, whose high im-
portance will be discussed further in Section 5.3.

3 Experimental setup and acquisitions

Our smart shoe system is shown in Fig. I. Each shoe is
equipped with a textile pressure sensing insole, covering the
whole planta (horizontal 16 x vertical 25) and two 6-axis
IMUs (tri-axial accelerometer plus tri-axial gyroscope) loc-
ated at the forefoot and hindfoot positions. The sample rate is
60 Hz, and the data are transmitted to the mobile phone via
Bluetooth.

Data acquisition was conducted in the First Affiliated Hos-
pital of USTC, University of Science and Technology of
China. The test subjects were instructed to walk at a self-
selected speed after putting on both smart shoes, following
three routines:

* Straight: go straight from the starting point for 5 m, turn
around, walk straight back to the starting point, and stop.

* Right-turning: from the starting point along the edge of a
square (all the sides are 5 m in length), turn right at the
corners and stop at the starting point.

* Left-turning: similar to right-turning, only the turning
direction is left at the corners.

In total, 23 stroke patients and 17 healthy subjects were in-
volved in this study (details in Table 2). The stroke patients
have hemiplegia on one side and no significant symptoms on
the other side, they are conscious and able to walk at least

Fig. 1. Our smart shoe prototype, plus a mobile phone for data storage.
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Table 2. Clinical characteristics of the participants. Table 3. The summary of the symbols in the paper.
Stroke patients Healthy subjects Symbol Description
Male/Female 14/9 10/7 m The number of columns in the pressure image, m = 32
Age (years) 62+11 60+9 n The number of rows, n = 100
Paresis side (L/R) 5/18 N/A x The column index, x € [1,m]
. . . y The row index, y € [1,n]
with assistance. The healthy subjects have no stroke .
. o t The frame index
symptoms, normal lower limb motor ability, and clear con-
sciousness. For each patient, two clinically experienced phys- k The step index
icians used the MRC scale to give individual evaluation p(x,y,1) The pressure at point (x,) in the rth frame
scores on the lower limb muscle strength. The scores ranged " The number of pixels in the pressure image, M = 32 100
from 3— to 5—. We map 3—, 3, 3+, 4—, 4, 4+, 5—to 2.67, 3.00,
T The number of frames in one gait cycle

3.33, 3.67, 4.00, 4.33, 4.67, respectively, and use the average
scores of the two physicians as the ground truth. These exper-
imental data were obtained by informed consent from all pa-
tients. All procedures were conformed to the National Insti-
tutes of Health (NIH) guidelines, and approved by the Ethics
Committee of the First Affiliated Hospital of University of
Science and Technology of China (USTC) (2023-KY-441).
Besides, the authors have declared that the ethical guideline
of the 1975 Declaration of Helsinki was rigorously adhered to
in this study. This study is fully compliant with the regula-
tion of relevant ethical about research involving in human
participants.

4 Data processing and feature extraction

We follow the classic data mining process. The data from the
pressure insole and IMU of each shoe are first pre-processed,
and then the data from both shoes are synchronized and fed
into the general feature extraction flow (shown in Fig. 2) to
obtain frame features, step features, and whole features.
These features are used later as input for classification and re-
gression algorithms, as described in Section 5.

4.1 Pre-processing

The pressure data go through linear interpolation, up-
sampling and Gaussian smoothing, while the IMU data are
only linear-interpolated.

Linear interpolation. Data could be lost in the wireless
transmission. To ensure a constant sample rate, the data are
repaired using linear interpolation. Given that n samples
between time ¢, and #, are lost, from the data we obtain be-
fore and after this period data,,, data,,, the ith lost data are re-
covered as:

data, = L (data,, — data,,) + data,,. (1)
n+1 ’

Up-sampling. Up-sampled pressure image generates more
accurate image features™. The pressure images are thus up-
sampled to 32 x 100 using bilinear interpolation.

Gaussian smoothing. To obtain a smoother distribution, a
5% 5 Gaussian filter is applied on each pressure image.

4.2 Frame features extraction

The pressure and IMU data at each sample is defined as a
“frame”, from which the frame features are extracted.

For the pressure data, Zhou et al.”” proposed the use of the
TPM feature set (743 features). Guo et al.”" further expanded
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the feature number to 1830. We adopt 23 of the frame fea-
tures that are confirmed to be associated with lower limb
motor ability of stroke patients! """, supplemented with
Fdes(t), which measures the overall variance in the pres-
sure images. These features are grouped into the bio-
mechanical features (from Fdes, to Fdes,) and the image fea-
tures ( from Fdes,, to Fdes,,).

For the IMU data, we extracted from the raw signal 16
frame features ( from Fdes,s to Fdes,,).

The symbols used are defined in Table 3 and will be used
throughout the paper.

Biomechanical features: in total, 9 features.

* Total force (Fdes,(t)):

Fdes, (1) = Z Py, 0). ()

* Area (Fdes,(1)) (the count of pixels that are above the ¢):
6 = 0.7mean(p(x, y, 1)) + 0.3min(p(x, y, 1)), 3)

where the mean and min operation take into account all the
p(x,y,t) within the whole test.
» Average pressure (Fdess(1)):

Fdes;(t) = Fdes,(t)/ Fdes,(t). 4)

* The centre of mass (CoM) (Fdes,(t) and Fdess(t)):

Fdes,(t) = Z Z x-p(x,y,1)/Fdes(1),

x;] y:] (5)
Fdess(t) = Z Zy -p(x,y,t)/ Fdes,(t).

x=1 y=1

» The CoM’s speed, its magnitude (Fdess(t)) and the pro-
jections on the horizontal (Fdesq(t)) and vertical direction
(Fdes,(1)):

Fdes(t) = Fdes,(t)— Fdes,(t—1),
Fdes;(t) = Fdess(t)— Fdess(t— 1), (6)

Fdesy(t) = VFdess(1)? + Fdes, (1)~
* The CoM’s moving direction (Fdes,(1)):

Fdesy(t) = arctan(Fdes,(t) | Fdes,(1)). @)
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Image features: in total, 15 features.

* Maximum, minimum, range, median, mean, and standard
deviation of the pressure image p(x,y,f) ( from Fdes,(t) to
Fdess(1)). Specially, “range” is defined as:

Fdes,(t) = Fdes,(t)— Fdes,,(t). (®)
* Coefficient of variation (Fdesq(?)):
Fdes(t) = Fdes,s(t)/Fdes;(t). )

* Information entropy (Fdes,,(1)).

* The image’s Hu Moments ( from Fdes;(t) to
Fdes,,(1))>.

IMU features: in total, 16 features.

* Acceleration of the forefoot IMU, its magnitude
(Fdesx(1)) and the projections on the x, y, z axis (in the local
coordinate) (from Fdes,s(t) to Fdes,(t)):

Fdesy(t) = VFdes,s()* + Fdes,(t)? + Fdesy(1). (10)

* Angular velocity, its magnitude (Fdess, (7)) and the pro-
jections (Fdes,(t), Fdesy(t), and Fdes; (1)):

Fdesy,(t) = VFdesy(1)? + Fdesy (1) + Fdes, (1) (11)

* Acceleration (from Fdess; () to Fdesy(t)) and angular
velocity (from Fdess;(f) to Fdes,(t)) of the hindfoot IMU,
similar to that of the forefoot.

4.3 Step features extraction

Multiple frames are grouped into one step. As shown in Fig.
3, one step is defined as the period from one heel strike to the
next. The total force (Fdes,(t)) is used to divide the whole
walking test into many steps. The values are grouped into
three clusters using K-means algorithms. Defining the
centroids of the these clusters as: x,, x,, and x; (inthe as-
cending order), the threshold in Fig. 3 is calculated as:

threshold = 0.9x, +0.1x,. (12)

The grouped frame features are fed into the step features
extraction layer and three types of step features are obtained:

7

the phase duration features, the statistical features, and the
dual-modality fusion features.

Phase duration features. Each step is divided into the uni-
pedal gait phase and the bipedal gait phase. The duration fea-
tures for the kth step are:

* The duration of the whole cycle (Spd,(k)), the stance
phase (Spd,(k)), the swing phase (Spds(k)), and the double
support phase (Spd,(k)).

» Stance and swing phase ratios (Spds(k), Spd.(k)).

Spds =Spd,/Spd,,
Spds = Spd,/Spd,.

(13)
* The ratios of the double support phase to the previous and
the next stance phase (Spd;(k), Spds(k)).
Spd;(k) = Spd,(k)/Spd,(k),
Spdy(k) = Spd,(k)/Spd(k +1).

(14

Statistical features. Taking the frame features within each
step as the input, the statistical features of the kth step are
calculated:

* Maximum, minimum, range, median, mean, standard de-
viation, coefficient of variation, and information entropy
(from Sst,(k) to Ssty(k));

* The number of peaks (Sst,(k)) and valleys (Sst,,(k));

* Skewness (Sst,,(k)):

Z(Fdes,-(t) - Ssty(k))*

(15)
Sty (k) = :

T - Sste(k)
* Kurtosis (S st,2(k)):

Z(Fdes,-(t) -8 sty(k))*

(16)
S stip(k) = —

T - S sts(k)*

Dual-modal fusion features. The hemiplegic patients are
impaired in walking. Their performance under certain ex-
treme conditions might be different from that of the healthy

Gait cycle(R)

Stance(R) | Swing(R) ——
Kaublesupport? f Double support /

10 —— R Total Force
0.8 L Total Force
0.6 //\/\ " - Threshold
0.4 /
0.2
0.0 T v
0 20 40 60 80 100
Fig. 3. The relation between the gait cycle and the total pressure.
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subjects, e.g., the acceleration of the hemiplegic side in the
left-right direction when the total force on the non-
hemiplegic side is maximum (the foot strikes the ground or
the toes go off the ground). To capture the subject’s perform-
ance under such conditions, we extend this method: when one
frame parameter reaches its maximum or minimum value, the
value of another frame parameter is taken as one dual-
modality fusion feature. Given two frame parameters Fdes,(r)
and Fdes(t), i# j, their dual-modality fusion features are
defined as:

Sdf,; (k)= Fdes(a),
(17)

a = argmax Fdes(t), te€ (1,T);

Sdfli.j(k) = Fdesj(ﬁ),

(18)
B =argmin Fdes(t), t € (1,T).

There are 40 frame features for left and right foot respect-
ively, we thus get C; =3160 dual-modality fusion features
for each step.

4.4 Whole features extraction

Taking the step features within one test, the whole features
are their statistics and the bipedal symmetry coefficients.

Statistical features: the maximum, minimum, range, me-
dian, mean, standard deviation, coefficient of variation, in-
formation entropy, the number of peaks and valleys, skew-
ness, and kurtosis of the step features (from Wst, to Wist,,).

Symmetry features: hemiplegic patients have different
motor abilities on the hemiplegic side and the other side.
Define the whole statistical features of the left foot and the
right foot as Wst, Wst® (i€ [1,12]), the symmetry coeffi-
cient (Wsy,) is:

min(Wstz!, Wst?)
max(Wst-, Wst?)

i

Wsy, =1 (19)

To improve the effectiveness of whole features in classific-
ation and regression, the whole features are normalized using
Z-score standardization.

z=(x—u)/o, (20)
where u and o are the mean and the standard variance of x.

4.5 Feature selection

After the above workflow, 270114 features are obtained, that
are much more than the test subjects’ number. Feature selec-
tion is adopted to overcome the overfitting problem.

There are three types of feature selection methods: the fil-
ter, the wrapper, and the embedding method*”. We choose the
embedding method because it combines the advantages of the
other two methods: the short computation time of the filter
method and the optimal feature set that can be generated by
the wrapper method for a specific selector.

The embedding method include several steps: ( 1) specify
a particular selector (e.g., decision tree, support vector ma-
chine); (ii) train the corresponding task (classification or re-
gression) using the given feature set (in our case, the whole

0105-6

features); (iii) obtain each feature’s importance to the result,
(iv) rank and select the k most important features.

To obtain a stable ranking, the data are randomly divided
into five portions, one portion is excluded each time, the rest
four portions are used for training. To conduct a smaller se-
lected feature set to mitigate the overfitting issues, each
feature from the obtained feature set will be selected in a des-
cending order based on the mean feature importance of the
five portions and calculated the Pearson correlation
coefficients with every feature included in the selected fea-
ture set. If all the correlation results are smaller than 0.9, the
feature will be added to the selected set until the size of the
selected feature set is up to 10. Finally, we get an efficient
and well-performing feature set.

5 Results

A two-step approach is designed. First, the subject is classi-
fied as “patient” or “healthy”. If “patient”, the lower limb
muscle strength is predicted.

5.1 Patient-healthy classification

The first step is to classify the subject. We study the different
test combinations: straight (Str), right turning (RT), left turn-
ing (LT), RT+LT, and All (Str+RT+LT). When multiple tests
are included (viz. RT+LT, or All), the probabilities in differ-
ent tests are summed up. The class with the higher probabil-
ity is taken as the classification result.

We treat every test of one person as a sample. The number
of samples (N ) for a given test combination is then:

N\amplc = (Np+Nh)XN|csl7 (21)

where N, =23, N, =17 is the number of the patients and the
healthy subjects, and N, is the number of test(s) in the com-
bination. The sample numbers of the five test combinations
are then 40, 40, 40, 80, and 120.

We study the effects of using different test combinations,
feature selectors (C-DT: decision tree, C-SVM: support vec-
tor machine, C-RF: random forest, and C-LR: logistic regres-
sion), and classifiers (DT: decision tree, SVM: support vector
machine, KNN: K-nearest neighbor, RF: random forest, LR:
logistic regression, and MLP: multi-layer perceptron). Five-
fold cross-validation is adopted, with no subject crossover
between the training and test sets, and the results are in Table 4.
It can be see that using decision tree as the selector and

Table 4. Healthy-patient classification result (F1-Score), with test(s)
combination, feature selector and classifier evaluated. The bolded part is

the optimal result.

Selector
Test(s)
C-DT C-SVM C-RF C-LR
Str 0.979 (RF) 0.846 (KNN) 0.936 (RF) 0.880 (KNN)
RT 1.000 (SVM) 0.875 (RF) 0.957 (RF) 0.917 (RF)
LT 0979 (KNN) 0.870 (LR)  0.955(SVM) 0.917 (MLP)
RT+LT 0.979 (RF) 0.958 (RF) 0.909 (RF) 0.936 (RF)
All 0.979 (KNN) 0.936 (RF) 0.936 (RF) 0.898 (RF)
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support vector machine as the classifier, the classification ac-
curacy reaches 100% when the data from RT tests are used.

We then take the data from the RT combination and study
the effect of the sensing modalities, including: ( 1 ) IMU, as if
there were only IMUs on the shoes; (ii) Pressure, as if there
were only the pressure insole; (iii) IMU+Pressure, both sens-
ing modalities are available, but the dual-modality fusion fea-
tures are excluded, this is to test the effects of our newly pro-
posed dual-modality fusion features; (iv) All: all sensing
modalities and features are included. Again multiple classifi-
ers are tested, and the results are shown in Table 5. It can be
seen that the classification of features calculated using only
pressure is poor, and We can only use IMU to classify pa-
tients with healthy subjects.

5.2 Regression result for muscle strength estimation

After classifying the subjects, further regressions are per-
formed to predict the patients’ lower limb muscle strength.

We study the effects of using different test combinations
(Str, RT, LT, RT+LT, and All), feature selectors (R-DT: de-
cision tree, R-SVM: support vector machine, R-RF: random
forest, and R-SR: stochastic gradient descent regression) and
regressors (DT: decision tree, SVM: support vector machine,
KNN: K-nearest neighbor, RF: random forest, GB: gradient
boosting tree, and MLP: multi-layer perceptron). When there
are multiple tests in the combination, the average of the pre-
dicted muscle strength from different tests is taken. Leave-
one-out method is adopted, with no subject crossover between
the training and test sets. The difference to the ground truth is
measured by mean absolute error (MAE), root mean square
error (RMSE), and maximum error (ME):

Table 5. Sensing modalities evaluation (selector: C-DT).

Dataset The best classifier Accuracy Precision F1-score
MU SVM 0.975 1.000 0.978
Pressure SVM 1.000 1.000 1.000
IMU+Pressure SVM 1.000 1.000 1.000
All SVM 1.000 1.000 1.000

Table 6. Muscle strength regression results (MAE), with test(s) combina-
tion, feature selector, and classifier evaluated. The bolded part is the op-

timal result.

Table 7. Finding the optimum test combination for the regression task (R-
DT as the selector). The bolded part is the minimum error.

Test(s) Regressor MAE RMSE ME
Str GB 0.167 0.239 0.614
RT RF 0.143 0.178 0.395
LT RF 0.214 0.241 0.450

RT+LT DT 0.138 0.174 0.441
All RF 0.158 0.198 0.503

MAE = 3" |y —xl/n,

i=1

C 22
RMSE = ,/Z(y,—xi)z/n, @)

ME = max(ly, - x).

The results are shown in Table 6. It can be seen that using
decision tree as the selector and random forest as the classifi-
er, the best MAE is 0.138 when the tests RT+LT are used. We
then fix the selector and compare the MAE’s and ME’s of
different test combinations. The results are given in Table. 7.
It can be seen that although RT+LT is of the smallest MAE,
its ME is much higher than that of R7, whose MAE is the
second optimum and just a little higher than R7+LT. Because
the estimated muscle strength should maintain not only a low
overall prediction error, but also a low error for each patient,
RT is taken as the optimum. Why RT is the best test may be
explained by the fact that 78% (18/23) of the patients are right-
sided hemiplegic and thus show a greater difference during
right turning. We then compare the algorithm’s performance
with that of the two physicians. The results are shown in
Fig. 4. It can be seen that for this specific dataset, the al-
gorithm performs even better in giving the muscle strength
than the physicians as an individual (algorithm: MAE 0.143,
RMSE 0.178, ME 0.395; physicians: MAE 0.217, RMSE
0.269, ME 0.500).

5.3 Features importance analysis

To better understand which features play more important role
in estimating the muscle strength, we used the forward search
algorithm. The initial feature set is empty, and the best result
is obtained by adding one non-repeating optimal feature at a
time. The names and results of the 10 features added to the
feature set in order are shown in the Table 8. Three types of
features are selected: Fdes, Max(Min)Time Fdes; S,
Fdes; Max(Min)Time_Fdes; S, _Asymmetry, and
Fdes, S,_S,. Here Fdes, and Fdes; denote a frame feature
(e.g., acceleration in the y-direction of the right forefoot
(Fdess (1)) is named RForeGyroY). S, and S, denote a stat-

Selector N . .

Test(s) istical calculation (e.g., mean, maximum). The three types are
R-DT R-SVM R-RF R-SR then: the S, operation on Fdes;’s values at the maximum
Str 0.167 (GB)  0.348 (KNN) 0.253 (RF) 0.353 (GB) (minimum) time of value Fdes; within each step; the asym-
RT 0.143 (RF) 0.360 (GB) 0.201 (RF) 0.391 (GB) metry coefficient .Of Fdes[_Max(Min)Time_Fdesj_.S 1
T 0214(RF) 0211 (GB) 0211 (RF) 0.324 (RF) between t’he left and .rlght feet; and perform the S, operation
on Fdes;’s values within a step, then perform the S, opera-

RT+LT 0.138 (RF) 0.300 (GB) 0.194 (KNN) 0.327 (GB) tion on all Fdes, S, in the test.
All 0.158 (RF) 0.313 (GB) 0.172 (SVM)  0.360 (DT) It can be seen that eight of ten top features are the newly
proposed dual-modality fusion features. This demonstrates
0105-7 DOI: 10.52396/JUSTC-2022-0161
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Fig. 4. The predicted results based on left-turn and right-turn experiments, compared with the evaluation values of two doctors.

Table 8. The names and results of the features added to the feature set in

order.

No. Feature names MAE RMSE ME

1 LBackGyroZ MinTime LForeGyroY Range 0.242 0.293 0.692
LImageMax_MinTime_RBackGyroY_SD 0.192 0.267 0.778
LBackGyroXyz MaxTime LBackAccXyz SD 0.164 0.220 0.582
LForeGyroXyz_MaxTime LBackAccX 0.133 0.169 0.410

EENE VS )

Entropy_Symmetry
5 RMatCentreSpeed MinTime RForeAccZ 0.128 0.158 0.333
Median

6 RlmageCV_MaxTime RForeGyroX Max 0.126 0.149 0.310
7 RForeGyroY MaxTime RForeAccX Median 0.122 0.163 0.340
8 RlmageMean MaxTime LBackAccX SD 0.148 0.193 0.458
9 RlmageHu5 Skewness Min 0.142 0.179 0.365
10 LImageSD_Skewness Min 0.168 0.200 0.420
038
0.6 — \AE
——RMSE

04 ——ME
0.2 —

0

1 2 3 4 5 6 7 8 9 10

Fig. 5. The experimental results using forward search algorithm.

that the great importance of our new features to the muscle
strength estimation in Fig. 5. When using 4-7 features, the
results have leveled off, while at greater than 7 features, the
error starts to increase and may start to overfit. This suggests
that using 4—7 features is most appropriate in this experiment.

6 Conclusions

In this paper, we demonstrate the possibility of using a pair of
smart shoes to non-intrusively and objectively assess the
hemiplegic patients’ lower limb muscle strength. In doing so,
we designed the extended 5 m walk test protocol, also in-
clude the right and left turnings, which are proven to be use-
ful in the assessment. We create a feature set to describe the
characteristics of the walking, including the newly proposed
dual-modality fusion features, which are also proven to be
useful. Based on the data gathered from 23 patients and 17

0105-8

healthy subjects, a 100% classification result of “healthy-
patient” is achieved. For estimation the muscle strength, re-
gression methods are evaluated, the algorithm’s best perform-
ance is MAE 0.143, RMSE 0.178, and ME 0.395, both better
than that of the physicians as an individual (MAE 0.217,
RMSE 0.269, and ME 0.500).

There are still rooms for improvement, for example, find-
ing out on which side is the hemiplegic leg, or segmenting the
test data into going straight and turning. These operations can
create new features that might be useful. Estimation of the
other subjective medical assessment values (e.g., NHISS
scores) can also be carried out using the same dataset.
Through long-term data acquisition at home, the rehabilita-
tion results could be evaluated. We believe that smart shoes
could become a useful tool in quantitative assessment of the
lower limb muscle strength for hemiplegic patients.
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