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The proposed algorithm consists of two parts: coded matrix completion and coded label propagation.

Public summary

m Existing distributed graph-based semi-supervised learning algorithms suffer from extensive communication and compu-
tation. The proposed scheme is more efficient with low complexity by providing a parallel and distributed solution for
global Euclidean distance matrix completion.

m The iteration time of distributed graph-based semi-supervised learning is defined by the slowest node, noted as the strag-
gler node. A novel coded computation design for distributed graph-based semi-supervised learning is proposed to de-
crease the straggler effect.

m We numerically verified the superiority of the proposed scheme on Alibaba cloud elastic compute service. In general, the
simulation results have demonstrate that our proposed algorithm is efficient and straggler tolerant.
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Abstract: Semi-supervised learning (SSL) has been applied to many practical applications over the past few years. Re-
cently, distributed graph-based semi-supervised learning (DGSSL) has been shown to have good performance. Current
DGSSL algorithms usually have the problems of inefficient graph construction and the straggler effect. This paper pro-
poses a novel coded DGSSL (CDGSSL) to solve these problems. We first provide a novel parallel and distributed solution
of matrix completion for efficient graph construction. Then, we develop the CDGSSL algorithm based on coding theory.
Specifically, the proposed algorithm consists of two parts separately designed based on the maximum distance separable
(MDS) code. In general, the proposed coded distributed algorithm is efficient and straggler tolerant. Moreover, we provide
an optimal parameter design for the proposed algorithm. The results of the experiments on the Alibaba Cloud elastic com-
pute service (ECS) demonstrate the superiority of the proposed algorithm.

Keywords: coded computation; distributed learning; matrix completion; maximum distance separable code; semi-

supervised learning
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1 Introduction

Semi-supervised learning (SSL) has been of significant in-
terest in machine learning and artificial intelligence over the
past few years!. Compared with supervised learning (SL) and
unsupervised learning (UL), SSL requires less human effort
but gives higher accuracy. SSL utilizes the information of
both labeled and unlabeled data to obtain better performance
than SL and UL. Thus, how discovering the input data distri-
bution by exploiting unlabeled data is crucial in SSL"..

The initial SSL algorithm was self-training in Ref. [4],
which used the data set with all attributes as input data. Co-
training was another SSL algorithm in Ref. [5], which as-
sumed that the input data set consists of two subsets with dif-
ferent views. In general, three assumptions on the input data
space are commonly used in SSL, smoothness, cluster, and
manifold. Using these assumptions, various effective al-
gorithms have been proposed®. Among these methods,
graph-based SSL (GSSL) has attracted growing attention be-
cause it usually involves optimizing a convex objective and is
both easily scalable and parallelizable. In GSSL, the original
data structure was represented by a graph whose edges were
measured by the similarity between data samples™. Then, the
labeled information can be propagated to the unlabeled
samples through the graph, which is noted as label propaga-
tion. Most GSSL methods address label propagation by solv-
ing a convex quadratic optimization problem for feature vec-
tors. Some notable GSSL methods proposed in the literature
include Gaussian field and harmonic function (GFHF)"",
local and global consistency'", regularized Laplacian'?, and
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random walks'?..

The previously mentioned schemes are then applied to per-
form machine learning tasks, such as clustering, classifica-
tion, and regression. Semi-supervised clustering aims to ob-
tain better clusters than unsupervised clustering!?. Semi-
supervised classification (SSC) and semi-supervised regres-
sion (SSR) have been shown to outperform supervised classi-
fication and regression'*'". Although these algorithms can be
applied to solve many problems in practice, most of them
have focused on centralized learning. However, distributed
protocols for SSL are urgently needed for multiple nodes,
such as medical diagnostics'”, distributed music classifica-
tion!"”, and distributed multimedia classification!'”.

To effectively utilize data separately stored over commu-
nication networks, several distributed SSL (DSSL) ap-
proaches have been designed. Shen et al.”” proposed two dis-
tributed semi-supervised metric learning frameworks using
diffusion cooperation and alternating direction multipliers
(ADMM) strategies. Scardapane et al.”" proposed a DSSL al-
gorithm based on the in-network successive convex approx-
imation (NEXT) framework. Due to the scalability and paral-
lelizability of GSSL, some works have proposed distributed
GSSL (DGSSL). DGSSL focuses on constructing an efficient
graph and preserving data privacy in multiple agent cases.
Fierimonte et al.”” proposed the D-LapRLS algorithm with
the kernel method and distributed average consensus (DAC)
strategy. In addition, they proposed a distributed matrix com-
pletion algorithm based on the framework of diffusion adapt-
ation to calculate the global Euclidean distance matrix
(EDM). Giiler et al.”® made use of the privacy shield
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protocol multiparty computation (MPC) and homomorphic
encryption (HE) to propose a DGSSL algorithm.

However, most existing DGSSL designs usually suffer
from the following two problems. First, constructing a graph
with dispersedly stored data is a major problem for DGSSL.
To solve this problem, existing DGSSL designs have
provided several graph construction algorithms, mainly focus-
ing on improving classification accuracy and protecting data
privacy. These algorithms require extensive communication
and computation, which calls for more efficient schemes with
lower complexity. Second, most DGSSLs solve the optimiza-
tion problem for feature vectors using iteration solutions. The
iteration time is determined by the slowest node, noted as the
straggler node. Thus, the algorithm execution time of the cur-
rent state-of-art DGSSL schemes is limited by the straggler
nodes. The corruption of any node may lead to the inability of
iterations to occur, resulting in prolonged training time.

Motivated by the above observations, this paper proposes
coded DGSSL (CDGSSL) to efficiently construct a graph and
alleviate the effect of straggler nodes. In consideration of the
classification performance, we adopt EDM completion for
graph construction. Although EDM completion has been ap-
plied in the D-LapRLS algorithm, its necessary step requires
computing the global EDM updates at each node and comput-
ing the new update with the computed mean. Such a solution
has a high computational cost, growing as a polynomial with
the global graph size. We provide a novel parallel and distrib-
uted approach for global EDM completion to reduce its com-
putational cost. To address the straggler problem, we further
develop a coded computation design for DGSSL by adopting
the maximum distance separable (MDS) code. Note that al-
though coded computation has been applied to matrix multi-
plication for solving the straggler problem™ ", how to em-
ploy it in DGSSL is still unknown.

In the present work, we assume that a dataset is partitioned
and arbitrarily distributed over different nodes. Every node
can communicate with a central server. Our purpose is to use
DGSSL for a binary classification problem without exchan-
ging any data points. From the generalized formulation in
Ref. [10], information is mostly encoded in a matrix of pair-
wise distances between data samples. In the initial phase of
the algorithm, each node computes the local distance matrix
with its data before sending it to the server. To complete the
global distance matrix, we address the EDM completion prob-
lem using a gradient descent method similar to previous
works® 1, Moreover, we also address the label propagation
using the gradient descent method. Then, we provide a paral-
lel and distributed solution to reduce the cost of computation
per iteration. Each iteration requires the node to compute a
partial gradient before sending the results back to the server.
In addition, we further develop a coded DGSSL algorithm
consisting of two-component algorithms, namely coded mat-
rix completion and coded label propagation. Since the compu-
tation is mainly determined by matrix-vector or matrix-mat-
rix multiplication, our algorithm works by encoding the com-
putational matrix with MDS code. In this light, the server
only requires partial results to decode. Furthermore, we offer
the optimal parameter design of the proposed algorithm. The
proposed scheme can be applied to travel mode identification
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in intelligent transportation systems (ITS), which can enable
institutes to understand human behaviors and urban manage-
ment better and plan®’. The main contributions of this
paper are summarized as follows.

(1) A novel distributed EDM completion algorithm for ef-
ficient graph construction. We adopt EDM completion to im-
prove the classification performance of DGSSL. The solution
in Ref. [22] has high computation costs because each node
has to compute the global EDM update. We overcome this
problem by providing a parallel and distributed solution for
global EDM completion. Instead of computing the global
EDM update, each node only needs to compute a partial
gradient. Therefore, it reduces computational cost but with
similar classification performance.

(ii) A coded computation design for DGSSL. According
to the characteristic that coded computation declines the
straggler effect, we provide a novel coded computation design
for DGSSL in this work. To exploit the coded computation
solutions, we adopt gradient descent methods so that the com-
putation is concentrated on matrix-vector or matrix-matrix
multiplication. The server only requires partial results to ob-
tain the gradient by encoding the computational matrix with
MDS code.

(iii) Optimal parameter design for the proposed algorithm.
Coding parameter and matrix completion parameter are im-
portant for the algorithm execution time, classification per-
formance, and straggler tolerance. We optimize coding para-
meters based on the expected overall runtime. We then
provide the optimal matrix completion parameter design by
introducing a novel measure to quantify how much accuracy
is obtained for the matrix completion algorithm.

The rest of this paper is organized as follows. First, Sec-
tion 2 introduces the system model for the DSSL and the the-
oretical tools upon which the proposed algorithm is based. In
Section 3, we detail our proposed framework for CDGSSL. In
particular, we introduce the matrix completion problem in
Section 3.1, propose a DGSSL under a distributed computing
framework in Section 3.2, and develop the CDGSSL al-
gorithm in Section 3.3. In addition, we introduce the optimal
parameter design in the algorithm in Section 4. After that, in
Section 5, we give the numerical results of the proposed al-
gorithm to illustrate its effectiveness. Finally, conclusions are
drawn in Section 6.

In this paper, we use boldface lowercase letters to denote
vectors, €.g., @, while matrices are denoted by boldface upper-
case letters, e.g., A. We use 1 to denote vector [1,1,---,1]".
All vectors are column vectors in this paper. The operator || - ||,
is the standard L, norm on Euclidean space, and ||-||, stands
for the Frobenius norm. R*< is the set of real-valued M X N
matrices. diag(-), sign(-), rank(-), and average(-) represent the
vector formed by diagonal elements, the sign function, the
rank operator, and the average value of matrix elements,
respectively.

2 System model & preliminaries

2.1 System model

This paper considers a DGSSL scenario for a binary classific-
ation problem with N clients and a central server, where the
clients can compute tasks and transmit information. The over-
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all setup is shown in Fig. 1. For readability, we provide a list
of notations used throughout the paper in Table 1. The client
has a local data set X, and a label vector Y,.
Xi=[x]; x5 --5x), 1=14S, U}, X, e RMW¥,i=1,2,--- ,N. §;
and U, stand for labeled data and unlabeled data sets, respect-
ively. ¥, = [y, -,y ], ¥; €R* And y,; ={+1,—1} when
x; € S,. Data set X is composed of a small amount of labeled
data and a large amount of unlabeled data, that is,
X={X,.X,}. X,={xeS|S=US,.j=1,---,N}_, is a labeled
data set, X, = {x; € U}%, is an unlabeled data set, and / < u,
I+u=3Y" M, The goal of this SSL task is to learn the pre-
dicted function to label the wunlabeled data set
U=[U;U,;---;U,] by exploiting the label dependency in-
formation for a binary classification problem.

2.2 Graph-based SSL

The proposed algorithm is based on GSSL algorithms, which
are capable of processing large-scale data sets in practice and
are accessible to parallelize”. GSSL setups can be divided
into the following two steps.

Graph construction: Construct a graph with all the labeled
and unlabeled data. Each data is a vertex of the graph, and the
graph edges represent the similarity between samples.

Label propagation: Propagate label information to un-
labeled data through graphs.

The centralized SSL works as follows. In GSSL algorithm,
graph G = (V,E) is based on the labeled data set {(x,,y,),:--,
(x1,y)} and the unlabeled data set {(X.;,yu1), s (X Vi)
where V is the node {x,,---,x,---,x,,}. Suppose there is a
symmetric weight matrix W on the edge set E of the graph. A
classic example of the weight matrix W is a Gaussian weight
matrix with elements

Computation task

ezl

Tan et al.
2
NELEIAP
(W)ij =Ww;= p 202 ’ J5 (1)
0, otherwise .

For the binary classification problem, a real-valued func-
tion f:V — R is assumed on the graph, and the classifica-
tion rule corresponding to the problem is y; = sign(f(x;)),
y; € {—1,+1}. Constraint f as f(x,)=y,i=1,---,, on the
labeled data. Intuitively, we expect unlabeled data near the
labeled data in the graph to have similar labels. Define a
quadratic energy function”

I 2

EN=32, ;wu(f(x,-) —fE) =11 @)
where f=(f'f1)', fi= (f(x);-5f () and fi=(f (i)
-5 f(x,.). Define a diagonal matrix H :=diag(h,,h,,---,
h,..), whose diagonal element A, = 2;: w;; is the sum of the ith
row elements of the matrix W. The combinatorial Laplace is
given by A:= H—-W. The real-valued function can be ex-
pressed as f = argmin,, E(f) when the smallest energy func-
tion is a harmonic function as it satisfies the Af =0. Func-
tion harmony means that the values of f in unlabeled data are
the average of the data near it as

fx)= hl//zjwi/f(x[) (3)

This is consistent with the smoothness of the graph. Thus,
label information can be propagated to unlabeled data through
the graph by solving the problem

Client 1 Client i

min E(f). @)
fu
S Labeled
dataset
U
? Unlabeled
o | dataset
Global Global model
model
u Computation
': task
> Un
—> Download
Sx?
Upload

Client N

Fig. 1. Ilustration of the distributed SSL setup with NV client and 1 server. Each client owns a labeled data set S; and an unlabeled data set U;. The server
collects information from clients to run a distributed SSL task to estimate all the unknown labels and return the unknown label to clients.
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Table 1. Notations used throughout this paper. w, ? ?
Data Xi W= 2 . a2 ®)
Data label ‘yi 9 2 W,
Local data set Xi=txijj =1, Mi} ) o
Local data label Yi={yijj= L, M} A§ far as accuracy is concernedT th.e missing parts o.f the
Global data set X=X U---UXy rqatnx w is a drawback. to the distributed SSL algorithm.
Global data label Y=Y, U--UYy Smpe the d.1agona1 ma?rlx H can be calcqlated from the
Subscript / Labeled wglght matr1.x, the dlgtrl.buted SSL problem in (7) is solYed
. using the weight matrix in (8). In SSL, the graph information
Subscript u Unlabeled . . . . .
is concentrated in the weight matrix W, which can be calcu-
Unlabeled data set X lated using the Euclidean distance matrix D®". Since the al-
Labeled data set Xi gorithm is classified based on the smoothness principle of the
Local unlabeled data set Ui=XuNX; graph®, the incomplete weight matrix in (8) may cause a
Local labeled data set Si=XinX; problem, that is, the node only has smoothness on the graph
Weight matrix w composed of its client’s data set. However, all nodes need to
Classifier f:VoR be smooth on the graph of the large data sets when joined to-
Euclidean distance matrix D gether. As a result, the accuracy of the entire SSL algorithm is
Diagonal matrix H not enough to reach the level we expect. To address this prob-
Combinatorial Laplacian A lem mentioned above, we adopt a matrix completion al-

To explicitly calculate the results with matrix operations, the
weight matrix W and a diagonal matrix H are divided into 4
blocks starting from the first / rows and / columns. Then (4)
can be reformulated as

min E(f) =f"(H-W)f =
f,T (H,—-W,)f, +f,,T (H,,—W,)f.— %)
21, W.ifi,

where we have

W” W”‘ sz 01u
welw wlolo gl @

The explicit expression for the optimal solution to Eq. (5) is
fo=H,,~W,)'W,f. (7

Considering the high complexity of the matrix inversion in
(7), the centralized SSL algorithms are not suitable for large-
scale data sets. Thus, we focus on a particular algorithm be-
longing to distributed computing framework to apply DGSSL
to large-scale data sets in this paper.

3 The proposed coded DGSSL frame-
work

3.1 Matrix completion

In the distributed SSL system described in Fig. 1, assume that
the N clients only connect to the central server. Note that two
items of the same data stored in different clients are treated as
two different samples in this paper. The ith client has M, data
samples, and ), M, := Zfi , M, stands for the numbers of glob-
al data samples. Let W, e R¥** be the local weight matrix
computed by each client using its data. To complete a distrib-
uted SSL algorithm using the whole data set, the global
weight matrix is in the form of
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gorithm for completing the weight matrix.

In this paper, instead of completing the weight matrix, we
consider completing the global EDM and then using it to cal-
culate the weight matrix. The Laplacian? and other kernel
matrices for all kernel functions based on Euclidean distance
can be obtained from the global EDM besides the Gaussian
weight matrix.

The Euclidean distance matrix completion problem is for-
mulated as follows. Consider a Euclidean distance matrix
D € RZM>zMi that is

(D), = x| ©9)

where D is symmetrical with D, = 0. The rank of the matrix
D has an upper bound of K +2, which means D is of low
rank when K <« ) M,. The graph is used to represent the
structure of the original data in the graph-based SSL al-
gorithm. Moreover, an approximate recovery distance matrix
can be a good representation of the internal structure of the
original data. Thus, we consider the approximate distance
matrix completion approach! when recovering the distance
matrix from the partial distance matrix D by solving the op-
timization problem

pomin [1Po(D - D)|I;, (10)
where EDM( Y, M,) represents all sets of Euclidean distance
matrices of size Y M;, @ is a subset of indexes that indicates
that there is a binding relationship for the pair of data. Py(-) is
an orthogonal projection operator, which means [Po(Di)],; =
D,; when (i, j) € 2, and [Po(D;)],; = 0, otherwise.

According to the Schoenberg map between the Euclidean
distance matrix and semi-regularly deterministic matrix, the
problem in (10) is reformulated as a semi-regular definite pro-
gramming problem

min||Po(D ~x (D)}
st. D3>0,

where the linear operator y(D) = diag(D)1" + 1diag(D)" - 2D.
A semi-positive definite matrix of rank r can be

(11)
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decomposed into {D = VV'}. Thus the optimization problem
becomes
min ||Po(D—x (VV))IL, (12)

VVTeS  (nIM;)

where we have
S, (rz M) ={U eR*>*" : U =U" » 0,rank(U) = r}.

In matrix completion, solving the optimization problem has
been studied for a single node. However, all algorithms that
solve this problem for a single node have high computational
overhead and therefore do not apply to large-scale data sets.
Thus, we consider extending the optimization problem to a
distributed computing system.

3.2 DGSSL under distributed computing framework

We propose a novel DGSSL algorithm under distributed com-
puting framework, which consists of three main stages.

Local EDM computation: Each client computes D, using
its data set and sends it to the central server. The central serv-
er has a pre-distance matrix D, that is

D:=D eD,e--&D,=a" D, (13)

where @ represents the straight sum of the matrix,
D, € RMoM T) € REM*M;_

Matrix completion: Iteratively solve the EDM completion
problem in (12). The iterative solution to (12) is given by

VVF(V) = x" {Palx (VInIV'[n]) - D)} VInl, (14)

Vin+1]1=V[n]-BV,F(V), (15)

where y*(A) = 2[diag(A)1"— A].

£ =f - aVE() = 6
£ =20 (H, ~Wo)f ~20W.d (16)

Concerning the distributed system, the algorithm can be
completed with storage nodes executing computation tasks
assigned by the server. The amount of computation for each
iteration in (15) and (16) is mainly on matrix-vector or matrix-
matrix multiplication. Thus, the partial sum can be calculated
on different nodes, and then the results are obtained by adding
all the partial sums on the central node. In this way, the pro-
posed algorithm is based on the distributed computing frame-
work. The distributed computation setting can be seen in
Fig. 2.

Nevertheless, the system may be significantly affected by
the noise of straggler nodes and system failures when mul-
tiplying the vectors or matrix of the distributed computing
matrix. In each iteration, the central node has to wait for all
nodes to return their results before it can recover the final res-
ult. Thus, the straggler node in the system determines the time
of the algorithm. In addition, if a node fails in the system, it
may lead to the failure of the entire algorithm. Given the
above situations, we further develop a coded distributed SSL
by adopting coding theory to solve the above problems.

3.3 Coded DGSSL

We propose a coded distributed SSL algorithm based on the
MDS code to make it robust to stragglers or system failure. In
a distributed setting, each client can only calculate its dis-
tance matrix based on local training data, and the distance in-
formation between data at different clients is unknown. An
approximate distance matrix is obtained by performing dis-
tributed matrix completion of the diagonal distance matrix of
blocks received and restored by the central server. Therefore,

Label propagation: Iteratively solve the optimal problem the proposed algorithm consists of two-component
for f,. The iterative solution to (5) is in the form of algorithms.
In matrix completion In label propagation

to compute partial of the
gradient VR V[t)).

|
i
| stage, clients receive V[f]
|
I
|
|

stage, clients receive f,’
to compute partial of the
gradient VE(f,).

Computation

1 task is hand out
|

| and designed by
. the server.

[,

e B

Client 1

Client 2 }

;
Global
s

node node

Fig. 2. Illustration of distributed computation for distributed SSL.
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The server compute !
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|

|
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€— Server £

u Computation task ’

Client 4

4o
]
o]

Computation Global
results model

Straggler or
node failure

Global model Aa

X

DOI: 10.52396/JUSTC-2022-0133
JUSTC, 2023, 53(4): 0401



Z“;tsrg "

Coded computing for distributed graph-based semi-supervised learning

Tan et al.

3.3.1 Coded matrix completion

Calculate the distance matrix P using a coded distributed
matrix completion algorithm. The optimization problem is to
extend (12) into a distributed computing system and ensure
fault tolerance for stragglers. We observe that the amount of
computation of the iterative process is mainly for the matrix-
matrix and matrix-vector multiplication in (14) and (15).
Thus, we employ coding techniques to make the matrix-mat-
rix and matrix-vector multiplication operations fault-tolerant
to system noise in distributed computing. The problem in (14)
can be reformulated as

V,F(V)=WV[n]-TV[n], (17)

where we have

T := y'(Po(D)), W := y" {Poly (V[n]V"[n]))}. (18)

Here we use (NV,k,), (N,k,) MDS code, whose encoding
matrices are S, € REL>I¥ g, e R™ILis respectively. The ith
node receives the encoding matrix block T, € R"EM §, € R™
sent by the central node, where T; is part of the row in the
code matrix T =S T and S, is partial columns in S,. At the
beginning of each iteration, the central node multicasts V[n].
Each node then calculates the matrix-matrix multiplication
and sends the results to the central node. The central node
starts decoding the results and prepares for the next iteration
after receiving max {k,, k,} results.

A single iteration of coded distributed matrix completion is
shown in Fig. 3. The pseudocode of coded EDM completion
is summarized in Algorithm 1, where the maximum number
of iterations is denoted as [..

Server

M1
A 4 A 4 A 4 A 4

T, T, Ty, Ty

Client 1 Client 2 Client N-1 Client N

(a) In the beginning of the (#+1)thiteration, the
server multicast V[f] to cilents.

Client i

(c) Clients compute G'[#] by the receiving Vz].

Fig. 3. Single iteration of coded distributed matrix completion.
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Algorithm 1: Coded matrix completion

P I;put: Incomplete global EDM matrix D, coding matrix
15092

Output: Optimal EDM matrix D

1 Compute T := y*(Po(D)), T = S,T;

2 Send T, S,; to the ith client;

3forr=1:L do

4 Multicast V[t — 1] to all the clients;

5 for client i € [N] do

6 Compute G[r—1] via (18);

7 Compute P, =T, V[t—1],0. = G[t - 1]S,;

8 Send P,,Q; to the server;

9 Py, =110 =11,Cc =1I;

10 while: rank (C,..) < max {k,,k,} do

11 on Receiving message P;,Q; from client j;
12 C. — [Creca Cj] Py — [Plisn Pj] ’Qlist = [Qlisn Qj];
13 dec(Cre, Priy ), dec(Cree, Qi );

14 Compute V, F(V[t—1]) via (14);
15 Compute V[¢] via (15);
16 Return D =y (VILIVIL]")

3.3.2 Coded label propagation

Optimize the distribution strategy for the label propagation al-
gorithm and make it fault-tolerant to straggler nodes. We ad-
opt coding technology to increase the fault tolerance of the al-
gorithm to straggler as well. Define A :=2(H,,—-W,,). We
adopt (N,k;) MDS code. For A, its encoding matrix is
S, € REqax where Y7 g; = u. The ith node receives the en-
coding matrix block A, € R“* sent by the central node. A, is
part of the rows in the code matrix A=S,A. At the begin-
ning of each iteration, the central node multicasts f!'. Each

/ any k|

T~~~ T
(1) (o) (ren)
| [ [
T 1 T2 T N-1 TN
Client 1 Client 2 Client N-1 Client N

(b) Server waits for the earliest responding &,
clients results.

Server

\ f any k,

[ 7 1 1
(ewsa ) (6ms2) — (61380e) (G108 )
[ [ [ |
851 S Soxv-1y Soy
Client 1 Client 2 Client N-1 Client N

(d) Server waits for the earliest responding k,
clients results.
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node then calculates the matrix-vector multiplication and
sends the results to the central node. The central node starts
decoding the results and prepares for the next iteration after
receiving any k; task results.

A single iteration of coded label propagation is shown in
Fig. 4. The pseudocode of the entire coded label propagation
algorithm is summarized in Algorithm 2, where the largest
number of iterations in the label propagation is denoted as 7.

Algorithm 2: Coded label propagation

Input: Distance matrix D, label Y = Y, U---UY,
Output: Optimal unlabeled label Y,

1 Compute W via (1) using D;

2 Compute A =2(H,, - W,,), A= S,A;

3 Send A, to the ith client;

4fort=1:T do

5 Multicast /- to all the clients;

6 Vi =[1,Coee = [[;

7 for client i € [N] do

8 Compute y, = Af™;

9 Send y, to the server;

10 while: rank (C,.) < k; do

11 on Receiving message y; from client j;
12 Crec — [Crec’cj] > YViist < [ylist’yj];

13 dec(Crc s Vi )3

14 Compute f! via (16);
15 Return ¥; = sign(f(x;))

4 Optimal design for coded distributed
SSL

From the previous discussion, it can be seen that our purpose
is to overcome the drawback of long computation time and
make the algorithm straggler tolerant. Coding parameter &
and matrix completion parameter r+ are key to the proposed
algorithm.

In the coding algorithm, the parameter £ stands for the re-
dundancy of the algorithm. If k is too small, the run time of
each task becomes too large that the overall runtime of the
distributed coded algorithm may eventually increase. On the
other hand, if k is too large, the degree of redundancy of the
algorithm may not be enough to mitigate the impact of pos-
sible stragglers in the system.

In the matrix completion algorithm, the distance matrix is
restored by its low-rank decomposition matrix, where the

Server

A 4 A 4 A 4 A 4

A, A, A Ay

Client 1 Client 2 Client N-1 Client N

(a) In the beginning of the (#+1)thiteration, the
server multicast f;’ to clients.

Fig. 4. Single iteration of coded distributed label propagation.
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rank r of the low-rank matrix is a parameter that needs to be
preset. As a result, the parameter r represents the computa-
tional matrix size. If r is too small, the accuracy of the dis-
tance matrix finally recovered may be too small to meet the
requirements. On the other hand, if r is too large, the running
time of each task during the iteration becomes too large.

4.1 Design of the optimal coding parameter k'

We first consider the overall runtime of an uncoded distrib-
uted algorithm, assuming that the runtime of each task is the
same and independent of each other. Then, we use 77 ., to
represent the runtime of the ith client for a computational task
(the distribution is different in different computing scenarios).
Thus, the runtime of an uncoded distributed algorithm can be

given by
T incotea = max{T, T T:\tllcodcd} . (19)

uncoded?

Then, we consider the overall runtime for a coded distrib-
uted algorithm. 7", , represent the runtime of the ith client in
a coded distributed algorithm. For a (N, k) MDS code, the de-
codable index set is a collection of any k indexes, i.c.
L={ili€{1,2,---,n}}, where the size of the set is denoted by
|L] = k. Therefore, the runtime of a coded distributed al-
gorithm is

Tips-coted = mianaX,fs.CTc]odew (20)

If the distribution of running time is subject to F,
Pr(T, <t) = F(¢). The design can be optimized based on the
expected overall runtime if the overall runtime distribution of
the entire coded distributed algorithm is calculated given the
run time distribution and code parameters®*.

Assuming that the distribution of run times follows a shif-
ted exponential distribution. The model is driven by Ref. [26],
which the authors use to model file queries and latencies for
cloud storage systems. The distribution running time is given
by

Pr(T,<t)=1-e*"¢t>1, 21)

where y is called a straggling parameter.

The average runtime of any distributed algorithm is
bounded by 1/N in a distributed computing cluster with N
worker nodes. Thus, the average operation time of uncoded
and coded distributed algorithms can be expressed as

1 1 logN
E[Tuncoded] = N (1 + EIOgN) = @(%)9 (22)

Server

\ 4 any ks

e

A, A, Ay Ay

Client 1 Client 2 Client N-1 Client N

(b) Server waits for the earliest responding k; clients
results.
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1
E [Twps-cocea] = @(N) (23)
Therefore, we can design the optimal k* to achieve the goal
with the empirical distribution of the run time known by
solving

k= [1 + (24)

— N,
W, (_e"l)]
where W_,(-) is the lower branch of lambert’s function, and
W_,(x) is the solution of te* = x (t < —1).

4.2 Fitting initial value of matrix completion parameter r’

In the matrix completion algorithm, the time required for each
worker node in a single iteration to complete the matrix-mat-
rix multiplication is @(M?r). Moreover, the time required for
the server to broadcast the matrix elements to the N worker
nodes is @(Mr). Since the distance matrix rank has an upper
bound K + 2, the ratio of r to its upper bound is

’
P= s (25)
Therefore, the relationship between rank ratio p and computa-
tion time is linear.

The distance matrix represents the topology inside the ori-
ginal data set in the SSL algorithm. The approximate dis-
tance matrix completion algorithm can also be well-achieved
by algorithm accuracy because the recovered approximate
distance matrix can represent the topology inside the data set.
Assuming that given the initial distance matrix D, and the re-
covered approximate distance matrix [), we define the aver-
age of the two matrix elements as u:=average(D),
V= average(b). Then we define the accuracy of matrix com-
pletion as

|01 D1
=l-— "F 26
’ B 20

Thus, we can select an appropriate r to perform the semi-
supervised learning algorithm if we know the amount of com-
putation of the worker node per unit time and the relationship
between precision and rank ratio p in the matrix completion
algorithm.

5 Simulation & discussion

We conduct simulations to evaluate the performance of the
CDGSSL  framework. Our experiment is performed on
Alibaba Cloud elastic compute service (ECS) using two dif-
ferent working instance types: n4.small and n4.large. Set
n4d.large as the central server and the clients are all ECS in-
stances of n4.small. We set the simulation parameters of the
component algorithms as follows unless specified otherwise.
For the coded matrix completion algorithm, we set
B=10E-5, and the completion algorithm is done with
L =10 iterations. Moreover, for the coded label propagation
algorithm, we set @ =1.0E—3 and the training is done in
T =100 iterations. The clients are set by N = 10 n4.small. In
our experiments, we use MNIST and CIFAR10 data sets for
the image classification task. Each training sample in MNIST

0401-8

is a 28 X 28 image of handwritten numbers, converted into a
vector of size K =784, with pixel values from {0,---,255}.
Samples in CIFAR10 are 32 x 32 images, converted into vec-
tors of K = 3072, with pixel values from {0, - -- ,255}.

In Fig. 5, we measure 1500 times the round-trip time on the
server and plot a complementary CDF. Note that the round-
trip time consists of computation and communication time for
one iteration of the matrix-vector multiplication. We obtain
an empirical distribution of task run time to observe the fre-
quency of straggler nodes in our test bench and to design the
optimal k*. The average round-trip time is 1.12 ms, and the
96th percentile delay is 1.51ms. The 96th percentile delay
means that about 4 out of 100 computational tasks would be
1.5 times longer than the average task. We assume that a cli-
ent has a 4% probability of becoming a straggler node. Thus,
running an uncoded distributed algorithm with 10 clients has
a 33% probability of straggler nodes. Moreover, the emer-
gence of straggler nodes would cause the algorithm to be 1.5
times longer. Therefore, it is necessary to slow down the im-
pact of this straggler node through coding. If we design a
k =9 coding algorithm, the probability of an uncoded distrib-
uted algorithm being affected by a straggler node with ten cli-
ents declines from 33% to 5.8%. If we design a k = 8 coding
algorithm, the probability of an uncoded distributed al-
gorithm being affected by a straggler node with ten clients de-
clines from 33% to 0.62%.

The curve with the accuracy and rank ratio of the matrix
completion distance algorithm p is shown in Fig. 6. The main
purpose of obtaining this curve is to get the optimal rank
ratio p". We randomly generate 3000 training data ranging
from 0 to 25. The training data is divided into groups by their
dimension d. Moreover, we calculate its block diagonal dis-
tance matrix and complete it by the matrix distance comple-
tion algorithm. We can observe that the accuracy increases
rapidly to relatively flat as the rank ratio reaches 0.4. This in-
dicates that the increase in calculation time may somewhat be
much more costly for increasing accuracy. We repeatedly
measure the time required for matrix multiplication in the
matrix completion algorithm on the client n4.small when
r = 1. The average time is ¢ = 8.064 ms. Assuming we expect
each increase in time at 0.5 s, the increase in accuracy is not
less than 2%. Then according to the accuracy curve, we can

0.8

Pr(T>t)

0.4

0.2

0 . I ) !
0 0.5 1 1.5 2 2.5 3 35 4
Compute latency (ms)

Fig. 5. The round-trip time of a task once between the central server and
the client on ECS instance.
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obtain the optimal rank ratio p"=0.258.

We observe 100 random images from the MNIST data set
and their labels after the CDGSSL task in Fig. 7. From the
data set, we extract images of the numbers 0 and 1 and ran-
domly assign M, = 1305 images to each client. 40 randomly
selected samples (rate=0.03) are labeled within each data set.
According to the previous discussion of the optimal design of
two essential parameters, we set up »* =200 for the matrix
completion algorithm and k =9 for the MDS code. We visu-
ally observe that the proposed CDGSSL algorithm is feasible,
and its accuracy increases as the rank  increases.

In addition, we compare the proposed CDGSSL frame-
work with the following three baseline schemes:

(I) Local semi-supervised learning (LSSL). Each client
only uses its local data set to perform the learning task of the
label propagation algorithm. The client does not share inform-
ation or communicate with other nodes in this scenario.
Moreover, all the calculations are performed locally, which
has the best privacy.

1

o
©

o
=

—6— dimension d = 500
—a&— dimension d = 200
—A— dimension d = 100

Matrix completion accuracy
o

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Rank ratio

—8— dimension d = 200
—6—dimension d = 350
—A— dimension d = 200
—#— dimension d = 784

Classification accuracy
P
o<

0.7 . . . . .
0.4 0.5 0.6 0.7 0.8 0.9 1

Rank ratio

(II') Centralized semi-supervised learning (CSSL). All data
sets are concentrated on one node in the centralized semi-
supervised learning scenario. Thus, the distance matrix can be
computed by that node. It implements a label propagation al-
gorithm on distance matrices without matrix completion or
learning unknown labels. This baseline gives the best accur-
acy in graph-based learning scenarios.

(IIT) Privacy-preserving semi-supervised learning (PSSL)
in Ref. [22], the D-LapRLS algorithm. The clients collabor-
ate to complete the distance matrix. Then the clients execute
the label propagation algorithm through the global distance
matrix. The D-LapRLS algorithm performs the best in
DGSSL algorithms as far as accuracy is concerned.

Table 2 presents a comparison of the average classification
accuracy of the CDGSSL framework and two baseline proto-
cols. We conduct the simulations over two data sets includ-
ing MNIST and CIFARI10. For the CDGSSL algorithm, we
consider the average accuracy in three cases. Moreover, we
set k=9 for the CDGSSL algorithm. We can see that the

o
©

—O—Random training data
—~A— Training Data of number 0&1

Matrix completion accuracy
o k
S
3

0.6 ~— Training Data of number 2&6| |
Training Data of number 3&7
0.55 —— Training Data of number 4&9| -

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Rank ratio

1
(d)
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3 " " —
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9
§ 092}
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®© Training Data of number 3&7
(@] o088l —*— Training Data of number 4&9 | |

o
©
-
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Fig. 6. Matrix completion accuracy and classification accuracy of with rank ratio p = r/K +2.

Images of dataset

Label list for /=300

(oX 4
o)
(o}
)
I ©
a
o
00
|
Q0

Original label list Label list for /=180

oot [=]=]=T=T=T]-1— nolnn@lnln ﬂﬂlﬂl@lnlﬂ
=== T==1==1= o[t fe il To o]0 o[ Jofa]aofo]@Yo
= === === of1[1fofof[t]o]t]o]r o[t]afofofafo]t]o]1
= === = === tlo oo oot tlofofo[aolt]o]1]n
—|—1=1=1=1=]=1=1=]—= lbﬂml)llllm 1uumu|1||u
== === === 1|n|1n@on| tfafolt[1]ofofofo]t
= == === =]= OO e e e [ ]o]o] (OO e fD[ o[t o]0

ofof[i]fife]ofaY 1] oJo[r[a[i]olo]G) 1]
= = == == ==]= |o®ool®ol1 100001@011
=== =T=T=1=1=1= 00u01|®lu1 ao»u||®|»|

Fig. 7. lllustration of the random 100 images from the MNIST data set and their label after the CDGSSL task, as the rank , increased. The highlighted

label is the incorrect label after the training process.
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Table 2. Average accuracy of two baseline protocols and different CDGSSL protocols with the rising rank r.
Dataset Protocol(s) Labeled&Unlabeled data a B Rank(r) Accuracy(%)
CSSL 200812665 1.0E-03 - - 95.99
CDGSSL 200&12665 1.0E-03 1.0E-05 200 90.90
MNIST CDGSSL 200&12665 1.0E-03 1.0E-05 150 89.73
CDGSSL 200& 12665 1.0E-03 1.0E-05 50 62.29
LSSL 40&2533 1.0E-03 - - 60.63
CSSL 400&10000 1.0E-04 - - 72.14
CDGSSL 400&10000 1.0E-04 1.0E-05 3000 70.39
CIFAR10 CDGSSL 400&10000 1.0E-04 1.0E-05 2000 67.45
CDGSSL 400&10000 1.0E-04 1.OE-05 1000 62.76
LSSL 8082000 1.0E—-04 — — 52.60

accuracy increases as the rank r increases. On the other hand,
as discussed in Section 4, the computational complexity in-
creases as the rank r increases. The optimal design of rank
represents the trade-off between the accuracy and computa-
tional complexity provided by our framework.

Table 3 compares the CDGSSL algorithm with three
baseline schemes. We compare the accuracy and computa-
tional complexity overhead of four protocols. We can ob-
serve that the computational complexity of CDGSSL is much
lower than that of PSSL in both matrix completion and label
propagation, while the accuracy maintains a high level. The
comparison indicates that the proposed algorithm reduces the
computational complexity under the distributed computing
framework and can apply to large-scale data sets.

The average execution time of the CDGSSL algorithm and
the uncoded algorithm (in Section 3.2) is presented in
Fig. 8. In this experiment, we artificially add latency to each
iteration, setting a 4% probability that each client would be-
come a straggler node. The delay function is added using
time.sleep() function when the client is selected to be a strag-

gler node. We set r =100 for the CDGSSL algorithm. The
(1I') and (III) schemes are under different k for the coding
scheme design. As expected, as the latency increases, the ef-
fect of straggler on the uncoded baseline scheme is signific-
ant. In the meantime, the impact of straggler on the coding
scheme is negligible, although the coding scheme would
bring additional computational overhead. This additional
overhead is negligible compared to the impact of the strag-
gler node. Thus the coding scheme can slow down the impact
of the straggler nodes present in this system on the algorithm.

6 Conclusions

We have proposed the CDGSSL for binary classification
problems in this work. The proposed algorithm has overcome
the drawbacks of inefficient graph construction and straggler
problem. We first provide a parallel and distributed solution
of matrix completion for efficient graph construction. Then,
we proposed CDGSSL based on MDS code to further tackle
the straggler problem. Moreover, we have provided optimal
parameters designed to improve the performance of

Table 3. Comparison of storage, matrix completion, label propagation, and accuracy overhead of: CSSL, LSSL, PSSL(r = 200), CDGSSL(r* = 200).

Protocol Storage Matrix completion Label propagation Accuracy(%)
CSSL O(MN) 0 O(NM?) 95.99
LSSL (M) 0 o(M?) 60.63
PSSL oM) O((NM)?r) O((NM)?) 93.28

CDGSSL o(M) @( 11:), 2’(112\,’)) @( 110\; 1;4;)) 90.90
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Fig. 8. Comparison of average running time under different delay conditions overhead of uncoded algorithm and MDS-coded algorithm with k=9 and

k=8.
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CDGSSL. Finally, numerical experiments on Alibaba Cloud
ECS have been made with the MNIST dataset. Simulation
results have demonstrated the effectiveness of our proposed
algorithm in alleviating the straggler effect by up to 33%, and
attaining lower computational complexity, compared with ex-
isting methods.
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