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Graphical abstract
In large-scale wireless acoustic sensor networks (WASNSs), how to achieve a desired tradeoff
between noise reduction performance and transmission power?
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Solution: Minimizing transmission power by constraining the noise reduction performance
Step 1: Spatial sensor selection; Step 2: MVDR beamforming
——) Sensors around the target source and fusion center are more likely to be selected.

Spatial sparse sensor selection for MVDR beamforming.

Public summary

m Sensor selection is an effective tool to optimize the geometry of microphone networks and reduce the transmission cost,
where many sensors contributes marginally to the task performance at hand.

m Based on the existing semi-definite programming utility-based methods, in this work we propose three energy-efficient
utilities (i.e., weighted utility, gradient and weight input SNR), based on which three corresponding low-complexity
sensor selection approaches are proposed.

m Results show that sensors around sources and the fusion center are more informative in the sense of performance and the
proposed narrowband methods converge more faster.
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Abstract: Noise reduction (NR) is a necessary front-end in many audio applications for improving signal quality. It was
shown that sparsity-promoting sensor selection potentially makes a trade-off between energy consumption and NR per-
formance, which is rather important for large-scale wireless acoustic sensor networks (WASNs), where many sensors con-
tribute negligibly to NR but energy consumption affects the lifetime of WASNs. This paper presents a sensor selection ap-
proach for beamforming-based NR by minimizing the total energy consumption and constraining the output noise vari-
ance. Motivated by the optimal semi-definite programming (SDP) solution and the utility-based method, we propose three
low-complexity selection metrics: weighted utility, gradient, and weighted input signal-to-noise ratio (SNR). It is shown
that the proposed weighted utility and gradient-based methods are near-optimal in performance but much faster than the
SDP-based method, and the weighted SNR method has the lowest time complexity with a tiny performance sacrifice. Nu-
merical results using a simulated WASN validate the superiority of the proposed approaches over conventional methods.

Keywords: sensor selection; forward/backward algorithms; gradient; utility; MVDR beamformer; speech enhancement;

distributed microphone network
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1 Introduction

Currently, with advanced microelectronics, wireless devices
are commonly used in daily life. The organization of devices
forms a distributed microphone network, or more generally
called a wireless acoustic sensor network (WASN), which en-
ables information exchange between neighboring nodes!.
The devices can thus be manipulated remotely via wireless
signal communication. From the perspective of system con-
trol, speech is one of the most natural signals for human-
machine interaction', since most devices have microphone(s)
equipped. However, in practice, environmental noise inevit-
ably degrades the quality of microphone recordings, which
heavily affects the speech interaction performance. For this,
speech enhancement or noise reduction (NR) becomes
necessary"”.

Speech enhancement has a broad range of applications,
e.g., teleconferencing systems', hands-free telephony!,
speech recognition®, human-robot interaction®, and hearing
aids (HAs)"". Conventional array-based speech processing
systems usually physically link a fusion center (FC) to mul-
tiple microphones, implying that such wired array systems
cannot be rearranged flexibly (e.g., the addition or removal of
microphone nodes). As the location of microphone arrays is
fixed, low-quality audio measurements will be recorded in
case the target speaker is distant. The utilization of WASNs
can potentially resolve these limitations. For example, due to
the random placement of wireless devices, some nodes may
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be even around the target speaker, which can then provide
high-quality audio data, resulting in a benefit for the NR. Al-
though the HAs only allow for a small-sized microphone
array, if the surrounding wireless devices can transmit the re-
corded data to the HAs, more data are then available, leading
to a performance improvement!'”. Moreover, microphone
nodes can be configured more flexibly, e.g., as centralized or
distributed networks®™* """,

For the multi-microphone NR problem, increasing the
number of microphones leads to better performance!” but
also more data transmissions and a higher computational
complexity. It was shown in Ref. [14] that multi-microphone
recordings are highly redundant, which enables the exclusion
of noninformative sensors (e.g., sensors that are far away
from the target speaker) with an ignorable impact on the NR
performance. On the other hand, the NR algorithms in the
context of the WASN have to take the transmission power in-
to account, which plays an important role in the network life-
time because portable devices usually only have a limited
amount of battery resources. As the total energy consumption
is determined by the number of microphones for NR, to im-
prove the network efficiency, it would be promising to search
an informative microphone subset from a large-scale candid-
ate set, which can result in an expected NR performance. It
was shown in Ref. [15] that sensor selection can facilitate a
significant reduction in the cardinality of informative sensors
with a negligible performance loss. In theory, it can be formu-
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lated by minimizing the signal estimation error and constrain-
ing the number of selected subsets, or vice versa. Essentially,
this is an NP-hard problem that can be solved by convex op-
timization with semi-definite relaxation'” or greedy ap-
proaches (e.g., sub-modularity-based heuristics'”). Sensor se-
lection has been applied to, e.g., field estimation®), source
localization"“, target tracking"”, and speech enhancement®"=",
with a saving of data transmission.

To improve the energy efficiency of WASNSs, we consider
sensor selection for the minimum variance distortionless re-
sponse (MVDR) beamformer-based NR in this work. The ini-
tial problem is built upon optimizing the total energy con-
sumption in terms of the selection status of sensors subject to
a constraint on the NR performance in output noise variance.
In general, we can design model-driven and data-driven
strategies to solve this problem. Given the noise covariance
matrix of the complete network, the proposed sensor selec-
tion problem was converted into a semi-definite program
(SDP) using convex optimization techniques (optSdpRemov-
al)®. To avoid the dependence on the statistics of the whole
network, a greedy data-driven optSdpAddition method was
further proposed in Ref. [23], which gradually increases the
candidate set of sensors and executes a smaller-scaled SDP
problem at each iteration. However, optSdpAddition is rather
computationally complicated and has to execute an SDP prob-
lem at each iteration. The impact of the acoustic transfer func-
tion (ATF) mismatch on the MVDR sensor selection problem
and the extension to the linearly-constrained minimum vari-
ance (LCMV) beamformer were presented in Ref. [24]. In
Ref. [25], a frequency-invariant sensor selection-based
MVDR method was proposed, which can avoid switching the
selection status across frequencies but requires a much higher-
complexity solver. In Ref. [26], by defining the contribution
of each sensor to NR as utility, a backward model-based utili-
tyRemoval method was proposed, which excludes the sensor
with the smallest utility from the current candidate set in each
iteration. Given an initial selected subset, a forward data-driv-
en utilityAddition can be designed by adding the sensor with
the largest utility to the selected subset”™. Although utilityAd-
dition is generally faster than optSdpAddition, it does not take
the transmission energy into account, as a sensor might have a
large utility but requires a large transmission energy to the
FC. Furthermore, due to the dependence on the noise covari-
ance of the complete network, model-driven methods are im-
practical due to the unknown number of available sensors in
practice. We therefore consider low-complexity sensor selec-
tion approaches and take power consumption into account in
this work.

The contribution of this paper is threefold. (1) We define
the contribution of a sensor to NR over the corresponding
transmission power as the weighted utility, based on which
we propose a model-driven weightedUtilityRemoval method
and a data-driven weightedUtilityAddition approach similar
to utility-based methods. (ii) Based on the original optimiza-
tion problem, we calculate the gradient of the objective func-
tion with respect to the selection variables and use the gradi-
ent to measure the contribution of sensors to the optimality, as
the gradient measures the changing trend of a function along a
certain direction. Applying the gradient, we design gradient-
based sensor selection algorithms, namely, gradRemoval and
gradAddition. The time complexity of the weighted utility
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and gradient-based approaches is square in terms of the
number of candidate sensors, which is lower than that of
optSdpAddition. (iii) Since it was shown in Ref. [23] that
sensors with a high signal-to-noise ratio (SNR) are useful for
target estimation and sensors with a low transmission cost are
helpful for saving energy, we thus define the input SNR over
the sensor-FC transmission power as the weighted SNR.
Using the weighted SNR as the utility, we can design
weightedSnrRemoval and weightedSnrAddition sensor selec-
tion algorithms, which has a linear time complexity since no
covariance matrix needs to be updated. Numerical simula-
tions using a large-scale microphone network validate the
proposed methods. The sensors proximal to the target signal
and the FC are more likely to be included. The proposed
weighted utility and gradient-based approaches also choose
some sensors next to the coherent interfering sources, as they
might be useful for cancelling noise sources even with a very
low SNR, which, however, cannot be observed from the
weighted SNR-based methods.

The rest of this paper is structured as follows. Section 2 in-
troduces fundamental knowledge on the signal model and
MVDR beamforming. Section 3 presents the sensor selection
model, problem formulation, and related works. In Section 4,
we present the proposed weightedUtility, gradient,
weightedSnr-based methods. Section 5 presents the numeric-
al results using a simulated WASN. Finally, Section 6 con-
cludes this work.

2 Signal model and MVDR beamformer

2.1 Signal model

In this work, we consider a distributed microphone network
consisting of M sensor nodes in the acoustic scene for the es-
timation of a single target source, where each node is
equipped with a single microphone and the FC is one of the
nodes without loss of generality (w.o.l.g.). In the short-time
Fourier transform (STFT) domain, the k-th microphone sig-
nal is given by

Yk(wal):Xk(wal)+Nk(wvl)’ k:]""7M’ (1)

where X, (w,) denotes the speech component at microphone
k, Ni(w,l) includes all noise components (e.g., competing
speakers, late reverberations, sensor self-noise), and / and w
are the frame and angular frequency indices, respectively.

Let a,(w) represent the ATF relating the source position to
the k-th microphone. The signal component then equals

Xk(w’ l) = ak((‘))S (w’l)7 (2)

where S (w,[) denotes the target signal at the source position.
Furthermore, assuming that the FC is the first node w.o.l.g.
and taking it as the reference position, we can define the relat-
ive ATF (RTF) as

h(w) = a(w)/a,(w), 3)

such that X, (w, ) = h,(w)X,(w,]), where X, (w,]) = a,(w)S (w,]).
Note that the assignment of reference microphone might af-
fect the multi-microphone NR performance™, which is bey-
ond the scope of this paper. The utilization of RTF does not
affect the NR performance, which can be estimated using the
methods in Ref. [28].
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For notational brevity, the frame and frequency indices will
be omitted in the sequel. Let y = [V}, Y,,...,Y,]" with (-)" de-
noting matrix/vector transpose store the STFT coefficients for
each time-frequency bin. Vectors n, a, h and x = hX, = aS
are defined similarly to, respectively stack the noise compon-
ents, ATF, RTF, and signal components, such that we can re-
write the signal model in (1) in a vector form as

y=hX +n. 4)

2.2 MVDR beamformer

Typically, the MVDR beamformer is optimized by minimiz-
ing the output noise power (or variance) under a linear con-
straint associated with the RTF (or ATF) of the target source,
which can be mathematically given by

Wyvbr = argn}vinw”ﬁ,,,w st. wih=1, (5)
where @,, = E{nn"} being the noise covariance matrix with
E[-] the mathematical expectation. We define @,, = E{xx"} =
osaa’ = oy hh' as the signal covariance matrix, where o
and o}, denote the power spectral densities (PSDs) of the tar-
get speech source at the source and reference positions, re-
spectively, and (-)" is the conjugate transpose. With the linear
constraint in (5), it holds that wy,. @, Wyvor = 07, implying
that the power of the desired signal component at the refer-
ence position is preserved, and the noise power can be re-
duced after MVDR beamforming. It can be easily verified
that the MVDR beamformer is given by -1

w=(h"® hy ' h. (6)

Using the filter w = [w,,w,,...,w,]", the estimated target sig-
nal component can be obtained through beamforming as

Xl =wiy. (7

After filtering, the residual noise power can be computed as

wid,w = (h"®, h)", (8)
and the output SNR (0oSNR) is given by
whd w ~
oSNR = m = O'i] th;ml,h (9)

Note that in practice the noise covariance matrix in the
MVDR design needs to be replaced by its estimate @,,. If the
covariance matrices are perfectly estimated, the objective
function in (5) is equivalent to minimizing the output signal
power, which is called the minimum power distortionless re-
sponse (MPDR) beamformer®”'.

3 Problem description

In this section, the general problem description for the sensor
selection MVDR beamforming based NR issue within a large-
scale distributed microphone network will be presented.

3.1 Definitions

To reflect the microphone selection status, let p = [p,,p,,---,
pul" €10, 1}, where p, = 1,Vk represents the selected status
and p, =0 the unselected status of microphone k, respect-
ively. Based on p, the selected subset is given by
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S, ={klp, =1}, and the unselected subset is denoted by
S_ = {k|p, = 0}. Furthermore, K =|S,| and M —-K =|S_| rep-
resent the numbers of the selected and unselected nodes, re-
spectively. Letting diag(p) denote the diagonal matrix whose
diagonal entries are given by p, the selection matrix
%, €{0,1}*** can thus be constructed by removing the all-zero
rows of diag(p). Clearly, two properties related to the selec-
tion matrix hold:

LI =1,

where I denotes the K-dimensional identity matrix. Apply-
ing 2, the microphone measurements of the selected sensors
are then given by

y,=2y=2x+2,neCk (11)

XY, = diag(p), (10)

The RTF and noise covariance matrix related to the selected
sensors can be similarly written as

h,=Z,h€Ct, ®,,,=2,8,3" € CX, (12)

In line with (6), the resulting selected subset of sensors de-
pendent MVDR beamformer is then given by

w,=(h®, h,)'®, h, (13)

nn,p nn.p

Notably, in general @, + 2 &, X7 unless @, is a diagon-

nn,p nn“"p>

al matrix with only uncorrelated noise present.

3.2 Energy-aware selection  based NR

formulation

sensor

In large-scale WASNSs, the energy consumption is an import-
ant performance indicator to measure the network efficiency
of data processing. To improve this, it is thus expected to op-
timize the total energy consumption over a WASN by con-
straining the NR performance. To do this, we use
ke M={1,2,---,M} to denote the transmission power per
sample from microphone k to the FC. By this definition, it
should be noted that the power for keep sensors activated is
neglected, which exists in practice. Given the RTF, the pro-
posed energy-aware MVDR sensor selection problem is for-
mulated as

M
min Z DPiCr
pVp _
k=1 (14)

’

RI™

s.t.wid,,,w, <
woh, =1, pe{0,1}",

where 8 denotes the minimum noise power, and 0 <@ <1
controls the expected NR performance”. To focus on the
sensor selection problem, in this work, we consider an ideal
transmission scheme where the transmission rate is constant
for every sensor and delays in the WASN are ignored, such

@D In theory, the minimum output noise variance can only
by calculated if all sensors are involved. However, this might
be impossible because it is reasonable that in large-scale
WASNS, the total number of microphones might be even un-
known. In this case, we can set a specific value for B/a for
the proposed model to indicate the expected NR performance,
e.g., 40 dB.
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. O
that the transmission power from sensor £ to the FC can be hi®;! h,=h"5! (TI I,+2,G Z;) Z,h, @

0
¢ = kd], (15)
where Q can be further reformulated as

where « is a constant (xk ~ 107° J/(m™ - bit)), ¥ is an attenu- ) »

0=G"'-G"' (G +n'diag(p)) G, (22)

ation factor (typically between 2 and 6), and d, is the Euclidi-
an transmission distance. It is clear that (14) is a nonconvex
optimization problem due to the nonlinear selection operation
and the Boolean variables p. For simplicity, we consider the
Lagrangian function of (14) as

M
L(p,w,,Ap) = Zpkck + /l(w;'di,m,,,w,, - g) +,u(w:‘h,, - 1),
k=1

where A and u are the non-negative Lagrange multipliers. The
gradient with respect to w; with (-)" being the conjugate of
complex numbers can be computed as

oL
ow:,

=1P,,,w,+uh,.

. 0L .
Setting T to zero, we obtain
W
p

w,=—ud,, h,/A (16)
Substituting w, into the constraint wi k, = 1 leads to

uo 1
1 me,,h, a7
It is clear that plugging (17) into (16) results in the sensor
selection-dependent MVDR beamformer in (13). As a result,
we can substitute the MVDR beamformer from (13) into (14)
to avoid simultaneous optimization over the filter variable w,
and the selection unknown p, resulting in a pure sensor selec-
tion problem:

a
e

3 (18)

M
min Z pe st R R, >
which is still a nonconvex optimization problem but is con-
strained by SNR because the left-hand side of the constraint is
the output SNR of the MVDR beamformer in (13).

3.3 An overview of existing approaches

To guide the reader, in this section, we will briefly review
two related sensor selection approaches for (18).

optSdp-based method: In Ref. [23], a convex relaxation
based approach was proposed for solving (18), where the
noise covariance matrix @,, is first decomposed as

?,, =nl+G, (19)

where 7 is positive and G is positive definite. This decompos-
ition can be obtained if 7 is smaller than the minimum eigen-
value of @,,, because @,, is always positive definite due to
the existence of correlated and uncorrelated noises. With this
decomposition, it holds that

®,,=2,9,2 =nly+X,GX7. (20)

—1
nn.p

Based on (19), we can reformulate k} @, h, as
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by applying the matrix inversion lemma®”

CB'+C'A'C)'C"=A-A(A+CBC")'A.
Substituting Q from (22) into #"Qh > % results in
R'G'h - % > WG (G + 1 diag(p)) ' G'h,

which is equivalent to the linear matrix inequality (LMI) on
the basis of the Schur complement?*:

G + 1 'diag(p) G'h
h'G wiGh-2 | Z O 23)
B
since the matrix G™' + n"'diag(p) is always positive definite.
Finally, the Boolean variables are relaxed using continu-
ous surrogates, i.e., 0 < p, <1,Vk. The final MVDR sensor
selection problem is given by

M
min E PiCr
pel0.1IM

"G +ydiag(p)  G'h (24)

S.t. WG WG h— a =0y,
B

which is a standard SDP problem and can be efficiently
solved using off-the-shelf solvers, e.g., CVXPY. Note that the
Boolean selection variable has to be recovered by rounding
techniques. The computational complexity of (24), e.g., using
interior-point method, is of the order of O(M?). Because the
fact that this method requires the noise covariance matrix of
the complete network, it is called the model-based optSdpRe-
moval method.

To alleviate the dependence on the complete noise covari-
ance matrix, in Ref. [23], a data-based optSDP method was
further proposed. In detail, given an initial point in the
WANSN (e.g., the FC) and a transmission range R,, the sensors
that are within the transmission range are considered as the
candidate set S;. For the candidate set, the data-based meth-
od executes the SDP problem in (24) to find the best subset,
where note that 8 needs to be replaced by the minimum noise
power using all sensors in S, (i.e., local constraint). Based on
the selected subset S, and the transmission range, the candid-
ate set S; is increased by including all R,-closest sensors with
respect to S,, and (24) is executed again. This procedure will
be terminated when the local constraint converges. As the
local constraint is somehow worse than the global constraint 3
depending on the whole network, the algorithm will switch to
examine the global constraint, which requires several extra it-
erations. Since the sensors are gradually added to the selected
subset S,, the data-based method is called optSdpAddition. In
case J; iterations are required by optSdpAddition for conver-
gence, the time complexity becomes O(J;|S;|'), where
|Sel < M.
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Utility-based method: In Refs. [20-22], backward and
forward utility-based sensor selection approaches were pro-
posed for linear minimum mean-square-error (LMMSE) es-
timator based signal enhancement. For the backward method,
the most informative microphone subset is formed by gradu-
ally removing the sensor that has the smallest contribution to
the NR performance, which is thus called utilityRemoval. In
detail, for initialization, the selected subset S, is set to be M.
Given the noise covariance matrix @,, of the complete net-
work, at the first iteration, the utility is defined by

h",
(25)

where w_,, @,,_,, and h_, denote the MVDR filter, the noise
covariance matrix and the RTF of the sensors contained in S,
excluding node k. The calculation of &, , € C*""*" on the
basis of @;! has a time complexity of O(M?). The sensor m
that is to be removed can be obtained by searching the minim-
um U, from S,, which has a complexity of O(MlogM). The
selected subset is updated by excluding node m from S..
Then, the utility of the sensors contained in S, has to be cal-
culated again, and the second sensor has to be excluded simil-
arly. This iterative procedure is stopped when the perform-
ance constraint is unsatisfied. Suppose that J; iterations are
required by utilityRemoval for convergence, the total time
complexity is thus of the order of O(J; (M? + M log M)).

To avoid dependence on complete noise statistics, a for-
ward data-driven sensor selection approach was further pro-
posed in Ref. [20], which is called utilityAddition. This is an
opposite procedure as compared to utilityRemoval. In detail,
given an initial point (e.g., FC) and a transmission range R,,
the selected subset S, and the candidate set of sensors S; that
includes all R,-closest sensors with respect to S, can be ini-
tialized. The utility of the sensors contained in S; can be cal-
culated as

U, =,

nn—k nn

Ue =W, W —w'®,w=(h" D, h ) — (b

@5 hs)" = (s P,

nn, .5+ +k

hs. )" k€S.. (26)

Searching the maximum value in u = [U,,U,,...,Ug,] can
then reveal the sensor in S; that has the largest contribution to
NR with respect to S,. The selected subset S, is then up-
dated by adding this sensor. Subsequently, the selected sub-
set S, and the candidate set Sy are updated similarly. This
procedure will be similarly terminated until the residual noise
power is smaller than or equal to the predefined threshold. In
case J; iterations are executed, the time complexity of
utilityAddition is of the order of O(J;(|Skl’ +|Skllog|Skl)),
because the time complexities of calculating @, . ., based on
@, s and searching the maximum value are O(|S|*) and
O(|S;|1og|S; ), respectively. Roughly, the time complexity of
both utilityAddition and utilityRemoval are cubic in terms of
M, as only one sensor is removed or added at each iteration
(i.e., J; and J; are linear in M).

4 Proposed low-complexity approaches

As the time complexity of optSdp is cubic and the utility-
based approach does not consider energy usage, we propose
three low-complexity energy-aware methods in this section.
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4.1 Proposed weighted utility-based approach
From the perspective of optimization, (18) can be equival-
ently reformulated as

Hpl |y
L2 st hid) h, >

max g(p) = ,
pel0.1)M ﬁ 27)
Z DPiCr
where the numerator can be decomposed as
hH¢nnph - hH ¢mllp kh Kt hH¢nnkh (28)

in here the two terms on the right-hand side represent the out-
put SNR using a sensor subset S, and the SNR gain by
adding sensor k to S,. Therefore, we can define the ratio
between the SNR gain and the individual energy consump-
tion as the contribution to the NR problem, which is called
weighted utility in this work. Similar to the optSdp and utility-
based methods, we can also design model- and data-driven
sensor selection approaches using the weighted utility metric.
For backward selection, in the first iteration, the selected
subset S, is initialized by M. Given the noise covariance
matrix @,,, the weighted utility is thus defined by
H H gp-
Uk_hdi 'h—h" (D,mkhk’ (29)

Ck

where the numerator denotes the SNR loss by removing node
k. Then, the m-th sensor that has the minimum weighted util-
ity can be removed from S,. Clearly, the sensor that has the
minimum SNR loss and maximum energy consumption will
be excluded, i.e., S, « S,\m. Then, the weighted utility of
the sensors contained in S, needs to be calculated again. This
procedure will be repeated until the constraint in (27) is unsat-
isfied any more, which is thus called weightedUtilityRemov-
al. By inspection, the time complexity of the model-driven
weightedUtilityRemoval method is the same as that of the
utility-based counterpart.

In contrast, given an initial point (e.g., FC) and a transmis-
sion range R,, it is straightforward to design a forward data-
driven weighted utility-based sensor selection approach,
which is called weightedUtilityAddition in this work. The
candidate set of sensors S; can be initialized with R,-closest
sensors with respect to the initial point, and the m-th sensor to
be added to S, can be searched using

m=argmaxU,, ke S, 30)
where U, is given by
h' . hs +k h d> hs
U Sy +k nn, .5+ +k + nnS, + . 31
= - (31

The candidate set S, with respect to S, and the correspond-
ing utility must be updated accordingly. Clearly, at each itera-
tion one sensor will be added to S,. Similar to the
utilityAddition method, the stopping criterion of the pro-
posed iterative process can be checked if the performance
bound is satisfied as

hi @, s hs, >

nn .S, TPSs

(32)

IR
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The time complexity of weightedUtilityAddition is similar
to that of utilityAddition; however, weightedUtility Addition
takes energy consumption into account.

4.2 Gradient-based approach

As the gradient measures the changing rate of a function
along a certain direction, it can be used to define the contribu-
tion of an individual sensor to the energy-aware NR perform-
ance. From Section 3.3, we know that

H -1 Hp-1 Hyv-1 -1 —1 3z -1~
h, @, h,=h"G'h-h"G" (G +7n 'diag(p)) G h.(33)

Considering the objective function of (27), the partial
gradient with respect to p, can be calculated as

-2
%) _ ZM | [ ZM s — e R
D kCk T] - kCk K Fnnp™p |

k=1
where v, denotes the k-th element of vector v, given by
v =(G" +7" diag(p))” G 'h.

Considering the case that only sensor m in M={1,---, M}
is unselected, i.e., p,=1,Vk except k=m, h;®, h, in the
gradient can be interpreted as the output SNR using the re-
maining M — | sensors. The complexity of the calculation of
the gradient is of the order of O(M?) due to the computation
of the inversion @,,  using @,,.

Based on the gradient, we can design a model-driven mi-
crophone subset selection method, termed by gradRemoval in
this work. In detail, we initialize p using an all-ones vector,
meaning that all sensors are selected at the beginning. At the
first iteration the sensor with the smallest gradient has to be
removed from the selected set S, = M. By calculating the
gradient, such a sensor can be determined by

m= argminw,

Pk

kesS., (34)

because the vector p with p, =0 and ones elsewhere gives
the optimal direction for keeping the objective function of
(27) unchanged. In other words, the m-th sensor contributes
least to increasing g(p). Next, the gradients for the remaining
M —1 sensors in S, need to be updated, and the sensor to be
removed is searched similarly. During the first few iterations,
many sensors are included in the selected subset, and the ob-
tained performance will be greater than the threshold. There-
fore, the proposed method can be stopped if the performance

is smaller than the given threshold, i.e., kS @, ; hs, < %.

nn,S;

The forward data-driven gradient-based microphone selec-
tion method, which is called gradAddition, can be designed
similarly to utilityAddition and weightedUtility Addition. Spe-
cifically, at each iteration given the selected subset S, and the
candidate set S;, the sensor in S, that has the largest gradient
is added to S, until the constraint in (27) is satisfied. The time
complexity of the proposed gradient-based methods can be
analyzed in line with the utility-based or weighted utility-
based counterparts.
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4.3 Weighted SNR-based sensor selection approach

Intuitively, in practice, the sensors around the target speaker
have a higher SNR, i.e., better speech quality, which is bene-
ficial for the estimation of the speech source; the ones around
the FC have a smaller transmission distance, i.e., transmis-
sion power, which is useful for reducing the network re-
source consumption. This observation can also be found in
Ref. [23]. In the proposed weighted utility-based approach,
the calculation of the utility is based on the output SNR,
which requires a squared time complexity. Motivated by
Ref. [23] and to reduce the complexity of utility-based meth-
ods, we can define a weighted input SNR to approximate
(29), which is given by

U = inSNRk(w)’

k

kell,---,M}, 35)

Cy

where the narrowband input SNR is defined as

> Xaw, P

D INi@,DP

The sensor SNRs can be computed efficiently locally
without data transmission using noise PSD estimators in
Ref. [35]. Clearly, when applying the weighted SNR to sensor
selection, the sensors that have a high SNR and/or a low
transmission energy are more likely to be selected. The pro-
posed weighted input SNR can then be used to design back-
ward model-driven and forward data-driven sensor selection
approaches similarly to the utility and weighted utility-based
approaches, which are called weightedSnrRemoval and
weightedSnrAddition. Note that for weightedSnrRemoval and
weightedSnrAddition, at each iteration, we only need to
search the minimum or maximum element from the weighted
inSNR vector, which has a complexity of O(KlogK). Sup-
pose that J; and J; iterations are required by
weightedSnrRemoval and weightedSnrAddition, the time
complexities are of the order of O(J;MlogM) and
O(J;KlogK).

inSNR,(w) = (36)

4.4 Summary and discussion

Based on the previous analysis, we summarize the con-
sidered model-driven and data-driven sensor selection ap-
proaches in Table 1. Note that in practice, the number of re-
quired iterations for the utility, weighted utility and gradient-
based approaches might be different from each other. For
notational conciseness, we merely use J; and J; for the model-
based and data-based approaches, respectively. In each itera-
tion, the time complexity is dependent on the cardinality of
the candidate set S;, which is linear in terms of the number of
selected sensors K. Hence, for ease of comparison, we use M
and K to measure the time complexities of the backward and
forward methods, respectively.

It is clear that if the number of required sensors is much
smaller than M, that is, the performance requirement is low,
the data-based method is much more computationally effi-
cient than the model-based counterpart. The proposed SNR-
based method is computationally cheapest. For the model-
based approaches, in case J, < M, i.e., the performance re-
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Table 1. The summary of the considered sensor selection approaches.

Type Method Time complexity
optSdpRemoval®’ o3
utilityRemoval® O(J; (M? + Mlog M)
Model-based  weightedUtilityRemoval ~ O(J5 (M* + Mlog M)
gradRemoval O(J; (M* + Mlog M))
weightedSnrRemoval O(J5 Mlog M)
optSdpAddition®” OUT K
utility Addition®" O(J3 (K* + KlogK))
Databased  WeightedUtilityAddition O3 (K> +KlogK))
gradAddition O(J3 (K* +KlogK))
weightedSnrAddition O(J; KlogK)

quirement is high, utilityRemoval, weightedUtilityRemoval,
and gradRemoval might be computationally faster. Moreover,
in general, the implementation of utilityAddition,
weightedUtilityAddition, and gradAddition is more efficient
than optSdpAddition, as both J; and J; are roughly linear in
terms of K. Therefore, we can conclude that compared to the
optSdp-based method, which is optimal in terms of perform-
ance, the proposed weighted utility and gradient-based ap-
proaches are more computationally efficient; compared to the
utility-based method, the proposed methods are more energy
efficient, as the optimization of transmission power is taken
into account. It is worth noting that the forward data-based
methods are more practical.

5 Numerical results

In this section, the proposed model- and data-driven sensor
selection MVDR beamforming approaches will be validated
via numerical simulations.

Fig. 1 depicts the employed microphone setup, where we
place 169 microphones uniformly in a 2D room with dimen-
sions of (12, 12) m. The target speaker and the FC are loc-
ated at (3, 9) m and (9, 3) m. Two coherent noise sources are
placed at (3, 3) m and (9, 9) m. The speech source is derived
from the TIMIT database™", and the noise signals are from the
NoiseX-92 database”, respectively. We utilize the image
method™ to generate the room impulse responses (RIRs)
from sources to microphones, which are convolved with the
source signals to produce the time-domain components in the
signal model. The uncorrelated noise is assumed to be the
sensor thermal noise and modeled as a white Gaussian ran-
dom process. The microphone signal is generated by sum-
ming the signal component, the correlated noise component at
a signal-to-interferer ratio (SIR) of 0 dB and the uncorrelated
noise component at an SNR of 50 dB. The sampling fre-
quency and the reverberation time are set to 16 kHz and 200
ms, respectively. The power for keeping sensors active is as-
sumed to be the same for all sensors, and the transmission
power from sensors k,Vk to the FC is initialized using the
squared distance, i.e., y =2 in (15).

Fig. 1 shows some typical selection cases obtained by the
model-based and data-based approaches for @ = 0.6, where
the number of iterations required for achieving the desired

0402-7

performance is also marked. For the model-driven methods, it
is clear that optSdpRemoval, the proposed weightedSnr-
Removal and gradRemoval methods obtain similar selection
results, as some sensors around the target source, some
around the FC and two sensors next to the noise sources are
selected. The inclusion of these informative sensors is mean-
ingful for source estimation, saving transmission energy and
cancelling interferers. The utilityRemoval method does not
choose sensors close to the FC, leading to more energy con-
sumption compared to other methods. The proposed
weightedSnrRemoval method cannot choose the micro-
phones next to the interfering sources since these sensors do
not have a high input SNR or a low transmission distance.
Given the FC as the initial point for data-driven methods, the
selected sensor subset of all methods increases from the FC to
the target source. The data-driven methods fail to sparsely se-
lect two sensors next to the interfering sources, as they are
never activated in the candidate set before the desired per-
formance is achieved. We can conclude that in general, the
selection result of data-based methods will not converge to
that of the model-driven counterparts, as the selection is only
constrained on the NR performance.

Fig. 2 shows the residual noise power in dB and the re-
source consumption of the forward data-driven methods in
terms of @. The results for the backward model-based meth-
ods can be shown similarly. Obviously, all methods satisfy
the performance requirement. The optSdpAddition method
and weightedSnrAddition consume the lowest and highest
transmission energy, respectively. The proposed weighte-
dUtilityAddition and gradAddition methods achieve compar-
able performance, and the energy cost is lower than that of
utility Addition.

Finally, we compare the execution time in terms of « in
Fig. 3. The simulations are conducted using a MacBook Pro
with an Intel Core i5 processor. For the model-driven meth-
ods, the low-complexity weightedSnrRemoval method is fast-
est. The runtime of optSdpRemoval remains constant, as it
executes the same SDP optimization problem for any «. The
proposed weightedUtilityRemoval and gradRemoval meth-
ods are slower than optSdpRemoval for small a-values, since
a smaller @« means a lower performance bound and more
sensors that have to be excluded, i.e., more iterations.
However, when « is large, weightedUtilityRemoval and
gradRemoval become faster. For the data-driven methods, the
low-complexity weightedSnrAddition method is still the fast-
est. The optSdpAddition method becomes the slowest be-
cause it runs an SDP of cubic complexity at each iteration,
even though it requires much fewer iterations than the pro-
posed data-driven methods, as shown in Fig. 1. Clearly, the
proposed methods are computationally much more efficient
than optSdpAddition. Note that for small a-values, the data-
driven method is more efficient than the model-driven coun-
terpart, as much fewer sensors need to be added to the selec-
ted subset.

6 Conclusions

In this work, we presented several narrowband model-based
and data-driven sensor selection methods for MVDR beam-
forming-based NR problems in large-scale distributed micro-
phone networks. The energy-aware NR problem was built
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Fig. 1. Sensor selection examples of the model- and data-driven approaches for @ = 0.6. Note that active sensors are required by the data-driven methods,

but are not required by the model-based counterparts.
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Fig. 3. The time consumption for performance requirement vs «.

upon minimizing the power consumption and constraining the
desired NR performance such that the network efficiency can
be optimized. Motivated by the SDP solver and utility-based
approach, we proposed using the weighted utility, gradient
and weighted input SNR to select an informative microphone
subset. For each metric, we designed backward model-based
and forward data-driven selection approaches, and the former
is based on the noise statistics of the complete network. It was
shown that the proposed methods can effectively choose the
sensors around the target speaker and those around the FC for
target enhancement and energy optimization. The proposed
methods are computationally more efficient than the SDP-
based method and more energy efficient than the utility-based
method. We can conclude that in large-scale WASNs, many
sensor measurements are redundant for NR and choosing a
subset of sensors can be sufficient for performance require-
ments. Data-driven sensor selection methods are more effi-
cient and practical for the design of energy-aware WASNS.
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