N
+

UST
http://justc.ustc.edu.cn Received: August 25, 2022; Accepted: January 12, 2023

Efficient secure aggregation for privacy-preserving federated
learning based on secret sharing

Xuan Jin', Yuanzhi Yao® *“, and Nenghai Yu'

ISchool of Cyber Science and Technology, University of Science and Technology of China, Hefei 230027, China;
2School of Computer Science and Information Engineering, Hefei University of Technology, Hefei 230601, China

®ICorrespondence: Yuanzhi Yao, E-mail: yaoyz@hfut.edu.cn
© 2024 The Author(s). This is an open access article under the CC BY-NC-ND 4.0 license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Graphical abstract

Central Sever

W,

Yt,l Yz,z Yr,i Y;,N

FLOSS/FLMSS
G G G Local
01 G, 2 b e
Participant | Participant 2 Participant i Participant N
A A 4)

Dataset | Dataset 2 Dataset i Dataset ¥

In our proposed privacy-preserving federated learning schemes, participants’ local training data can be strongly protected with low
cost.

Public summary

m The privacy-preserving federated learning scheme based on one-way secret sharing (FLOSS) is proposed to enable high
privacy preservation while significantly reducing the communication cost by dynamically designing secretly shared con-
tent and objects.

m The privacy-preserving federated learning scheme based on multi-shot secret sharing (FLMSS) is proposed to further re-
duce the additional communication-computation cost and enhance the robustness of participant dropouts.

m Extensive security analysis and performance evaluations demonstrate the superiority of our proposed schemes in terms
of model accuracy, privacy preservation, and cost reduction.

Citation: Jin X, Yao Y Z, Yu N H. Efficient secure aggregation for privacy-preserving federated learning based on secret sharing. JUSTC, 2024, 54(1):
0104. DOI: 10.52396/JUSTC-2022-0116

mailto:yaoyz@hfut.edu.cn
http://creativecommons.org/licenses/by-nc-nd/4.0/

N

UST
http://justc.ustc.edu.cn

Efficient secure aggregation for privacy-preserving federated
learning based on secret sharing

+

Received: August 25, 2022; Accepted: January 12, 2023

Xuan Jin', Yuanzhi Yao® **, and Nenghai Yu'

!School of Cyber Science and Technology, University of Science and Technology of China, Hefei 230027, China;
2School of Computer Science and Information Engineering, Hefei University of Technology, Hefei 230601, China

®Correspondence: Yuanzhi Yao, E-mail: yaoyz@hfut.edu.cn
© 2024 The Author(s). This is an open access article under the CC BY-NC-ND 4.0 license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Read Online

Cite This: JUSTC, 2024, 54(1): 0104 (15pp)

Abstract: Federated learning allows multiple mobile participants to jointly train a global model without revealing their
local private data. Communication-computation cost and privacy preservation are key fundamental issues in federated
learning. Existing secret sharing-based secure aggregation mechanisms for federated learning still suffer from significant
additional costs, insufficient privacy preservation, and vulnerability to participant dropouts. In this paper, we aim to solve
these issues by introducing flexible and effective secret sharing mechanisms into federated learning. We propose two
novel privacy-preserving federated learning schemes: federated learning based on one-way secret sharing (FLOSS) and
federated learning based on multi-shot secret sharing (FLMSS). Compared with the state-of-the-art works, FLOSS enables
high privacy preservation while significantly reducing the communication cost by dynamically designing secretly shared
content and objects. Meanwhile, FLMSS further reduces the additional cost and has the ability to efficiently enhance the
robustness of participant dropouts in federated learning. Foremost, FLMSS achieves a satisfactory tradeoff between pri-
vacy preservation and communication-computation cost. Security analysis and performance evaluations on real datasets
demonstrate the superiority of our proposed schemes in terms of model accuracy, privacy preservation, and cost reduction.

Keywords: federated learning; privacy preservation; secret sharing; secure aggregation

CLC number: TP309.2 Document code: A

1 Introduction

Computational models generated by deep learning are able to
learn valuable representations of data!!. Deep learning has
dramatically improved artificial intelligence in many do-
mains, such as object recognition”, object classification’, and
brain science'. A relative consensus is that stronger hard-
ware foundation, better algorithm design, and larger available
data are the main driving forces for the further development
of deep learning. Emerging deep physical neural networks"!
provide new ways of learning at the hardware level. Ingeni-
ous algorithms and model designs, such as GoogLeNet'” and
ResNet!!, have also been successful in advancing deep learn-
ing. In the meantime, how to obtain efficient data for deep
learning is a key issue.

With the proliferation of mobile communication terminals
and the rapid spread of sensory engineering, such as the Inter-
net of Things, mankind has stepped into the era of big data.
However, due to a series of barriers, such as personal privacy
and industry secrecy, it is difficult to share data securely, and
it is harder for deep learning to gain access to data on a mass
of terminals. To this end, Google has proposed a federated
learning®® framework for mobile communication terminals,
which adopts a distributed deep learning approach of local
training and parameter aggregation. In federated learning,
local training is performed at the participant side to update
local model parameters, and parameter aggregation is

0104-1

conducted for the global model update by transmitting model
parameters (e.g., gradients). However, many studies” in re-
cent years have shown that federated learning also faces seri-
ous privacy threats, such as membership inference attacks,
GAN-based attacks, and reconstruction attacks. Training data
can be recovered with high quality from the model paramet-
ers shared in federated learning"". Protecting local model
parameters transmitted in federated learning is a considerable
problem.

Privacy-preserving strategies for federated learning are
usually divided into two categories!'": perturbation strategies
based on differential privacy (DP), encryption strategies
based on homomorphic encryption (HE), and secure multi-
party computation (SMPC). DP-based preservation!” inevit-
ably reduces model utility, although privacy guarantees can
be obtained. In addition, the applications!*'" of HE for high-
dimensional gradients impose an unbearable computational
load on the mobile terminal. It is worth noting that the gener-
al SMPC model using secret sharing fits well with the scen-
ario of distributed learning and edge computing. The number
of participants in secret sharing directly affects privacy-
preserving intensity and system overhead but is solidified
into two-party or all-party in previously proposed deep learn-
ing frameworks. The two-party computation (2-PC) setting is
often used to implement a lightweight privacy-preserving
deep learning framework"* .. However, the security of the 2-
PC setting is based on two noncolluding servers, and this

DOI: 10.52396/JUSTC-2022-0116
JUSTC, 2024, 54(1): 0104

mailto:yaoyz@hfut.edu.cn
https://justc.ustc.edu.cn/article/doi/10.52396/JUSTC-2022-0116
https://justc.ustc.edu.cn/article/doi/10.52396/JUSTC-2022-0116
mailto:yaoyz@hfut.edu.cn
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://justc.ustc.edu.cn/article/doi/10.52396/JUSTC-2022-0116
https://justc.ustc.edu.cn/article/doi/10.52396/JUSTC-2022-0116

Zzsrg "

Efficient secure aggregation for privacy-preserving federated learning based on secret sharing

Jin et al.

setting is usually achieved by using servers from different ser-
vice providers™, which is fragile and has no theoretical guar-
antee. All-party computation (All-PC) secret sharing-based
secure aggregation is widely utilized in privacy-preserving
federated learning™ . However, a large number of parti-
cipants in federated learning all join in the fully connected
secret sharing computing, which will inevitably lead to huge
computing and communication costs in the process of en-
crypting and handling dropout. 2-PC, All-PC, lightweight,
and full connection are not secret sharing schemes that can
better balance the strength and cost of privacy protection.
Therefore, secret sharing-based privacy-preserving federated
learning schemes with low communication-computation cost,
sufficient privacy preservation, and robustness of participant
dropouts should be sought.

In this work, we propose two efficient secure aggregation
schemes for privacy-preserving federated learning: federated
learning based on one-way secret sharing (FLOSS) and feder-
ated learning based on multi-shot secret sharing (FLMSS).
The problem of constructing a global model where no parti-
cipant reveals its updated gradients is referred to as secure ag-
gregation for federated learning. We consider the general
cross-device federated learning framework where mobile ter-
minals have high communication constraints, weak comput-
ing power, and the possibility of dropouts at any time. FLOSS
allows participants to join secret sharing of gradients within
their own sharing group and reduce the communication cost
by replacing entire high-dimensional random vectors with
pseudorandom seeds. FLMSS takes advantage of the large
number of cross-device federated learning participants in the
real world to design secure aggregation protocols with tun-
able performance and the ability to solve participant dropout
with minimal cost. It is worth mentioning that we abandon
AlI-PC for the first time in FLMSS. The theoretical analysis
proves that the local dataset of any participant can be well
protected under the severe threat of the honest-but-curious
server and participant collusion. Extensive experiments
demonstrate that our proposed schemes have distinct advant-
ages over the state-of-the-art works.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses the related work. In Section 3, we review
some preliminaries used in our proposed schemes. In Section
4, problem statements are given. In Section 5, we elaborate on
the design details of FLOSS and FLMSS. In Section 6, we
present the security analysis followed by the experimental
results in Section 7. Section 8 concludes this paper.

2 Related work

Our research is related to the line of work on federated learn-
ing with secure aggregation to protect the updated
model parameters. To the best of our knowledge, none of the
existing works can achieve our effectiveness between privacy-
preserving intensity and additional overhead in a federated
learning setting.

Some works'"*'" have tried to prevent honest-but-curious
servers from gaining user privacy by encrypting the uploaded
model parameters with original homomorphic encryption. For
the first time, Phong et al.'” applied homomorphic encryp-
tion to distributed learning completely and provided

0104-2

systematic practice based on two different encryption meth-
ods: Paillier encryption and LWE (learning with errors)-based
encryption. However, the only key pair is available to all par-
ticipants, which makes the security of the homomorphic en-
cryption system a huge risk. DeepPAR!"" is a privacy-
preserving distributed learning scheme based on re-
encryption in an attempt to address the aforesaid security vul-
nerabilities of the shared key. However, due to the unreason-
able design of the system mechanism, trusted third parties
(TTP) can easily be used to decrypt any user’s encrypted data.
Most importantly, the computational overhead of the above
schemes for the original homomorphic encryption of high-
dimensional parameters is unacceptable for ordinary devices.

Due to the low computational power of federated learning
participants, many efforts have attempted to use more effi-
cient encryption methods®**! and hybrid methods™"*! with
DP. The works of Xu et al.”” and Wu et al.””! both adopted
multi-input function encryption (MIFE) to complete the en-
cryption aggregation of local model parameters, which al-
lows parties to encrypt their data and the sever to compute a
specific function on the ciphertext. HybridAlpha® improves
conventional MIFE schemes to reduce the number of commu-
nication rounds and running time without intensive pairing
operations in federated learning and allows participants to dy-
namically join or drop. Wu et al.” employed the all-or-
nothing transform (AONT) to encode parameter matrixes,
thereby reducing the number of parameters required to be en-
crypted with MIFE. Even if efficient homomorphic encryp-
tion methods are adopted, performance overheads are not re-
duced to a desired level. DP-based protection schemes can
achieve a mathematically guaranteed protection strength with
a small additional computation overhead. Truex et al.”" skill-
fully found that leveraging the secure multi-party computa-
tion (SMC) framework can reduce the noise required by DP
and maintain the original protection strength for local model
parameters. Therefore, the hybrid approach combines the
Threshold-Paillier (TP) system and DP to achieve privacy
protection of federated learning and reduce the noise added
by DP. HybridAlpha®" follows the above findings, but the
difference is that it combines DP with MIFE. However, we
must realize that once DP is introduced, it inevitably reduces
the accuracy of the global model. Obviously, the lightweight
privacy protection based on reducing the availability of the
global model is not the optimal solution.

Based on the above considerations, additive secret sharing,
which is a lightweight and efficient privacy protection meth-
od, is becoming popular. Bonawitz et al.*! used a double-
masking structure to protect the shared model parameters and
secret sharing to enable the masks to be securely removed.
However, the proposed double-masking mechanism to solve
the participant dropout problem would reveal dropout parti-
cipants’ secret keys and introduce a significant amount of ad-
ditional computational and communication costs. SSDDL*!
uses a simple secret sharing algorithm to achieve high-
strength protection of uploaded gradients, but the unreason-
able design of its secret content induces huge communication
overhead, and this scheme cannot cope with the situation of

DOI: 10.52396/JUSTC-2022-0116
JUSTC, 2024, 54(1): 0104

Zzsrg "

Jin et al.
Table 1. Comparison of secure aggregation schemes for federated learning.
Privacy-preserving technology Resilience against dropout clients
Schemes
Type’ Lightweight Without TTP One round’ Nesting' Without rekeying*

Phong et al.l"") HE x X \ J y
Duan et al.™! SS x R x x x
Truex et al.t” TP+DP x x \ J V
Xu et al.2! MIFE+DP x x v v v
Wu etal.t MIFE+AONT x x J J v
Bonawitz et al."™" SS+AE \ J J J x
Zheng et al."”’) SS+AE \ \ J X v
Proposed FLOSS SS+AE v v x x x
Proposed FLMSS SS+AE \ \ \/ \/ N

*SS represents secret sharing; AE represents the key agreement protocol and the authenticated encryption scheme.

" One round means that the scheme can solve one round of participant dropout in one-round aggregation; Nesting represents the scheme that can deal with

new participant dropout in the process of handling dropout.

+ Without rekeying indicates that the process of handling dropout does not expose dropout clients’ secret keys.

participant dropouts.

There are some follow-up works > attempting to im-
prove Ref. [21] in many aspects, such as system overhead, ro-
bustness, and security. Turbo-aggregate®™ also employs the
double-masking structure to protect model parameters based
on additive secret sharing, but it sets up a topology of multi-
group circular to aggregate the results, which reduces the ag-
gregation overhead from O(N?) to O(NlogN). Redundancy
based on Lagrange coding is introduced to Turbo-
aggregate™, which enables the federated learning system to
tolerate 50% dropouts. However, the structure of multi-group
circles depends on additional topology information and the
increase in system complexity, and there is still redundancy in
computing and communication when aggregation is per-
formed in groups. In fact, the aggregation overhead of parti-
cipants can be reduced to O(N)®. We particularly note that
Kadhe et al.’” used the term multi-secret sharing, which is
similar to the FLMSS. However, there are essential differ-
ences between the above two schemes. FASTSECAGG in
Ref. [27] is based on the fast Fourier transform (FFT) to im-
prove secret sharing, and its tolerance for client collusion and
dropout is restricted to a preset constant fraction of clients.
Zheng et al.”’ simplified the dropout handling mechanism of
Ref. [21], introduced quantization-based model compression
and trusted hardware into the system realization and obtained
bandwidth efficiency optimization and security against an act-
ively adversarial server. However, Zheng et al.”’ did not
make innovative changes to the most basic additive secret
sharing scheme originating from Ref. [21], and their tenuous
dropout-tolerance algorithm could not converge to an end
once any new dropout occurred in the process of dealing with
client dropouts.

Compared with Refs. [21, 23], we have made significant
changes in the mechanisms of secret-sharing objects and dro-
pout processing, which further reduce the computation-
communication overhead. Table 1 summarizes the comparis-
on with most of the related works discussed above. The spe-
cific advantages of the computation-communication

0104-3

overhead of our work will be compared in the following
sections.

3 Preliminaries

In this section, we introduce some preliminaries, including
federated learning, secret sharing, key agreement, and pseu-
dorandom generators. In Table 2, we provide a summary of
the main notations used in this paper.

3.1 Federated learning

Federated learning™ is a new distributed deep learning sys-
tem with the goal of improving global model utility and pro-
tecting participant data privacy, which is constrained by the
computational performance and communication bandwidth of
edge devices. The basic framework of federated learning,
which is composed of one sever and N participants, is shown
in Fig. 1. The local training dataset D, for federated learning
is stored locally by each participant P;, and a central server §
collects and aggregates each local gradient G,; to generate an
updated global model W, at the rth communication round.

Table 2. Key notations used in this paper.

Notation Description
Wi Aggregate model in round ¢
G Plaintext gradient generated from participant P; in round ¢
Y. Masked gradient uploaded by participant P; in round ¢
PN Set of selected N participants in each round
P. Set of participants which have shared secrets with P; in each
! round
drop - .
P Set of dropout participants in each round
gphelp Set of participants which help deal with dropout in each
round
(SKyu.PK,) Key pair of participant P, in key agreement protocol
AKyy Agreement key computed from S K, and PK,
s Mask computed from AK,,,, i.e., secret sharing between P,
v and P,
d Preset shot count of one participant in FLMSS

DOI: 10.52396/JUSTC-2022-0116
JUSTC, 2024, 54(1): 0104

Efficient secure aggregation for privacy-preserving federated learning based on secret sharing

Jin et al.

B
l‘.{?jk[(
Centra lfever

Participant 1 Participant 2

Dataset N

Dataset 1 [Dataset 2 Dataset i

Fig. 1. The basic framework of federated learning.

At the rth communication round, the central sever selects a
subset of N participants £, and sends them the current glob-
al model W,_,. Each selected participant uses the current
global model W,_,; and local dataset D, to train to obtain the
local gradient G,; and then uploads it back to the central serv-
er. The central sever averages the received gradients to com-
pute the new global model:

W, =W_- Zal.iGz,[’ (1)
i=1

N
where a,; = |D|| / > 1D is the weight corresponding to parti-

cipant P, at the’iltth communication round. A number of
studies™ " have improved the above benchmark federated
learning framework and aggregation algorithms in terms of
global model convergence speed and accuracy.

3.2 Secret sharing

This paper adopts Shamir’s 7-out-of-n secret sharing”', which
allows a user to split a secret s into n shares, such that any ¢
shares can reconstruct s, but any r—1 or fewer shares cannot
reveal anything about s. The scheme consists of the sharing
algorithm and the reconstruction algorithm. The sharing al-
gorithm SS.share(s,7,n) — {s,,s,,-+,s,} takes as input a
secret s, the threshold ¢, and the number of shares n > ¢, and
then generates a set of shares S ={s,,s,,---,s,}. Given a sub-
set R where RC S and |R| > ¢, the reconstruction algorithm
SS.recon(R,) — s can reconstruct the secret s.

3.3 Key agreement

Key agreement allows the communicating parties to ex-
change keys securely by negotiating a consistent key without
revealing any information about this key. This paper adopts
the Diffie-Hellman key agreement® to produce secret shares
securely. Diffie-Hellman key agreement consists of paramet-
er generation algorithms, key generation algorithms, and key
agreement algorithms. Algorithm KA. .param(k) — pp =
(G',g,9) produces the needed public parameters, including
prime order ¢ and generator g of cyclic group G'. Each party
u can use the algorithm KA.gen(pp) — (SK,,PK,) = (x,g")
to generate its private-public key pair. x is sampled randomly
from group Z, (a cyclic group of prime order integers). An-
other party v can use the algorithm KA.agree(S K,, PK,) —
AK,, = g** to obtain a securely shared key between u and v.
In the same way, only u can also obtain AK,,, where
AK,, = AK,,. A Hash process can be added to the algorithm
KA.agree to change the field of the shared key"'.

0104-4

3.4 Pseudorandom generator

A secure pseudorandom generator®-** PRG is a mapping-
deterministic but unpredictable function that expands a bin-
ary bit string into a longer bit string. We can simplify the
PRG function as PRG({0, 1}") — {0, 1}’ where p(1) > A. The
input of PRG is a seed, i.e., a bit string of length security
parameter A. Security for a pseudorandom generator guaran-
tees that it is negligibly possible to computationally distin-
guish the output of PRG from a truly random one, as long as
the seed is confidential. It is worth emphasizing that when
feeding the same seeds to the same pseudorandom generator,
the output is the same, which is one of the important methods
used to save communication overhead.

4 Problem statements

In this section, we introduce the threat model, system models,
and requirements of FLOSS and FLMSS.

4.1 Threat model

Our system is designed to withstand two potential adversar-
ies: the central sever and the participants.

(I) Honest-but-curious central sever. The honest-but-
curious or semi-honest adversarial model is commonly con-
sidered in privacy-preserving data mining and cloud
computing®”>*!. The honest-but-curious central sever follows
the defined protocol correctly and will not intentionally modi-
fy, add or delete data required to be processed. However, the
sever will try to learn additional information or understand
the content of data. Therefore, participants’ private informa-
tion may be learned and leaked from the model updates by the
sever.

(II') Curious and colluding participants. We assume that
some participants may collude with the central server to ac-
quire the privacy of other participants by inspecting the in-
formation that they have access to during the correct execu-
tion of the protocol. The unrealistic extreme case in which
there is only one honest participant and all other participants
collude with the sever is not considered. This is a common
assumption in secret sharing-based privacy-preserving
schemes™ .

We assume that dependable and secure channels are guar-
anteed in all communications. Thus, messages are prevented
from accidental attacks such as snooping, loss, and tampering
during transmission.

4.2 System models of FLOSS and FLMSS

First, we define FLOSS and FLMSS in a functional way with
a comprehensive textual explanation.

Definition 1: we formalize the definition of FLOSS = (Init,
groupSet, LocalTrain, GradShare, ModelUpdate) which con-
sists of five algorithms.

(1) Init(Py,m) » (W,a, M, K): The central server selects
P, to participate in this round of training, the participation
weights form a vector a, the latest global model is used as the
initial model W for this round, and N participants are
grouped according to the sharing-group size m to obtain the
sharing-group set M. K is the set of all participants’ key
pairs.

DOI: 10.52396/JUSTC-2022-0116
JUSTC, 2024, 54(1): 0104

Zzsrg "

Jin et al.

(ii) GroupSet(M) — (u,idx,): On input the sharing-group
set M, the server selects a group u and generates participants’
IDs idx, in this group.

(iii) LocalTrain(W,u,n) — G,: Participant P; in group u
uses local dataset 9, and global model W to run the deep
learning algorithm with parameter selection rate 1 and ob-
tains local gradient G, where G, = {G}..,.

(iv) GradShare(G,,K) — Y,: On input the set of local
models G, and the set of key pairs K, participants obtain the
set of secret gradients Y, by secret sharing in group y and
then upload these secret gradients.

(v) ModelUpdate(Y,,,Y,,,---) > W: After receiving the
secret gradients uploaded by all sharing groups, the server
performs a global model update to obtain a new global model
w.

Definition 2: We formalize the definition of FLMSS =
(Init, LocalTrain, GradShare, DropHandle, ModelUpdate)
which consists of five algorithms.

(1) Init(Py) » (W,a,K): FLMSS no longer needs to
group participants in the initialization phase, and the rest is
the same as definition 1.

(ii) LocalTrain(W,Py,n,a) — (G,,G,,---G,): Participant
P; obtains the local gradient G; in the same way as in defini-
tion 1.

(iii) GradShare(G,,--,Gy,K,d) = (Y,,Y,,---Yy): On
input the shot count d of secret sharing and the set of key
pairs K, each participant splits its plaintext gradient into d + 1
parts by generating d mask vectors computed from agree-
ment keys and secretly sharing them with d participants. The
plaintext gradient G, of participant P, becomes the secret
gradient Y; after secret sharing is completed.

(iv) DropHandle (Pd’°p, (Y} pepren s K) - ({ Y,»}P,Ephel,,): On
input of the set of dropped participants £ and the set of key
pairs K, the participant PP, which shares secrets with the
dropped participants, cooperates to resolve dropout and up-
load new secret gradients.

(v) ModelUpdate({Y}5,cp, _p) = W: After receiving all
the secret gradients without unresolved dropped participants,
the server performs a global model update to obtain a new

global model W.

Figs. 2 and 3 show the system models of FLOSS and
FLMSS. The yellow dashed boxes mark the sequence of the
main steps of secret sharing. Key notations in both figures can
be explained in Table 2. In Fig. 2, STEP 1, STEP 2, and
STEP 3 correspond to LocalTrain, GradShare, and ModelUp-
date in the definition of FLOSS, respectively. In Fig. 3, STEP
1 and STEP 2 correspond to LocalTrain and GradShare in the
definition of FLMSS. It is worth noting that we need to un-
derstand STEP 3 and STEP 4 together because there are situ-
ations where new participants drop out when dealing with
dropouts. This means that STEP 3 and STEP 4 may be altern-
ating and nested. The combination of STEP 3 and STEP 4 in
Fig. 3 corresponds to the process of DropHandle with
ModelUpdate.

4.3 Requirements

To guarantee the performance of the proposed methods, we
first define the following four requirements.

Security. The security guaranteed by the proposed
schemes is based on the threat model described in Section
4.1. The local dataset and plaintext gradients computed from
it should be kept secret against both the central sever and the
other participants. No adversary can derive private informa-
tion from any messages communicated in the federated learn-
ing system that would reveal the participants’ local data and
models.

Efficiency. The extra computation and communication cost
due to privacy-preserving schemes should be as small as pos-
sible, especially the cost borne by the participants.

Accuracy. Privacy-preserving schemes should minimize
negative effects on global model accuracy.

Robustness. The system should be able to have an effi-
cient solution to the problem of participant dropout at any
point in the federated learning process.

5 Proposed schemes

In this section, we give a detailed construction of FLOSS and

Central Sever w
AW =3,
W =W+AW

(Participant P, \
G, = Z‘. Sy,

2522

Participant P,
G = Z“ Siy

(s =x)

sharing-group 4,

Fig. 2. System model of FLOSS where the formulas are simplified versions.

0104-5

Participant P,

G, =3, 5

> Sn=Y,

—_—_—— e e ———

sharing-group Ky

DOI: 10.52396/JUSTC-2022-0116
JUSTC, 2024, 54(1): 0104

Zzsrg "

Efficient secure aggregation for privacy-preserving federated learning based on secret sharing

Jin et al.

Central Sever w

AW=Y"Y,
W =W +AW

Dropout message

Participant Py)

Participant P, Participam] Participant Participant
P; P; P,

G=Y s, |- ! * G, =Y sy,
(=s=v] | | S,
N v
\ ~ \E\L - ~, 77 N -7

\ VRN /7'
N 2 ~

~ ~ —

Handling dropped participant P; (secret share again among relative participants)

-t |

Fig. 3. System model of FLMSS with the case of ¢ = 1. The omitted secret share values can be obtained in Fig. 2. The aggregation process after handling
the first round of dropped participants is not shown in this figure. The red dashed arrow represents the dropout state of the participant.

FLMSS.

5.1 Federated learning based on one-way secret sharing

Compared with redundant two-way secret sharing™”, the
FLOSS scheme mainly performs one-way secret sharing of
each participant’s plaintext gradients after local training is
completed. According to definition 1, the five constituent al-
gorithms of FLOSS are elaborated next.

51.1 Init(Py,m) — (W,a,M,K)

At the beginning of each round of training, the central server
first randomly selects N participants from all participants to
participate in this round of training, ie., Py={P,
P,,---,Py}. To flexibly control the scope of secret sharing

and the tradeoff between privacy protection strength and com-
N

munication cost, we divide N participants into [ﬂ sharing
groups of size m. u; represents the sharing group with the
index i. Therefore, the group set is denoted
M ={u,, - ,unm}. The server calculates the participation
weights a, which are explained in Section 3.1. Given the se-
curity parameter k, each participant P, needs to generate its
own key pair (SK,,PK, through KA.param(k) and
KA.gen(pp). Then, participants send their public keys to the
central sever. Finally, the central server broadcasts the global
model W and the public key set {PK}},., to all participants
and group u.

5.1.2 GroupSet(M) — (u,idx,)

After dividing the N participants into groups, the central serv-
er distinguishes these H] groups by numbering them from 1

to P] and then randomly numbers each member of all shared

groups from 1 to m, i.e., idx, ={idx,,---,idx,} ={1,--- ,m}.
Each participant can be uniquely identified by (u,idx). The
output of GroupSet(M) is the result of setting the group in-
formation for one shared group. The above elaboration ig-
nores one group that may have fewer than m participants,
which is nonessential.

5.1.3 LocalTrain(W,u,n,@) — G,

Without loss of generality, consider a participant P; in a

0104-6

shared group u as an example. P; receives the global model
W sent by the central server, starts training on the local
dataset O, and obtains the local gradient G, after replacing
the local model with W.

To further reduce communication overhead, many
schemes” =" sample gradients or perform higher-level com-
pression, thus degrading model utility for a significant reduc-
tion in communication data size of gradient exchange. Tak-
ing the distributed selective stochastic gradient descent
(DSSGD)®* as an example, participant P; chooses a fraction
n of G, to be shared rather than the entire G,. The contribu-
tion of each parameter of the ultrahigh-dimensional gradient
to SGD varies greatly, and gradient descent is a dynamic and
continuous process. Therefore, the selective abandonment of
some parameters will not have a great impact on the usability
of the final model. The two common parameter selection
methods are random sampling and TOPK selection, where
TOPK is the first K values in descending order. In recent
years, more advanced gradient compression methods, such as
Refs. [37, 39], can compress gradients more than 300 times
with only negligible loss of accuracy by error compensation
techniques. The focus of this paper is not on the gradient
compression method but on making privacy-preserving com-
munication more effective by improving the secret sharing
protocol. Finally, participant P, multiplies the compressed
gradient by the participation weight «; in advance.

5.1.4 GradShare(G,,K) =Y,

Without loss of generality, take a shared group u and one of
its members P, whose number is idx =k as an example.
Next, m-out-of-m additive secret sharing of gradients needs
to be performed within the shared group y, i.e., each group
member splits its local gradient into several shares as re-
quired and keeps one of them local. Other shares are sent to
designated group members for preservation. It is worth not-
ing that the secret sharing method used in this paper only
needs the sharing algorithm instead of the reconstruction
algorithm.

Specifically, the group member P, divides G, into k
parts, one of which is saved by himself, and the other k—1

DOI: 10.52396/JUSTC-2022-0116
JUSTC, 2024, 54(1): 0104

Zzsrg "

parts are sent to the group members (P, -, Py} With a
smaller idx than himself to be saved. Therefore, group
member P,,, needsto send shares to all other group mem-
bers without receiving shares. Meanwhile, the group member
P, only needs to receive the shares.

How P, can safely split local gradients and send shares to
designated members is described as follows. The main meth-
ods are key agreement and pseudorandom number generation.
First, in the initialization phase, P, receives the set of re-
quired public keys {PK}},., from the server. Without consid-
ering the group number u, P, needs to split the gradient G,
into shares {s,,,-,8.,} where k > 2. The secret share is cal-
culated as:

s.; = PRG(KA.agree(SK,, PK))), j <k, 2)

k-1
$u=Gi=) 81, 3)

=
P, uses the key agreement algorithm to generate private
shared keys for each shared object and uses these keys as
seeds to the pseudorandom generator to obtain secret vectors
with the same dimension as the gradient. The participants use
the same pseudorandom generator. The specific operation of
the PRG function is not the focus of this paper and can be
found in existing work™" >, After splitting the gradient, P,
needs to send the secret shares one by one to the correspond-
ing participants. It is worth noting that P, does not need to ac-
tually perform the sending operation, and other participants
can obtain the secret shares from P, by themselves according
to the key agreement algorithm. For example, P, can obtain

s, where s,; =5, by

s.; = PRG(KA.agree(S K, PK,)). @)

After all members of the group complete the abovemen-
tioned secret sharing, each participant computes its aggrega-
tion result as:

m

Yi= D s)

Jj=k

Finally, P, sends the result Y, to the central sever for
model updating.

5.1.5 ModelUpdate(Y,.Y,,,--:) = W

Without loss of generality, the case of group u is discussed.
Upon receiving all the results {Y}},.,, the central sever up-
dates the global parameters by

W:=W+AW, (6)
where

AW = Zm: Y. (7)

Combining Egs. (3) and (5), we can obtain

=l j=1

0104-7

Jin et al.

Algorithm 1: FLMSS

1 Initialization:

2 for each participant P; do

3 SKi=xi€Z,

4 PK;=g"eG

5 Upload PK; to the central sever

6 end for

7 Initialize W,

8 Sever executes:

9 for eachround r=1,2,---, do

10 Pn « (random set of m participants)

11 for each participant Py in Py in parallel do

12 Pfj(“d «(randomly sample d participants from Py)

13 Upload Pfj(“d to the central sever.

14 end for

15 PSPPI e P P P

16 for each participant Py in Py in parallel do

17 w;x < ClientUpdate(W,_; ,P;‘jfe

18 end for

19 Wi gy S0y Wik /101 = T 1Dk

20 end for

21 ClientUpdate(W,_; ,Piice): // Run on participant Py

R

23 B «(split Dy, into batches of size B)

24 for each local epoch e from 1 to E do

25 for batch b € 8 do

26 wew—1n-VOW,_1;b)

27 end for

28 end for

29 for each key PK; where P; € P do

10 si.j — PRG (KA agree (S K. PK;))

31 end for

o MDY R St Dnep sk
33 Return w, to the central sever

Therefore, the result obtained by central server aggrega-
tion is the result obtained by initial gradient aggregation
without secret sharing. In parallel, the server is able to obtain
anew global model after performing the same security ag-
gregation process with the other sharing groups.

5.2 Federated learning based on multi-shot secret shar-
ing
Many processes and implementation methods of FLMSS are
common to FLOSS, so this section mainly describes the dif-
ferences. To avoid confusion between the FLMSS and
FLOSS, we first point out the essential differences between
them. FLOSS performs m-out-of-m fully connected secret
sharing in each sharing group of m size, i.e., the group mem-
bers will share secrets with each other. However, FLMSS

DOI: 10.52396/JUSTC-2022-0116
JUSTC, 2024, 54(1): 0104

Zzsrg "

Efficient secure aggregation for privacy-preserving federated learning based on secret sharing

Jin et al.

does not need to group participants, which is easy to
intentionally set by the colluding parties, and secret sharing is
carried out randomly by all participants. In essence, d-shot
FLMSS means that each participant performs d’-out-of-d’
secret sharing where d’ > d+1 among all participants. Ac-
cording to definition 2, the five constituent algorithms of the
FLMSS are elaborated next. The overall FLMSS scheme is
presented in Algorithm 1. Meanwhile, the protocol for deal-
ing with dropout is shown separately in Algorithm 2.

5.2.1 Init(Py) — (W,a, K)

During the initialization phase, the central server no longer
needs to group participants. After generating their own key
pairs, participants send their public keys to the central sever.
The central server needs to broadcast the identity information
of all participants, which occupies very small communication
costs to all participants.

5.2.2 LocalTrain(W,Py,n,@) — (G,,G,, - ,Gy)

Participant P, obtains the local gradient G, through training
on model W, dataset D;, and compression rate 7, and the spe-
cific method is the same as that of FLOSS.

5.2.3 GradShare(G,,---,Gy,K,d) = (Y,,Y,,---,Yy)

Without loss of generality, consider a participant P; as an ex-
ample. According to the participant information received
from the sever in this round, P, randomly selects d parti-
cipants as its secret sharing destination. We can express it as
Pfe"dLPN,l, where |7’fe“d =d. Specifically, P; first sends the
identities of participants in ™ as a message to the central
sever. Assuming P; € P, the central sever verifies that P, is
online and then sends the public key PK; and PK, to P, and
P;. It should be emphasized that the central server is required
to record each pair of participants, which confirms the intent
for secret sharing. When the pair of participants completes the
public key exchange, P; executes:

G, := G,—PRG(KA.agree(S K,, PK)).)
Correspondingly, P, executes:
G, := G;+PRG(KA. agree(S K, PK))). (10)

When P; finds d destinations and completes secret sharing
d times, its active sharing ends. Under this mechanism, each
participant needs to actively share secrets with d participants
and accept the sharing from random participants $. After
completing the above sharing, P, updates the local aggrega-

tion result Y,:
Y,=G—) su+), s (1)

Pyepiend pyepicce

Finally, the central server has recorded the collaborative
sharing participant set #; of each participant P;, where
Pi = p?end U P?cce.

5.2.4 DropHandle(Pdmp, (Y} pepten » K)—)({)’i}plephclp)

Participant dropout before completion of secret sharing has a
negligible impact on the global model. However, if the parti-
cipant is disconnected after completing the secret sharing, the

0104-8

Algorithm 2 DropHandle for FLMSS

wy : Model parameters uploaded by Pj before handling

dropout
1 Initialization:
2 forround i =2,3,---, do
drop elp
3 Pin <0, P:'lth <0
4 end for
5 Sever computes SD?;IP — Psle“d, P;e“d, ‘e ,Pf\?“d, P?:([’p

6 i1

while [P*"] 0 do

Sever updates
help send send send drop drop
Pin < PT5 P PR Pristory Pin
Sever sends P?t:’p and Pg;lp to the participants in
help
? Pitn
10 for each participant Py in P;;lp in parallel do
if (P C Pﬂ;;‘;ry and ‘P;f"p =1) or (P drops out)
11 do
drop drop
12 Piiriin < Pieyn U Pk
13 else
14 Initialize a vector gy of size |wy|
15 8k < Wi+ ZPL‘epiend mps;:liry Sku — ZPVE"’?F“””::Z’;Y Sk,v
Select dl(t];) €{0,1} participant P; randomly
16 to share secret
17 Update g according to secret sharing in

Algorithm 1
18 Send g to the central sever

piend — prend (P}, update Picce

19 accordingly
20 end if
21 end for
22 i—i+1
23 end while
Sever computes
24 W« ZPkEPprdmp Phelp Wi+ Zpkephelp 8k

history ”history history

server aggregation result will lose some random shares, which
greatly reduces the availability of the aggregated gradient.

The set of newly dropped participants in the ith processing
round is denoted PL”. P4 can be obtained by the central
server in the process of collecting local aggregation results.
Correspondingly, the central server can obtain the set P5",
which shares secrets with the dropped participants P, and is
alive from the record.

In the first round of processing dropped participants, the
server obtains the identities of the online participants P,
which is required to offer help in this round from {#}, .
After determining the set of dropped participants, the central
server is required by the protocol to no longer accept local
results, which may be late from participants in P4 ". The serv-

er then sends P and P!" to each participant in P

Ist Ist

Without loss of generality, suppose P, € P|-". After P, re-

Ist

ceives the message, P, first strips out all shares that are

Ist *

DOI: 10.52396/JUSTC-2022-0116
JUSTC, 2024, 54(1): 0104

Zzsrg "

Jin et al.

shared with the dropped participants P~ in Y, :

Ist
Y, =Y, + Z Sai—

D S (12)
PiepliP npsend

drop - acce
PieP " NP

Then, in the first dropout-handling round, P, performs d\" -

shot secret sharing for ¥, among participants #,-". For P, and
%, in dropout-handling round i, we have

drop .
@ 0, Po & Pictorys (13)
ith — . hel d .
th mm{ 1 N |P;thp - }’ Pa c Ph:;iry’

where we define Py as Py’ UPT U---UPLT. Moreover,
Por , can be similarly defined in Algorithm 2. When all par-
ticipants in P! have completed the stripping and secret shar-
ing operations, the new (Y.}, o are generated to be
uploaded. 5

After the central server receives newly uploaded aggrega-
tion results for all participants in P°", it replaces the corres-
ponding original values with {Y,}, <, and the task of pro-
cessing dropped participants ends. If there are new dropped
participants while FLMSS processes the first round of dro-
pout, the system goes to the second round of processing. In
the same way, the server uses P and P5’ to organize the
same process as the previous round among Pir. Iterate the
above process until |1’§:’p| =0. Now, it is necessary to explain
that |Pi:’“| easily converges to 0 as i increases in the FLMSS.
An objective fact is that the participants that successfully up-
load the gradient parameters in a round are likely to be able to
stay online and provide reliable assistance™™. This is because
participants who successfully upload the gradient are con-
sidered to have sufficient conditions to participate in the fed-
erated learning process during this time period, such as being
charged, idle and on a favorable network!"*1, which are not
easily changed in a short period of time. As a result, the rate
of participant dropout will decline rapidly and substantially in
the process of dealing with dropout. On the other hand, it is
also crucial that FLMSS is not a fully connected secret shar-
ing scheme. When one participant drops out, only a small
number of relevant other participants are required for assist-
ance. In past works, when one participant dropped out, a large
number”"** or even all other participants”**! were required to
participate in recovering masks.

Consider below one extreme situation that can cause pri-
vacy leakage when dealing with dropped participants. When
|P2ﬁ“’ =1 and P, have only shared secrets with the current
round of dropped users, i.e., P, CPoa”, P, will be left with
only plaintext ¥, where Y, = G, after the stripping operation
is completed. When this extremely unlikely situation occurs,
P, takes the initiative to announce the drop to the server to
protect its privacy. FLMSS then proceeds to the next round of
drop processing until this very event with small probability
does not happen again.

5.2.5 ModelUpdate({Y}pepy_pir) = W

When no more participants drop out, the server uses the latest
local results uploaded by online participants for secure ag-
gregation in the same way as FLOSS.

0104-9

6 Security analysis

In this section, we present the security analysis of FLOSS and
FLMSS. The following proofs are based on an existing
lemma" that if participants’ values have uniformly random
masks that are added to them, then the resulting values look
uniformly random. Theorem 3 analyzes the security from a
probabilistic point of view. Since the probability and circum-
stances of participant dropouts are difficult to estimate and
FLMSS provides targeted protection against possible privacy
leakage, the impact of the dropout handling process on the
probability is ignored.

Theorem 1. In FLOSS, the local dataset privacy of P, can-
not be guaranteed if and only if the honest-but-curious cent-
ral sever and all (m — 1) other participants in the shared group
collude. Otherwise, the privacy of the local dataset D, can be
guaranteed.

Proof: The original local gradient G, of P, is split into
{81582, »8i}. To recover G, the adversary must obtain
these k shares or the sum of these k shares. Since in the
whole communication process of the FLOSS, there is no sep-
arate addition between these k shares, each value of these k
shares must be obtained to restore G,. Except for P, itself,
only {P,P,,---,P,,} know {s.,,85, - ,8w}. Therefore, the
adversary needs the collusion of these (k—1) participants.
Furthermore, the only way for an adversary to obtain the
local share value s, is S =Y, — Siix — Speix— - — Sps- EX-
cept for P, itself, only {Pui,Pi2s-,P,} know
{Sa1xs Siazis s Sms}, and only the central sever knows Y,.
Therefore, the adversary must also require the server to col-
lude with these (m—k) group members. In summary, to ob-
tain G,, which reveals the privacy of P,, the central server
must collude with all other (m-1) members
{Pn"' ’Pk—lst+lyPk+29“' ’Pm}'

Theorem 2. In FLMSS, in the face of an adversary that is
the honest-but-curious server or a group composed of any
number of other participants in collusion, P, can guarantee
the privacy of the local dataset D,.

Proof. First, we demonstrate the secret sharing process.
Without the participation of the central server, the adversary
cannot obtain Y, and s,,. Without the help of other parti-
cipants, the adversary cannot obtain s,; and s,,, where
i#k, j#k. Next, the security of the process of handling
dropped users is discussed. The process of dealing with
dropped participants involves P and ™", so their security
needs to be demonstrated. If P, is any dropped user in P,
neither the central server nor the other participants can obtain
Y, and s,,. If P, is any helper in P*", P, is required by the
FLMSS protocol to participate in another round of secret
sharing in the process that handles the dropped participants
before uploading the new local aggregation result, where the
situation is consistent with the above proved situation. In
summary, with the proof of Theorem 1, the adversary cannot
recover G, in the above two cases, i.e., the privacy of local
dataset D, is guaranteed.

Theorem 3. In the FLMSS, which is a d-shot, suppose
there are a total of N participants, x participants are curious
about colluding with the central server, and P, is any normal
participant. Then, the probability that an adversary composed
of curious participants and the honest-but-curious server can

DOI: 10.52396/JUSTC-2022-0116
JUSTC, 2024, 54(1): 0104

i‘itST‘("

Efficient secure aggregation for privacy-preserving federated learning based on secret sharing

Jin et al.

obtain the training data privacy G, of P, is

(M)N’H) 1—'1 e
N-1 i1 N—-i

Proof. Recovery of the local gradient G, by the adversary
first requires that all other (VN —1— x) normal participants do
not actively send secret shares to P,. The probability that one
normal participant does not send a secret share to P, is =4

N-1 2
so the conditional probability obtained from this is

N-1-x
(N[;—'_Id) . On this basis, a successful attack on P, also re-

quires that P, send all of its d shares generated actively to the

d
curious participants, and this probability is [] <. Thus, the

N-i

probability that the local gradient G, of a normal participant
lex d)
P, can be stolen by the adversary is (”""’)N o T ==

N-1 N-i

To better analyze the security of the FLMSS::{Ne plot sur-
face graphs of the probability of a normal participant being
successfully attacked as a function of environmental paramet-
ers. When 5000 < N < 10000 and 0 < x < 5000, the graphs of
P = f(N,x), where d = 5,10 are shown in Fig. 4. According
to Theorem 3, we also plot the probability of a normal parti-
cipant being successfully attacked as a function of the num-
ber of curious participants when the total number of parti-
cipants N is fixed to better demonstrate the impact of d on
the security of the FLMSS (see Fig. 5). As shown in Fig. 4, in
the face of drastic changes in the federated learning environ-
ment, a small value of d enables FLMSS to guarantee almost
100% security in the majority of cases. Fig. 5 shows that a
very small increase in d can greatly increase the privacy-
preserving ability of FLMSS. An appropriate increase in the
value of d is an extremely effective option for communica-
tion costs.

To better demonstrate the superiority of FLOSS and
FLMSS in terms of security, we compare the security of our
proposed schemes with the current state-of-the-art secret
sharing-based security aggregation schemes, as shown in
Table 3.t = _%J + 1 in Table 3 is the secret sharing threshold in
Ref. [21]. In SSDDL, since the grouping is controlled by the
central server, as long as the number of curious participants
colluding with the server is greater than m—2, the adversary
can attack any participant. Increasing m will exponentially in-
crease the communication cost, which will be proven later.
However, in our FLOSS, m increases drastically without wor-
rying about a surge in communication costs. The work of
Zheng et al.”! has similar principles and security. In
Bonawitz’s protocol”'), even if ¢ takes the suggested value

I_ZTNJ + 1 and the number of curious participants colluding with

(a)

=
=}

0.8

o
©

Probability

0.6
0.4
0.2

0.0

(b)

(=
© o

Probability

0.6

0.4

0.2

0.0

d=10

Fig. 4. Surface graphs of the security of FLMSS as a function of environ-
mental parameters when the number of shots 4 is fixed.

the server is greater than [ﬂ, the privacy of all normal
participants will be exposed. At the same time, the capacity to
handle dropped participants is also limited. In contrast, both
the security and robustness of our FLMSS show great advant-
ages. When d =10 and x <3N/5, the probability of privacy
leakage of one participant, which is less than 0.0001104, can
be negligible, where N =10000. Changes in the large value
of N have little effect on this probability. For practical scen-
arios in federated learning where curious participants account
for a small proportion, the protection provided by our FLMSS
is sufficient. Moreover, FLMSS can handle any number of

Table 3. Security comparison among secure aggregation schemes based on secret sharing.

Security against adversary

Scheme
Sever Participants Sever & x participants
Bonawitz et al.”" conditional v x<[2t—-N1-1
SSDDL® v v x<m-2
Zheng et al.”’] J y x<m-2
Proposed FLOSS J y x<m-2
Proposed FLMSS (d = 10) N y almost x < %N

0104-10

DOI: 10.52396/JUSTC-2022-0116
JUSTC, 2024, 54(1): 0104

Jin et al.

N=10000
1.0 A d=1
=1 =3
0.8
— d:j
=3 L]
Eo.s— = delo F s
9 /
E 0.4 1 » :
4 L}
»
0.2 %
0.0 " ey Sl ey |2 a0 *

0 2000 4000 5000 8000 10000
X

Fig. 5. Curves of the security of FLMSS as a function of the number of
curious participants x when the total number of participants N is fixed.

participant dropouts.

7 Experimental results

In this section, we conduct experiments to evaluate the per-
formance of our proposed privacy-preserving FLOSS and
FLMSS schemes. We set the operation environment, which
consists of an Intel(R) Xeon(R) Gold 5117 CPU, 128.00 GB
RAM, an NVIDIA RTX 3090 GPU, and a 64-bit operating
system with the PyTorch platform. We evaluate our proposed
schemes on a well-known standard dataset: MNIST™. The
MNIST dataset consists of 60000 training samples and 10000
test samples. The sample images are single-channel 28 x 28
handwritten digit images. The models we use for accuracy
evaluation are multilayer perceptron (MLP) and LeNet-5,
which have 104938 and 136886 parameters, respectively. We
also use ResNet-18"), ResNet-34, and ResNet-50 for perform-
ance evaluation, which have 11689512, 21797672, and
25557032 parameters, respectively. We use C++ to realize
encryption and secret sharing based on CryptoPP.

7.1 Accuracy evaluation

According to the principle of secret sharing and the imple-
mentation mechanism of our proposed scheme, FLOSS and
FLMSS do not cause noteworthy damage to the transmitted
model parameters, i.e., they do not decrease the model accur-
acy on the basis of the original gradient compression al-
gorithm. Therefore, the purpose of this section focuses on

1.0
0.8
&
S 0.6
g
< 044 ==f==Proposed FLMSS
=== (Centralized learning
- == DSSGD
' == SSDDL

o 5 10 15 20 25 30 35 40
Epoch

Fig. 6. Comparison of model accuracy for different learning methods.

0104-11

validation.

First, we conduct a comparative experiment of model
utility using the LeNet model on the MNIST dataset. We use
centralized learning in this scenario as a traditional bench-
mark. We use randomly selective SGD as a simple gradient
compression method and add DSSGD, which only uses this
method as a privacy-preserving method for comparison.
Moreover, we also reimplement the SSDDL scheme™, which
is also based on secret sharing. The number of participants N
is set to 100, where each participant has 1% of the entire
dataset. The sampling rate n of gradient selection is uni-
formly set to 0.1. Since the comparison schemes have no
mechanism to handle user dropouts, we do not set up user
dropout cases. We can use the performance of FLMSS to rep-
resent that of FLOSS without needing to repeat the experi-
ment. The comparison of the accuracy performance is illus-
trated in Fig. 6. Since DSSGD"¥, SSDDL", and our pro-
posed FLMSS use the same distributed SGD method and the
secret sharing mechanism does not affect the aggregated
model parameter values, their accuracy performances are al-
most the same. Compared with the traditional method without
gradient selection and using centralized training, our pro-
posed scheme converges slower, but the final model accuracy
is almost the same.

Subsequently, we briefly verify the impact of key paramet-
er settings in federated learning on model accuracy. Accord-
ing to the principle of control variables, we set the bench-
mark values of the gradient selection rate 7, the number of
participants N, and the number of local training epochs Le to
0.1, 100, 5 , respectively. We vary n, N, and Le in the range
of {0.01,0.1,0.2,0.3,1}, {30,60,90,120,150}, {1,2,5,10}, re-
spectively. To better simulate the federated learning scenario,
in the experiment for N, each participant has a smaller pro-
portion of the data, which is set to 0.2% of the entire dataset.
As shown in Fig. 7, when the gradient uploading rate 5 in-
creases, the model accuracy increases. However, when we
adopt more advanced gradient compression methods, the
model usability is affected by the new compression method it-
self. A larger number of participants N means that more data
are involved in training, which will improve the model accur-
acy. When the local epoch Le increases, the global model
converges faster and has higher accuracy, which is consistent
with the relevant conclusions of FedAvg". We can conclude
from the model performance experiments that our proposed
privacy-preserving schemes will not affect the model per-
formance of the original federated learning algorithm.

7.2 Performance evaluation

7.2.1 Communication performance

In the federated learning scenario, participants usually do not
have a large communication bandwidth and computing
power. The communication cost of the participants has be-
come an important factor restricting the development of fed-
erated learning. For fairness, we only count the participants’
communication overhead incurred during one round of glob-
al training. We use N to denote the number of participants in
the round, n to denote the number of parameters, b to denote
the bit precision, and n to denote the gradient compression

DOI: 10.52396/JUSTC-2022-0116
JUSTC, 2024, 54(1): 0104

Zzsrg "

Efficient secure aggregation for privacy-preserving federated learning based on secret sharing

Jin et al.

0.500

0875

0850

¢ 0.825

Accuarcy

0.800

0778

0.750

0.725

Accuarey

10° ! 0 30 60
7

(a) The effect of 7 on the

accuracy

Fig. 7. Model performance under the influence of different parameter settings.

rate. In FLOSS and SSDDL, we use m to denote the group
size and m<N. In FLOSS, FLMSS, and Bonawitz’s
protocol, we all use b, to denote the number of bits in a key
exchange public key. We use b, to denote the number of bits
in a secret share of Bonawitz’s protocol.

In FLOSS, N participants first download a model with a
size of nb from the central server, and the communication
cost is Nnb. Each participant then uploads its own public key
and downloads the public keys of all other participants in its
sharing group, with a communication cost of Nmb,. After the
participants complete the secret sharing through key agree-
ment, they upload the compressed local aggregation results to
the central server, and the communication cost is Nnnb.
Therefore, the total cost of our proposed FLOSS in one round
of training is N(mb, + (n+ 1)nb). The work of Zheng et al.>”
considers group management as an optional practical solution,
and their scheme without group management is
N(Nb, + (n+ 1)nb) according to FLOSS. Of course, they are
different in the method of implementing compression of
model parameters. In FLMSS, each participant that has up-
loaded its own public key to the sever shares a secret with one

ey
(S
=

= SSDDL

Bonawitz et al.
10 Zheng et al.
== "Wlo grouping

=4 FLOSS

«# FLMSS

200 400 600 300 1000

o |0 i SSDDL.
Bonawitz et al.
5 Zheng et al.
10°
wio grouping
== ELOSS

10': e s FLMSS
-

Privacy-preserving communication cost (VIB)

Fig. 8. (a) The communication cost used for privacy protection under dif-
ferent numbers of participants. (b) The communication cost used for pri-
vacy protection under different numbers of model parameters.

0104-12

(b) The effect of N on the
accuracy

5 20 25 30 35 40
Epoch

(c) The effect of Le onthe
accuracy (MLP for MNIST)

other participant by key agreement, with the total communic-
ation cost of both parties being 2b,. The above communica-
tion process is performed d times by each participant, so the
communication cost of the system for secret sharing is ap-
proximately 2Ndb,. Hence, the total communication cost of
the FLMSS in one round of training is N(2db, + (n+ 1)nb).
We summarize the one-round participant communication
costs of several other secret sharing-based privacy-preserving
distributed learning schemes in Table 4. The privacy-
preserving capability of DSSGD is poor, and its communica-
tion cost is a starting point for reference. Compared to
SSDDL, our FLOSS has the same level of strict protection
and lower communication costs. Compared to Bonawitz’s
protocol and other schemes, our FLMSS has strong privacy
protection strength and the ability to handle dropped parti-
cipants, but the proportion of communication cost used for
privacy protection is small to negligible compared to the ori-
ginal cost.

We measure the impact of the number of participants N
and the number of model parameters n on the communica-
tion cost. First, we train a LeNet network with 136886 para-
meters on the MNIST dataset. We set some moderate para-
meter values where group size m =50, number of shots
d =10, and the rate n = 0.1. In fact, the protection strength of
FLOSS with m =50 is far from sufficient compared with
FLMSS where d = 10, and 1 can be improved by using more
advanced gradient compression methods. To make a more in-
tuitive comparison of the communication costs used for pri-
vacy protection, we omit the basic communication overhead
common to all these schemes for transferring model paramet-
ers. As shown in Fig. 8a, while the FLMSS guarantees a very
high protection effect, it hardly increases the extra communic-
ation cost. Moreover, even if we increase the value of m to

Table 4. Comparison of the participants’ communication costs.

Scheme Communication cost Cost complexity
DSSGD! N(1+mnb O(Nn)
Bonawitz et al? NQNbg+5(N —4)bs +2nb) O(N*+Nn)
SSDDL™! N(1+@2m—-Dmnb O(Nmn)
Zheng et al.** N(Nby +(n+ D)nb) O(N? +Nn)
Proposed FLOSS N(mby + (n+1)nb) O(Nm+ Nn)
Proposed FLMSS N(2dby + (7 + 1)nb) O(Nn)

DOI: 10.52396/JUSTC-2022-0116
JUSTC, 2024, 54(1): 0104

Zzsrg "

Jin et al.

increase the protection strength, the communication cost in-
crease of our FLOSS is negligibly small compared to
SSDDL, which can be inferred from Table 4. Furthermore,
due to the logarithmic processing of the vertical axis, in fact,
the superiority of our proposed schemes in communication
cost is much greater than the intuitive perception of Fig. 8a.
Second, when we set N = 1000 and change the model para-
meters n for simulation, we obtain Fig. 8b. The same conclu-
sion can be drawn: our methods achieve a huge reduction in
communication cost while achieving better protection com-
pared to state-of-the-art woks. Apart from SSDDL, the com-
munication overhead of other schemes used for privacy pro-
tection is independent of the size of the model parameters.

7.2.2 Computation performance

To intuitively reflect the computational cost of the system for
secure aggregation, computation performance experiments no
longer count model training, communication and other time
consumption but focus on the process of encryption, masking,
and aggregation. We simulate 100 clients and one server and
dynamically adjust the structure of the LeNet model to obtain
varying model parameters. We make a comparison with the
most related and state-of-the-art works”"*! without heavy
cryptographic operations, which are able to deal with dropout.

First, we examine the participant-side and sever-side
computation performance without considering dropout. We
set up the model LeNet with 136886 parameters and change

(a) Bonawitz et al.
12007 o Zheng et al
w/o grouping

=& FLOSS
«4= FLMSS

1000

Time (ms)

0.1 0.2 0.3 0.4 0.5 0.6
Fraction

Participant side

(b) Bonawitz et al.

1000 4

Zheng et al.
w/o grouping
FLOSS
FLMSS

800 1

P44

600 1

Time (ms)

400 1

200 -

Jo———r—

0.1 0.2 0.3 0.4 0.5 0.6
Fraction

Sever side

Fig. 9. Computation-cost comparison with varying fractions of selected
participants per round.

0104-13

the fraction of selected clients to participate in federated
learning, i.e., the actual number of participants, to examine
the average computation performance of each participant to
encrypt the model and the sever to aggregate the model se-
curely in different works. Considering the total number of
participants, we set the size of the group in FLOSS to 10 and
d =3 in FLMSS. To control variables, we omitted operations
that may affect runtime in the work of Zheng et al.””), such as
quantization techniques and trusted hardware. We show the
participant’s running time of encrypting model updates for
varying fractions of participants selected in one round using
different schemes in Fig. 9a. Since FLOSS uses a grouping
strategy and FLMSS uses a fixed number of secret-sharing
shots, the participant-side computation cost of our proposed
scheme does not increase with the number of participants.
The participant-side computation costs of works of Bonawitz
et al.”" and Zheng et al.”” increase linearly with the number
of participants. In Fig. 9a, we show computation costs on the
sever side. In Ref. [21], the sever is required to perform re-
construction of secret keys and recompute masks to be sub-
tracted from the uploaded model whether dropouts occur or
not, which brings huge computation overhead. The central
sever only needs to perform simple additive aggregation in
our schemes. Then, we fix the selection fraction to 0.3 and
examine the computation performance of clients and the sever
when the size of the model varies. In Fig. 10, the computa-
tion costs of participants and the server for encryption and se-
cure aggregation increase linearly with increasing model size.

Bonawitz et al.
Zheng et al.
w/o grouping
FLOSS
FLMSS

(a) 4000

3500

i]

3000

2500

2000

Time (ms)

1500
1000

500 ot eennt

0.05 0.30 0.60 0.90 1.20
Number of model parameters 1E+6

Participant side

(b) 4000

Bonawitz et al.

Zheng et al.
® w/o grouping

- FLOSS
30004 * % FLMSS

Time (ms)
N
i=3
i=3
S

1000 1

ot

0.05 0.30 0.60 0.90 1.20
Number of model parameters 1146

Sever side

Fig. 10. Computation-cost comparison with varying numbers of model
parameters per round.

DOI: 10.52396/JUSTC-2022-0116
JUSTC, 2024, 54(1): 0104

Zzsrg "

Efficient secure aggregation for privacy-preserving federated learning based on secret sharing

Jin et al.

(a) 2501 Bonawitz et al.
Zheng et al.
® w/o grouping
2004 =¥ FLMSS
2 1504
£
=
o
E
= 100
50 1
04
0.00 005 0.10 0.15 020 025 030 035
Rate
Participant side
(b) 10*
10
) Bonawitz et al.
E Zheng et al.
°E‘ ™ o grouping
= =4 FLMSS
107
C=— ey
per I o ®
e
0.00 0.65 0.‘10 0.‘15 0.‘20 0.‘25 0.30 0.35
Rate
Sever side

Fig. 11. Computation cost for handling dropout with varying dropout
rates.

On the server side, where computation power is usually suffi-
cient, the grouping management of FLOSS and the sparse
connection method of FLMSS do not provide computing per-
formance advantages when no dropout occurs. However,
most importantly, on the client side where the performance is
most constrained, the performance overhead of our proposed
scheme is significantly lower than those of other schemes.
Although the work of Zheng et al.”*! cannot solve the nest-
ing of participant dropout, we are still interested in compar-
ing the computation performance when participant dropout
occurs. For the above reason, we only consider one round of
dropout. The selection fraction and the number of model
parameters are fixed to 0.4 and 136886. When we change the
dropout rate of participants, we can obtain Fig. 11. It is worth
noting that the running time in Fig. 11 is dedicated to the time
spent dealing with dropout. Since there is no separate process
to address participants’ dropout in the work of Bonawitz et
al.t we regard the difference between the running time
where participants drop out and the benchmark running time
as the time spent addressing dropout. Participants in the work
of Bonawitz et al. do not need to make additional calcula-
tions for the dropout of other participants. Although this
sounds like a good advantage, Fig. 9 and Fig. 10 show that
participants in their scheme have the disadvantage in compu-
tation overhead in the regular process. The computational cost
of FLMSS for dealing with dropout is low on the participant
side and the server side. Another important advantage that the

0104-14

Table 5. Performance complexity comparison.

Scheme Client computation Sever computation
Bonawitzetal®) OWN*+1N) O((N ~Ny)+nNa(N ~Ny))
Zheng et al.>* O(n(N + Nyg)) O(n(N — Ny))
Proposed FLOSS O(mn) O(nN)
Proposed FLMSS O(n(d+ Nq)) O(n(N —Ng))

average running time in Fig. 11a cannot reflect is that when
the dropout rate is low, FLMSS only requires a few parti-
cipants to offer assistance, while Zheng et al.’s scheme™ re-
quires all online participants to start the assistance program,
which easily causes new large-scale dropout. This advantage
can be verified from the difference in the front part of the
curve in Fig. 11b.

Finally, we compare the theoretical computational com-
plexity. The number of dropout participants is denoted as N,.
Other notations follow the previous descriptions. Overall,
FLOSS leads to O(mn) computations on each client side and
O(Nn) computations on the server side. The FLMSS leads to
O(n(d+N,)) computations on each client side and
O(n(N —N,)) computations on the server side. According to
related works®*!, we summarize the comparison of the
asymptotic computational complexity in Table 5.

8 Conclusions

We propose two computation-communication efficient se-
cure aggregation schemes for privacy-preserving federated
learning based on secret sharing: FLOSS and FLMSS.
FLOSS can achieve strict privacy preservation with a small
communication cost. FLMSS has the ability to provide high-
intensity privacy preservation to each participant in federated
learning and efficiently handle participant dropout. Theoretic-
al proof of security under the threat model of curious parti-
cipants and honest-but-curious central servers is given. Fi-
nally, we demonstrate the superiority of our proposed FLOSS
and FLMSS through extensive experiments.

Acknowledgements

This work was supported by the National Key Research and
Development Program of China (2018YFB0804102), the Na-
tional Natural Science Foundation of China (61802357), the
Fundamental Research Funds for the Central Universities
(WK3480000009), and the Scientific Research Startup Funds
of the Hefei University of Technology (13020-03712022064).

Conflict of interest

The authors declare that they have no conflict of interest.
Biographies

Xuan Jin received his B.E. degree from the the Hohai University in
2022. He is currently a master’s student at the University of Science and
Technology of China. His research interests include deep learning and
applied cryptography.

Yuanzhi Yao is currently an Associate Professor at the Hefei Uni-
versity of Technology. He received his Ph.D. degree from the University

DOI: 10.52396/JUSTC-2022-0116
JUSTC, 2024, 54(1): 0104

Z]srg*

Jin et al.

of Science and Technology of China in 2017. His research interests in-
clude deep learning and multimedia security.

References

[1] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521:
436-444.

[2] Redmon J, Divvala S, Girshick R, et al. You only look once:
Unified, real-time object detection. In: 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). Las Vegas,
USA: IEEE, 2016: 779-788.

[3] Minaee S, Kalchbrenner N, Cambria E, et al. Deep learning: Based
text classification: A comprehensive review. ACM Computing
Surveys, 2021, 54 (3): 1-40.

[4] Lee M, Sanz L R D, Barra A, et al. Quantifying arousal and
awareness in altered states of consciousness using interpretable deep
learning. Nature Communications, 2022, 13: 1064.

[5] Wright L G, Onodera T, Stein M M, et al. Deep physical neural
networks trained with backpropagation. Nature, 2022, 601: 549-555.

[6] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions. In:
2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Boston, USA: IEEE, 2015: 1-9.

[71 He K, Zhang X, Ren S, et al. Deep residual learning for image
recognition. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). Las Vegas, USA: IEEE, 2016:
770-778.

[8] McMahan H B, Moore E, Ramage D, et al. Communication-efficient
learning of deep networks from decentralized data. arXiv:
1602.05629, 2016.

[9]1 Nasr M, Shokri R, Houmansadr A. Comprehensive privacy analysis
of deep learning: Passive and active white-box inference attacks
against centralized and federated learning. In: 2019 IEEE
Symposium on Security and Privacy (SP). San Francisco, USA:
IEEE, 2019: 739-753.

[10] Wang Z, Song M, Zhang Z, et al. Beyond inferring class
representatives: User-level privacy leakage from federated learning.
In: IEEE INFOCOM 2019 —IEEE Conference on Computer
Communications. Paris, France: IEEE, 2019: 2512-2520.

[11] Zhu L, Liu Z, Han S. Deep leakage from gradients. In: Proceedings
of the 33rd International Conference on Neural Information
Processing Systems. New York: ACM, 2019, 1323: 14774-14784.

[12] Hitaj B, Ateniese G, Perez-Cruz F. Deep models under the GAN:
Information leakage from collaborative deep learning. In:
Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. New York: ACM, 2017: 603-618.

[13] Xu G, Li H, Liu S, et al. VerifyNet: Secure and verifiable federated
learning. /[EEE Transactions on Information Forensics and Security,
2020, 75: 911-926.

[14] Mothukuri V, Parizi R M, Pouriyeh S, et al. A survey on security
and privacy of federated learning. Future Generation Computer
Systems, 2021, 115: 619-640.

[15] Abadi M, Chu A, Goodfellow I, et al. Deep learning with differential
privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. New York: ACM, 2016:
308-318.

[16] Phong L T, Aono Y, Hayashi T, et al. Privacy-preserving deep
learning via additively homomorphic encryption. /[EEE Transactions
on Information Forensics and Security, 2018, 13 (5): 1333—1345.

[17] Zhang X, Chen X, Liu J K, et al. DeepPAR and DeepDPA: Privacy
preserving and asynchronous deep learning for industrial loT. /EEE
Transactions on Industrial Informatics, 2020, 16 (3): 2081-2090.

[18] Huang K, Liu X, Fu S, et al. A lightweight privacy-preserving CNN
feature extraction framework for mobile sensing. /EEE Transactions
on Dependable and Secure Computing, 2021, 18 (3): 1441-1455.

[19] Fereidooni H, Marchal S, Miettinen M, et al. SAFELearn: Secure
aggregation for private Federated learning. In: 2021 IEEE Security
and Privacy Workshops (SPW). San Francisco, USA: IEEE, 2021:
56-62.

[20] Yang Y, Mu K, Deng R H. Lightweight privacy-preserving GAN
framework for model training and image synthesis. [EEE
Transactions on Information Forensics and Security, 2022, 17:
1083-1098.

[21] Bonawitz K, Ivanov V, Kreuter B, et al. Practical secure aggregation

0104-15

for privacy-preserving machine learning. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications
Security. New York: ACM, 2017: 1175-1191.

[22] Duan J, Zhou J, Li Y. Privacy-Preserving distributed deep learning
based on secret sharing. Information Sciences, 2020, 527: 108—127.

[23] Zheng Y, Lai S, Liu Y, et al. Aggregation service for federated
learning: An efficient, secure, and more resilient realization. /EEE
Transactions on Dependable and Secure Computing, 2022, 20 (2):
988-1001.

[24] Xu R, Baracaldo N, Zhou Y, et al. HybridAlpha: An efficient
approach for privacy-preserving federated learning. In: Proceedings
of the 12th ACM Workshop on Artificial Intelligence and Security.
New York: ACM, 2019: 13-23.

[25] Wu D, Pan M, Xu Z, et al. Towards efficient secure aggregation for
model update in federated learning. In: GLOBECOM 2020—2020
IEEE Global Communications Conference. Taipei, China: IEEE,
2020: 1-6.

[26] Truex S, Baracaldo N, Anwar A, et al. A hybrid approach to privacy-
preserving federated learning. Informatik Spektrum, 2019, 42:
356-357.

[27] Kadhe S, Rajaraman N, Koyluoglu O O, et al. FastSecAgg: Scalable
secure aggregation for privacy-preserving federated learning. arXiv:
2009.11248, 2020.

[28] So J, Giiler B, Avestimehr A S. Turbo-aggregate: Breaking the
quadratic aggregation barrier in secure federated learning. /[EEE
Journal on Selected Areas in Information Theory, 2021, 2 (1):
479-489.

[29] Karimireddy S P, Kale S, Mohri M, et al. SCAFFOLD: stochastic
controlled averaging for federated learning. In: Proceedings of the
37th International Conference on Machine Learning. New York:
ACM, 2020: 5132-5143.

[30] Ozfatura E, Ozfatura K, Giindiiz D. FedADC: Accelerated federated
learning with drift control. In: 2021 IEEE International Symposium
on Information Theory (ISIT). Melbourne, Australia: IEEE, 2021:
467-472.

[31] Shamir A. How to share a secret. Communications of the ACM,
1979, 22 (11): 612-613.

[32] Diffie W, Hellman M. New directions in cryptography. /EEE
Transactions on Information Theory, 1976, 22 (6): 644—654.

[33] Blum M, Micali S. How to generate cryptographically strong
sequences of pseudo-random bits. SIAM Journal on Computing,
1984, 13 (4): 850-864.

[34] Bellare M, Yee B. Forward-security in private-key cryptography.
Topics in cryptology—CT-RSA 2003. Berlin, Heidelberg: Springer,
2003: 1-18.

[35] Shen J, Yang H, Vijayakumar P, et al. A privacy-preserving and
untraceable group data sharing scheme in cloud computing. /EEE
Transactions on Dependable and Secure Computing, 2022, 19 (4):
2198-2210.

[36] Fan K, Chen Q, Su R, et al. MSIAP: A dynamic searchable
encryption for privacy-protection on smart grid with cloud-edge-end.
IEEE Transactions on Cloud Computing, 2021, 11: 1170-1181.

[37] Lin Y, Han S, Mao H, et al. Deep gradient compression: Reducing
the communication bandwidth for distributed training. arXiv:
1712.01887, 2017.

[38] Shokri R, Shmatikov V. Privacy-preserving deep learning. In:
Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security. New York: ACM, 2015: 1310-1321.

[39] Vogels T, Karimireddy S P, Jaggi M. PowerSGD: practical low-rank
gradient compression for distributed optimization. In: Proceedings of
the 33rd International Conference on Neural Information Processing
Systems. New York: ACM, 2019: 14269-14278.

[40] Abdulrahman S, Tout H, Ould-Slimane H, et al. A survey on
federated learning: The journey from centralized to distributed on-
site learning and beyond. IEEE Internet of Things Journal, 2021, 8
(7): 5476-5497.

[41] Rahman S A, Tout H, Talhi C, et al. Internet of Things intrusion
detection: Centralized, on-device, or federated learning. [EEE
Network, 2020, 34 (6): 310-317.

[42] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 1998, 86 (11):
2278-2324.

DOI: 10.52396/JUSTC-2022-0116
JUSTC, 2024, 54(1): 0104

https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1145/3439726
https://doi.org/10.1145/3439726
https://doi.org/10.1145/3439726
https://doi.org/10.1145/3439726
https://doi.org/10.1145/3439726
https://doi.org/10.1145/3439726
https://doi.org/10.1145/3439726
https://doi.org/10.1145/3439726
https://doi.org/10.1145/3439726
https://doi.org/10.1038/s41467-022-28451-0
https://doi.org/10.1038/s41467-022-28451-0
https://doi.org/10.1038/s41467-022-28451-0
https://doi.org/10.1038/s41467-022-28451-0
https://doi.org/10.1038/s41467-022-28451-0
https://doi.org/10.1038/s41467-022-28451-0
https://doi.org/10.1038/s41467-022-28451-0
https://doi.org/10.1038/s41467-022-28451-0
https://doi.org/10.1038/s41586-021-04223-6
https://doi.org/10.1038/s41586-021-04223-6
https://doi.org/10.1038/s41586-021-04223-6
https://doi.org/10.1038/s41586-021-04223-6
https://doi.org/10.1038/s41586-021-04223-6
https://doi.org/10.1038/s41586-021-04223-6
https://doi.org/10.1038/s41586-021-04223-6
https://doi.org/10.1038/s41586-021-04223-6
https://doi.org/10.1109/TIFS.2019.2929409
https://doi.org/10.1109/TIFS.2019.2929409
https://doi.org/10.1109/TIFS.2019.2929409
https://doi.org/10.1109/TIFS.2019.2929409
https://doi.org/10.1109/TIFS.2019.2929409
https://doi.org/10.1109/TIFS.2019.2929409
https://doi.org/10.1109/TIFS.2019.2929409
https://doi.org/10.1016/j.future.2020.10.007
https://doi.org/10.1016/j.future.2020.10.007
https://doi.org/10.1016/j.future.2020.10.007
https://doi.org/10.1016/j.future.2020.10.007
https://doi.org/10.1016/j.future.2020.10.007
https://doi.org/10.1016/j.future.2020.10.007
https://doi.org/10.1016/j.future.2020.10.007
https://doi.org/10.1016/j.future.2020.10.007
https://doi.org/10.1109/TIFS.2017.2787987
https://doi.org/10.1109/TIFS.2017.2787987
https://doi.org/10.1109/TIFS.2017.2787987
https://doi.org/10.1109/TIFS.2017.2787987
https://doi.org/10.1109/TIFS.2017.2787987
https://doi.org/10.1109/TIFS.2017.2787987
https://doi.org/10.1109/TIFS.2017.2787987
https://doi.org/10.1109/TIFS.2017.2787987
https://doi.org/10.1109/TIFS.2017.2787987
https://doi.org/10.1109/TII.2019.2941244
https://doi.org/10.1109/TII.2019.2941244
https://doi.org/10.1109/TII.2019.2941244
https://doi.org/10.1109/TII.2019.2941244
https://doi.org/10.1109/TII.2019.2941244
https://doi.org/10.1109/TII.2019.2941244
https://doi.org/10.1109/TII.2019.2941244
https://doi.org/10.1109/TII.2019.2941244
https://doi.org/10.1109/TII.2019.2941244
https://doi.org/10.1109/TDSC.2019.2913362
https://doi.org/10.1109/TDSC.2019.2913362
https://doi.org/10.1109/TDSC.2019.2913362
https://doi.org/10.1109/TDSC.2019.2913362
https://doi.org/10.1109/TDSC.2019.2913362
https://doi.org/10.1109/TDSC.2019.2913362
https://doi.org/10.1109/TDSC.2019.2913362
https://doi.org/10.1109/TDSC.2019.2913362
https://doi.org/10.1109/TDSC.2019.2913362
https://doi.org/10.1109/TIFS.2022.3156818
https://doi.org/10.1109/TIFS.2022.3156818
https://doi.org/10.1109/TIFS.2022.3156818
https://doi.org/10.1109/TIFS.2022.3156818
https://doi.org/10.1109/TIFS.2022.3156818
https://doi.org/10.1109/TIFS.2022.3156818
https://doi.org/10.1109/TIFS.2022.3156818
https://doi.org/10.1109/TIFS.2022.3156818
https://doi.org/10.1109/TIFS.2022.3156818
https://doi.org/10.1016/j.ins.2020.03.074
https://doi.org/10.1016/j.ins.2020.03.074
https://doi.org/10.1016/j.ins.2020.03.074
https://doi.org/10.1016/j.ins.2020.03.074
https://doi.org/10.1016/j.ins.2020.03.074
https://doi.org/10.1016/j.ins.2020.03.074
https://doi.org/10.1016/j.ins.2020.03.074
https://doi.org/10.1016/j.ins.2020.03.074
https://doi.org/10.1109/TDSC.2022.3146448
https://doi.org/10.1109/TDSC.2022.3146448
https://doi.org/10.1109/TDSC.2022.3146448
https://doi.org/10.1109/TDSC.2022.3146448
https://doi.org/10.1109/TDSC.2022.3146448
https://doi.org/10.1109/TDSC.2022.3146448
https://doi.org/10.1109/TDSC.2022.3146448
https://doi.org/10.1109/TDSC.2022.3146448
https://doi.org/10.1109/TDSC.2022.3146448
https://doi.org/10.1109/TDSC.2022.3146448
https://doi.org/10.1007/s00287-019-01205-x
https://doi.org/10.1007/s00287-019-01205-x
https://doi.org/10.1007/s00287-019-01205-x
https://doi.org/10.1007/s00287-019-01205-x
https://doi.org/10.1007/s00287-019-01205-x
https://doi.org/10.1007/s00287-019-01205-x
https://doi.org/10.1007/s00287-019-01205-x
https://doi.org/10.1007/s00287-019-01205-x
https://doi.org/10.1007/s00287-019-01205-x
https://doi.org/10.1109/JSAIT.2021.3054610
https://doi.org/10.1109/JSAIT.2021.3054610
https://doi.org/10.1109/JSAIT.2021.3054610
https://doi.org/10.1109/JSAIT.2021.3054610
https://doi.org/10.1109/JSAIT.2021.3054610
https://doi.org/10.1109/JSAIT.2021.3054610
https://doi.org/10.1109/JSAIT.2021.3054610
https://doi.org/10.1109/JSAIT.2021.3054610
https://doi.org/10.1109/JSAIT.2021.3054610
https://doi.org/10.1109/JSAIT.2021.3054610
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1137/0213053
https://doi.org/10.1137/0213053
https://doi.org/10.1137/0213053
https://doi.org/10.1137/0213053
https://doi.org/10.1137/0213053
https://doi.org/10.1137/0213053
https://doi.org/10.1137/0213053
https://doi.org/10.1137/0213053
https://doi.org/10.1109/TDSC.2021.3050517
https://doi.org/10.1109/TDSC.2021.3050517
https://doi.org/10.1109/TDSC.2021.3050517
https://doi.org/10.1109/TDSC.2021.3050517
https://doi.org/10.1109/TDSC.2021.3050517
https://doi.org/10.1109/TDSC.2021.3050517
https://doi.org/10.1109/TDSC.2021.3050517
https://doi.org/10.1109/TDSC.2021.3050517
https://doi.org/10.1109/TDSC.2021.3050517
https://doi.org/10.1109/TDSC.2021.3050517
https://doi.org/10.1109/TCC.2021.3134015
https://doi.org/10.1109/TCC.2021.3134015
https://doi.org/10.1109/TCC.2021.3134015
https://doi.org/10.1109/TCC.2021.3134015
https://doi.org/10.1109/TCC.2021.3134015
https://doi.org/10.1109/TCC.2021.3134015
https://doi.org/10.1109/TCC.2021.3134015
https://doi.org/10.1109/JIOT.2020.3030072
https://doi.org/10.1109/JIOT.2020.3030072
https://doi.org/10.1109/JIOT.2020.3030072
https://doi.org/10.1109/JIOT.2020.3030072
https://doi.org/10.1109/JIOT.2020.3030072
https://doi.org/10.1109/JIOT.2020.3030072
https://doi.org/10.1109/JIOT.2020.3030072
https://doi.org/10.1109/JIOT.2020.3030072
https://doi.org/10.1109/JIOT.2020.3030072
https://doi.org/10.1109/MNET.011.2000286
https://doi.org/10.1109/MNET.011.2000286
https://doi.org/10.1109/MNET.011.2000286
https://doi.org/10.1109/MNET.011.2000286
https://doi.org/10.1109/MNET.011.2000286
https://doi.org/10.1109/MNET.011.2000286
https://doi.org/10.1109/MNET.011.2000286
https://doi.org/10.1109/MNET.011.2000286
https://doi.org/10.1109/MNET.011.2000286
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791

	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Federated learning
	3.2 Secret sharing
	3.3 Key agreement
	3.4 Pseudorandom generator

	4 Problem statements
	4.1 Threat model
	4.2 System models of FLOSS and FLMSS
	4.3 Requirements

	5 Proposed schemes
	5.1 Federated learning based on one-way secret sharing
	5.1.1 Init$({\mathcal{P}_N},m) \to (\bm{W},\alpha ,{ M},{K})$
	5.1.2 GroupSet$({\bm M}) \to (\mu ,\bm{id}{\bm{x}_\mu })$
	5.1.3 LocalTrain$(\bm{W},\mu ,\eta ,\bm{\alpha}) \to {\bm{G}_\mu }$
	5.1.4 GradShare$({\bm {G}_\mu },{\bm K}) \to {\bm{Y}_\mu }$
	5.1.5 ModelUpdate$({\bm{Y}_{{\mu _1}}},{\bm{Y}_{{\mu _2}}}, \cdots) \to \bm W$

	5.2 Federated learning based on multi-shot secret sharing
	5.2.1 Init$({\mathcal{P}_N}) \to (\bm{W},\bm {\alpha} ,\;{\bm K})$
	5.2.2 LocalTrain$(\bm{W},{\mathcal{P}_N},\eta ,\bm{\alpha}) \to \left({{\bm{G}_1},{\bm{G}_2}, \cdots ,{\bm{G}_N}} \right)$
	5.2.3 GradShare$({\bm{G}_1}, \cdots ,{\bm{G}_N},{ K},d) \to ({\bm{Y}_1},{\bm{Y}_2}, \cdots ,{\bm{Y}_N})$
	5.2.4 DropHandle$\left(P_\text{drop}^{}，{\left\{{Y}_{i}\right\}}_{{P}_{i}\in \mathcal{P}^\text{help}}，{ K}\right)\to \left({\left\{{Y}_{i}\right\}}_{{P}_{i}\in \mathcal{P}^\text{help}}\right)$
	5.2.5 ModelUpdate$({\{ {\bm{Y}_i}\} _{{P_i} \in {\mathcal{P}_N} - {\mathcal{P}^\text{drop}}}}) \to \bm{W}$

	6 Security analysis
	7 Experimental results
	7.1 Accuracy evaluation
	7.2 Performance evaluation
	7.2.1 Communication performance
	7.2.2 Computation performance

	8 Conclusions
	Acknowledgements
	Conflict of interest
	References

