st

http://justc.ustc.edu.cn Received: August 08, 2022; Accepted: November 17, 2022

Harnack inequality for polyharmonic equations

Jiamin Zeng, Runjie Zheng, and Yi Fang >

Department of Mathematics, Anhui University of Technology, Ma’anshan 243002, China

™Correspondence: Yi Fang, E-mail: yif1915@ahut.edu.cn
© 2023 The Author(s). This is an open access article under the CC BY-NC-ND 4.0 license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Graphical abstract

Harnack inequality.

Public summary
m Some new type mean value formulas for polyharmonic functions were established.

m The Harnack inequality for polyharmonic functions was proved.

Citation: Zeng J M, Zheng R J, Fang Y. Harnack inequality for polyharmonic equations. JUSTC, 2023, 53(5): 0504. DOI: 10.52396/JUSTC-2022-0114


mailto:yif1915@ahut.edu.cn
http://creativecommons.org/licenses/by-nc-nd/4.0/

N

UST

+

http://justc.ustc.edu.cn

Received: August 08, 2022; Accepted: November 17, 2022

Harnack inequality for polyharmonic equations

Jiamin Zeng, Runjie Zheng, and Yi Fang -

Department of Mathematics, Anhui University of Technology, Ma’anshan 243002, China

>™Correspondence: Yi Fang, E-mail: yif1915@ahut.edu.cn

© 2023 The Author(s). This is an open access article under the CC BY-NC-ND 4.0 license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Cite This: JUSTC, 2023, 53(5): 0504 (4pp)

Read Online

Abstract: Some new types of mean value formulas for the polyharmonic functions were established. Based on the formu-
las, the Harnack inequality for the nonnegative solutions to the polyharmonic equations was proved.
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1 Introduction

The Harnack estimates for the harmonic equation have been
investigated profoundly'”. Let Q c R"(n > 2) be a connected
domain. In 2006, Caristi and Mitidieri” considered the Har-
nack inequality for nonnegative solutions to the biharmonic
equation

(=A)u(x) =0, in Q. (1)

They used the mean value formulas for the biharmonic func-
tions, which are the solutions to the biharmonic equations and
the maximum principle, to prove the Harnack inequality. Mo-
tivated by the approaches and results in their work, we will
consider the Harnack inequality for the nonnegative weak
solutions to the k-harmonic (k > 3) equation

(~AYu(x) =0, in Q. 2)

The function u that satisfies Eq. (2) is called k-harmonic or
polyharmonic. We shall focus on the case k = 3 and prove the
mean value formulas for the 3-harmonic function and for the
general k-harmonic function cases by induction argument.
Then, we will give the proof of the Harnack inequality for Eq.
(2).

Theorem 1.1. Assume that u is a nonnegative weak solu-
tion of Eq. (2) such that —Au >0 in Q. Then there exists
C =C(n) >0, such that for any x € Q and each R satisfying
0 < 2R < dist(x,08) and B,,(x) cC Q, it holds that

sup u < C inf u. 3)
Brya() Bri(®

Remark 1.1. The assumption —Au >0 in Q is necessary.
Since if we let u(x)=x for x=(x,---,x,)€R", then
(=AYu(x) =0 for k>3, —Au(x) = —=2 < 0. However, for any
R >0, u does not satisfy the Harnack inequality in Bg(0).

The remaining part of this paper is organized as follows: In
Section 2, we figure out the mean value formulas for polyhar-
monic functions, and in Section 3, we give the proof of
Theorem 1.1.
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2 The mean value formulas

In this section, we first prove the mean value formulas for 3-
harmonic functions, and then extend the mean value formu-
las to the general polyharmonic function cases by the induc-
tion argument. The mean value formulas we consider here are
different from those in Refs. [4, 5] and references therein.

Definition 2.1. For any x € R*, r > 0, the spherical average
of u is defined as

u(x,r)= u(y) do,.

1
0B, ()] Jon.co
Remark 2.1. When there is no ambiguity, we will simply
write #(r) instead of #(x, r). Obviously, we have

u(ry=—

1
u(x+ré) do,
LL),, 0B1(0) ( ‘f) &

where w, is the measure of the unit sphere dB,(0).

The following lemma was very useful in the study of
higher-order conformally invariant elliptic equations”. For
the convenience of the readers, we will give a proof.

Lemma 2.1. For any integer k>1, it holds that
Au(r) = Au(r).

Proof. Since #(r) is radially symmetric, it follows that

n—1

Au(r)=u"(r)+ ' (r)= rT{l(W"ﬁ’(r))’.

r

Notice that

_ 1
i (r)=—
() w, JB1(0)

Vu(x+ré)-&do,

where ¢ is the outward unit normal vector to the boundary
0B,(0). Then the divergence theorem™ implies that

1 1
n—1=r —_ . -

R = ], Vu)-gdo, = fw Au(y)dy.

Since
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a Sy AuG)dy = [, Au(y)dy ., _
o _ e o - u(x)+cur’+ A’u(x) = u(r). 5
= | Aut)dy =lim = (W +eur s g Nu() = tr) )
) f(; J;B‘(X) Au(y)do,ds— JU' L)E‘m Au(y)do,ds ) ) n—1
lim —r = Then, taking the Laplacian operator A = 8> + ——9, on both
t—r — r
Au(y)do,, sides of Eq. (5), we obtain
B, (x) -

then

Aii(r) = %(r""ﬁ’(r))’ = Au(y)do, = Au(r).

0B, (x)| oo
Therefore, for any integer k > 1, it can be easily concluded
that A%ii(r) = Afu(r) by induction.

Now, we give the proof of the mean value formula for 3-
harmonic functions by the approach in Ref. [7].

Lemma 2.2. Assume that u is a weak solution to
(=AYu =0 in Q. For any x € Q, denoted by d, = dist(x,0Q),
then for any 0 <R <d,, the following mean value formula
holds

m+DHn+2) 1
= u
16 |Br(x)| 7 Brto)
ly— ly—x
2

R +(n+4)(n+6) R

u(x)

|2

(n+2)(n+4)-2(n+3)(n+5) dy.

Proof. By Weyl’s lemma!”, we can prove that u € C(Q).
For any fixed point x € Q, we denote by

1
u(ry=— LB](O) u(x+ré) do,

wn

and

—_— 1
Au(r)= — Nu(x+7r€) do.
w

), < 9B1(0)

Since #(r) is radially symmetric, then by Lemma 2.1, for
0<r<d,, wehave

a(r) =)+ 20Dy = i” -
T 3y = Rt 0

Note that (=A)’u=0, so A’u is_harmonic. By the mean
value formula, we have A’u(x) = A’u(r) for any 0 <r<d,.
r
) n(n+2) )
tion to Eq. (4). Therefore, the general solutions to Eq. (4) can
be given by

Then, it is easy to check that 5 A’u(x) is a special solu-

4

p
cyt e+ et eyt + —————ANu(x), n=5;
8n(n+2)
7
Coy + Cnl 2+ CosInr + oy + —=Au(x), n=4;
i(r)= r“192
Cy + el HCyr ot + 120A2M(X), n=73;
4
y
cutepInr+egrrInr+cyr* + aAzu(x), n=2;

where ¢; (i,j=1,---,4) are all constant. Next, we calculate
these constants.

Consider the case n > 5 first. Since i is continuous in [0,d,]
and &(0) = u(x) = ¢, which implies that ¢, = ¢, =0,
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2

3 -1
2.+ 2 AN u(x)+ - (2cl4r+
r

ETE) Au(x)|=Au(r),

2n(n+2)

which yields
rZ
2nc,, + —ANu(x) = Au(r).
2n

Since Ai(r) = Au(r) by Lemma 2.1, letting r — 0, we get
1
Cuy = Z—nAu(x).

For the cases n = 2,3,4, we can use the same strategy as the
cases n > 5. Therefore, for n > 2, we have the following uni-

form formula
r2 r4

™ Au(x)+ ™

mA M(X) = ﬁ(r) (6)

u(x) +

For any R € [0,d,], multiplying w,r"" on both sides of Eq.
(6) and integrating with respect to r € [0, R], we get

2 4

R ) _
u(x) + mAM(}C) + WA u(x) =
1
Bo0)] o I (M

Fixing R =r in Eq. (7) and combining it with Eq. (6), we

obtain
rt s
—— A =
u(x) 8+ 2)n+4d) u(x)
n+2 1 n
2 B oo IV Sy uCx+ T (8)

Again, for any R € [0,d,], multiplying »* (k> 0) on both
sides of Eq. (8) and integrating with respect to r € [0, R], we

obtain
ket "
nlj 1Y 30y 2)(nR+ orrErs e =
n(;la-:ZZ) LR r L,m) u(x +y)dydr—
2Z,n L e LBHO) u(x+ ré)dodr =
n(;(:nz) fo r forp”" LB,(U) u(x +p&)do,dodr — g L PRa(dr=
n(n; 2( [ i()dpdr-2 [ a(rar.

Let f(r) := [, p""ii(p)dp, then integration by parts implies that
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R r 1 3 Rk+] R rk+]
zjo #Lp i(p)dpdr = mf(R)—fo o

Rk+] R e R rn+1<
k+1 jo " u(r)dr—fo k+1

It follows that

Rn+k+l Rn+k+5

k1Y T S nm ks S 9=

nm+2) . (f - _n(n+k+3) L
—2(k+1)R for u(r)dr —2(k+1) Lr’ u(r)dr.

Therefore,

(n+k+ 1R

U = ST D D ks Y=

n+k+1 1
2k +1) [Ba()] I (y)[('”z) (ntkt+ 32—

|y x|k+]
Rk+l dy
)

Plugging k=0 and k =1 into Eq. (9), we have two special
equalities as follows:

(n+ DR . B
M(x) - 8(]1 + 2)(}1 + 4)(n T 5) A u(x) =
n+l 1 s
2 |Ba(0)| Jaw u(y)|(n+2)—(n+3) ]
and
R , B
u(x) — WA u(x) =
n+2 1 - x|
4 [Bp(x)| Jmco uy)|(n+2)—(n+4) } .
which implies that
_(n+Dr+2) 1 .
u(x) = 16 1Bo(x)] o u(y)
(2= 2(n+3)(n+5)| |+(n+4)(n+6)| x|2 dy.

By the similar arguments, generally, we can obtain the
mean value formulas for k-harmonic functions.

Lemma 2.3. Assume that u is a weak solution to
(-AYu=0 in Q, k>3. For any xe€&, denoted by
d, = dist(x,09Q), then for any 0 < R <d,, the following mean
value equality holds

_ 1 PPN
U0 = an R [, u) Z bi(k)=——dy,

[, (n+m)
2k-1 [(k— 1)|]2
M (n+2m+1i), i =0, k—1.

Proof. If we denote by

where a(n,k) = and b(k)=(-1)C,_,

_ 1 PN
FR.X) = aln jBR(X)u(w;b,-(k) =,
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+
where  a(nk) = —H'“‘ +m) - nd b= (—1)CL -
21 [(k= DT

[ (n+2m+i), i=0,---,k—1. Then by direct calculation,
we get

0

— f(RX)=0

3R (&%)
and

lim f(R, x) = u(x),

which finishes the proof.

3 Proof of Theorem 1.1

Now, we can give the proof of Theorem 1.1.
Proof. On the one hand, for any xe€®Q, 0<2R<
dist(x,09), by Lemma 2.3 we have

u(x) < C(n,k)—— |BR( 5 S u(y)dy.

If z € Bg,(x), we have Bg,(z) C Bi(x) and

u(z) <C(n,k)——— u(y)dy <

|BR/2(Z)| L’W( 2

Clnk)ym——] u(y) dy.

[Br(x)| 8eco
Therefore,

C(n,k)
sup u <
Bgpa(x) |BR(x)| Br()

u(y)dy. (10)

The value of the above positive constants C(n, k) may vary in
different places.

On the other hand, since u >0 and —Au >0 in Q, by the
mean value inequality, for any x€ Q, >0, if B,(x) cc Q,
then

u(x) >

1
1B, o O

we have inf u = inf u. Without loss
B2 (x) OBR2(x)

By Hopf’s lemma!",

of generality, we assume the minimum point x, € 9B, (x),
then u(x) > u(x,). Obviously, Bg,(x) C Bg(x) C B, (x,) CC 2,
so we have

inf u=u(x,) >
Brj2(x)

|Bw(xo>| Lm, o MOV 2
2\" 1
(5) [Br(x)| Bk(x)u(y) dy. (11)

By (10) and (11), the proof is completed.
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