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The process of recovering the precision matrix in the presence of additive and multiplicative measurement errors.

Public summary

m We propose a new methodology COCOISEE to achieve scalable and interpretable estimation for Gaussian graphical
model under both additive and multiplicative measurement errors.

m The method is stepwise convex, computationally stable, efficient and scalable.

m Both theoretical and simulation results verify the feasibility of our method.
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Abstract: It is well known that regression methods designed for clean data will lead to erroneous results if directly ap-
plied to corrupted data. Despite the recent methodological and algorithmic advances in Gaussian graphical model estima-
tion, how to achieve efficient and scalable estimation under contaminated covariates is unclear. Here a new methodology
called convex conditioned innovative scalable efficient estimation (COCOISEE) for Gaussian graphical models under both
additive and multiplicative measurement errors is developed. It combines the strengths of the innovative scalable efficient
estimation in the Gaussian graphical model and the nearest positive semidefinite matrix projection, thus enjoying stepwise
convexity and scalability. Comprehensive theoretical guarantees are provided and the effectiveness of the proposed meth-

odology is demonstrated through numerical studies.
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1 Introduction

The estimation precision (inverse covariance) matrix has be-
come a basic problem in modern multivariate statistical ana-
lysis and has a very wide range of practical applications. For
example, in genome-wide association studies, genomic data
are used to estimate the precision matrix and obtain the genet-
ic correlation between traits from the nonzero terms. It is not
only crucial for understanding gene regulatory pathways and
gene functions but also contributes to a deeper understanding
of the genetic basis of quantitative variation in complex
traits!’. Similarly, in social network analysis™’, a precision
matrix can be used to explore the correlation between users
and is also widely used in economics and finance' ), health
science!”, high-dimensional discriminant analysis', and com-
plex data visualization™.

The estimation of the precision matrix has attracted many
scholars to study in recent years. In terms of the form of re-
search methods, the currently proposed methods can be
roughly divided into two classes: penalized likelihood meth-
ods and column-by-column estimation methods. The former
class includes, for example, Ref. [10], which has laid down a
general framework for the penalized likelihood method, and
Refs. [11-15], which used different penalty algorithms to se-
lect zero elements in the precision matrix, and these methods
all impose a penalty term on the negative log-likelihood func-
tion to estimate the precision matrix. The theoretical proper-
ties of these methods have been thoroughly studied by Refs.
[16, 17]. The latter class includes, for instance, Refs. [8, 14,
18-21]. Such methods convert the problem of precision
matrix estimation into a nodewise or pairwise regression, or
optimization problem and then apply the technique of high-
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dimensional regularization using the Lasso or Dantzig select-
or type methods. However, most of these existing methods
are designed for clean data, while corrupted data are often en-
countered in various fields. Naively applying the aforemen-
tioned methods to analyze the corrupted data can lead to in-
consistent and unstable estimates, thus leading to misleading
conclusions. Therefore, it is urgent to develop an efficient
method for large precision matrix estimation under measure-
ment errors.

Various statistical methods have been proposed to mitigate
the effects of measurement errors. Specifically, there are a
series of works to address measurement errors in univariate
response linear regression models, which can be traced back
to Ref. [22] and its extensions include Refs. [23, 24]. In re-
cent years, great progress has also been made in high-
dimensional error-in-variables regression. For instance,
Ref. [25] developed a [, -regularized likelihood approach to
handle missing data by solving a negative log-likelihood op-
timization problem via the EM algorithm. Similarly, Ref. [26]
developed a Lasso-type estimator by replacing the corrupted
Gram matrix with unbiased estimates for corrupted data. Fur-
thermore, Ref. [27] proposed a Dantzig selector-type estimat-
or based on the compensated matrix uncertainty method.
However, after adjusting for corrupted data, negative likeli-
hood functions are usually not convex and may depend on
some crucial hidden parameters. To address this difficulty,
Ref. [28] proposed the convex conditioned Lasso
(CoCoLasso) method by replacing the unbiased covariance
matrix estimate with the nearest positive semidefinite matrix,
thus enjoying stepwise convexity in high-dimensional meas-
urement error regression.

In this work, motivated by the study of the above scholars,
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we develop a new approach called convex conditioned innov-
ative scalable efficient estimation (COCOISEE) to address
Gaussian graphical models under measurement errors by
combining the strengths of the recently developed innovative
scalable efficient estimation”"! and the nearest positive semi-
definite matrix projection”®, thus enjoying stepwise convex-
ity and scalability.

The rest of the paper is organized as follows. Section 2
presents the model setting and the new methodology. Theor-
etical properties including consistency in estimation are estab-
lished in Section 3. We provide simulation examples in Sec-
tion 4. Section 5 discusses possible extensions of our method
and possible future work. All technical details are relegated to
Appendix.

Notation. We briefly summarize some symbols to be used
throughout the paper. We use x, X, and X to denote vectors,
elements, and matrices, respectively. For any matrix

X =(X,), let ||X]|. = max, Z X,| denote the matrix /., norm,

J
whereas || X]|,., = max;;|X;;| denotes the elementwise maxim-
um norm. Similarly, for any vector x=(X,,...,X,)", let

1/q
Ilxl, = (Z |X,.|'7) be the I, norm of vector x, and [, vector

norm is ||x||, = max,|X;|. For any subsets A,B c {1,...,p}, de-
note by x, a subvector of x formed by its components with
indices in A, denote by x_, a subvector of x formed by its
components without indices in A, and 2, ; = (W,;)ica ;s @ sub-
matrix of 2 with rows in 4 and columns in B. Let (S,),, be
a partition of the index set {1,..., p}. 4..(-) and A,..(-) denote
the smallest and largest eigenvalues of a given symmetric
matrix, respectively. We use 4 to denote a fixed sequence
going to zero.

2 Gaussian graphical model under meas-
urement errors

2.1 Model setting

Consider an undirected Gaussian graphical model G = (V,E)
for a p-dimensional Gaussian random vector

X = (Xla'“yXp)T ~ N(llsz)’

where G is an undirected graph related to vector x,
V={X,,....X,} is a node set, E = (¢;;) is an edge matrix with
each entry e; representing the edge between X, and X,
#= ()i, 1 a mean vector and X = (o ;) is a covariance
matrix. Assume that {x,}.., is an independently identically
distributed (i.i.d.) sample from the Gaussian distribution.
Without loss of generality, suppose that the mean vector
p =0 throughout the paper. Denote by 2 = (w;;) the preci-
sion matrix, that is, the inverse 2! of the covariance matrix
2. It is well known that in Gaussian graphical model theory,
an edge (i, j) exists (or e; # 0) between X, and X if and only
if the corresponding entry w,; of the precision matrix is non-
zero. The above characterization of the precision matrix
shows that the problem of estimating Gaussian graphical
model G can be equivalent to estimating the support:
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Supp(@) = {(i, ) : w, # 0},

To motivate our new method, we consider a linear trans-
formation of the precision matrix similar to Ref. [21]. Spe-
cifically, based on the transformation of x, we have the fol-
lowing structure:

¥=0x, X~N(@0,9). (1)
Therefore, from the distribution of %, we can see that if estim-
ator ¥ is obtained, the precision matrix £ can be achieved by
estimating the covariance matrix of X.

By the definition of ¥, we can write the subvector ¥, in
following form:

x5 = Qs,s (x5 + Q;,]sgsfs X)) = Qs,s ;. (2)

It is well known that in the Gaussian graphical model, the
condition distribution about the vector x; can be written as

Xglx_s ~ N(—Q.Q x5, Q). 3)

Formula (3) can be expressed as the following multivariate
linear regression model:

X5 = O7x_s + 15, “)

where 05 = -2 ,2;' is a nX(p—|S|) dimensional regres-
sion coefficients matrix, and 1y = x5 + £, Q;_;x_; is the mat-
rix of model errors which has a multivariate Gaussian distri-
bution N(0,£;') and independent of x_;. Thus, the estimates
of the two terms on the right side of Eq. (2) are correlated and
can be efficiently achieved by linear regression techniques,
i.e., Lasso™.

The representation of subvector x; shows that the un-
known subvector ¥; can be estimated by the regression tech-
nique. To see this, let 7j; be the residual vector obtained by
fitting model (4) using Lasso. Then the unknown matrix £
can be estimated as the inverse of the sample covariance mat-
rix of the model residual vector 7;. Then we can estimate the
subvector ¥ in Eq. (2) as X5 = O, s -

The ISEE"" repeated the above procedure for each S, with
1 <I< p to obtain the estimated subvectors X,’s, and then
stacked all these subvectors together to form an estimate X of
the oracle innovated vector ¥. Thus, the problem of estimat-
ing the precision matrix based on the original vector x
reduces to that of estimating the covariance matrix based on
the estimated transformed vector .

However, in many practical applications, the data we col-
lect may contain unobvious measurement errors, resulting in
inaccurate Gaussian graphical model estimation. In this paper,
we consider two kinds of measurement errors associated with
matrix X, as shown below:

e Additive error. We assume that the observed elements of
the data matrix Z are affected by additive measurement er-
rors z; = x;+a;, and write it as a matrix form Z=X+A,
where A =(a;),., is the measurement error matrix. We
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assume that the rows of A are i.i.d. with mean 0 and finite surrogates are defined as
covariance matrix 2*. |
e Multiplicative error. We assume that the F)bgeryed S = _ZTZ oSN ()",
elements of the data matrix Z are affected by multiplicative n 9)

measurement errors z; = x;Om;;, and write it as a matrix
form Z = X© M, where © denotes the Hadamard product and
M = (m;),., isthe measurement error matrix. We also as-
sume that the rows of M are i.i.d. with mean g* and finite
covariance matrix X*. Particularly, missing data can be
regarded as a special case of the multiplicative measurement
error, where m; =1I(x;), and I(-) represents the indicator
function.

2.2 Scalable estimation by COCOISEE

The data matrix is denote by X = (x,,...,x,)" € R>”. Then, the
transformed data matrix is defined as X = XQ. Thus, Eq. (4)
can be rewritten as

XS =X_s@s +Es, (5)

where Ej is an error matrix with rows being i.i.d. copies from
7; . Then, X can be written as

X, =(XQ)s = X Q5+ X s 55 =
(Xs + stgfssg;lg )Qs.s = ESQS.S' (6)

The representation in Eq. (6) provides the basis for the estim-
ation of matrix X.

To fit the Gaussian linear regression model (5), we suggest
univariate regression methods. Specifically, for each node i in
the index set S, we consider the univariate linear regression
model for X, :

X =X,6+E. @)

In general, we can use some high-dimensional regression
methods to fit Eq. (7), such as SCAD", Lasso™”, elastic
net"", adaptive Lasso™”, and Dantzig selector’™. However, we
observe the data matrix Z instead of the matrix X in linear
models with error-in-variables. Thus, directly applying Lasso
to this equation by minimizing

1 1
E ||Zi _Z—.S'gi”i +/1i”9i||1 — %0?2—5,—30:' _9?2—5,1 +/1i ||0i||1

. 1
is often erroneous, where X (=-Z".Z and X, =
n

1
—Z",Z.. Based on the corrupted data matrix Z, Ref. [28]
n

suggested constructing unbiased surrogates 5 ;¢ and 2, for
2 s_s and X, that cannot be observed to mitigate the effects
of measurement errors. For the additive error setting, the un-
biased surrogates are defined as

$hadd 1 T A

275.75 = ;Zfs Z,-2" g,
e 1 ®)
2 ==2"Z.

n

=S,

And for the multiplicative error setting, the unbiased
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=7z,
where @ represents the element division operator of vectors
and matrices. Since 2* or (Z",u") can be obtained in prac-
tice through repeated measurements or field experience, we
assume that they are known for the model.

However, the estimator 5 is usually not positive semidefin-
ite in high-dimensional models, resulting in the related optim-
ization problems that may no longer be convex. To overcome
this problem, we draw on the idea of Ref. [28] to obtain the
sparse regression coefficients 6, by minimizing

~ 1 . -
6, := argmm(zafz_&_sei =02 s, + A6, (10)
eRrS]
where X ¢ is the principal submatrix of £, and
32 = (%), = argmin||X — 2||,... is the nearest positive semidefin-
ite matrix. Frzggn the definition of £, we can solve it effi-

ciently by an alternating direction method of multipliers
(ADMM) and have

|£-=

<|E-%

-3

<2|f-x

(11)

max max max max

Eq. (11) is obtained by the triangle inequality and the defini-
tion of 3’ ensures 3’ approximates X as well as the initial sur-
rogate s,

Based on the regression step, for each node i in the index
set S we cannot directly replace Z with X in Eq. (5) to calcu-
late E; . Instead, we can use E; as an intermediate variable to

calculate €, ;. Then the estimator QS,S can be written as
A~ 1 . A - P PN ~
Qs = (ZE;ESYI =255 =225 05+ @gz-s,—s o), (12)

where @, = (8):s . These observations suggest a simple plug-
in estimator £ SQM for the unobservable submatrix X; in Eq.
(6). Since the error matrix Ej is unknown, we cannot directly
calculate X;. Similarly, for each 1 <k#m <L, we can use
X;, and X;, as intermediate variables to calculate € ..

Then the estimator 2 5, can be written as

AT A
S,,,ESA ‘QSA-Sk =

SmSk _Zsm,—sk @sk_
AT § AT § A A
0;, 25,5, 05,25, 5,05 )85, (13)

By doing so, the initial COCOISEE estimator is
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QCOCOISEE _
ini -

A

G5 =25 50, + 015 _65)",

k=m;
Qgs (fsm,sk —fsmmn @sA - @;,fosm,sk"‘ (14)
ér 55, 5.0,)9,5,,

k #m.

Then for a given threshold 7 > 0, define

ini

Q?OCOISEE =T, ( !}COCOISEE)’ ( 1 5)

where T.(X) = (x;1,5.) denotes the matrix X thresholded at
7. Thus, the set of links of graphical structure is
supp(QEOCOISEE). The choice of the threshold 7 in Eq. (15) is
important for practical implementation. We use the cross-
validation method for large precision matrix estimation. Spe-
cifically, we randomly split the sample of n rows of the
sample matrix Z into two subsamples of sizes n, and n,, and
repeat this R times. Denote by f)ﬁ?COISEE(n,,i) and
QCOCOSEE(p ) the precision matrices as defined in Eq. (14)
based on these two subsamples, respectively, for the ith split.
Thus, the threshold 7 can be chosen to minimize

T:=I§Z|

The implementation of COCOISEE is summarized in
Algorithm 1.

TT(QCOCOISEE(nl i) — QE?COISEE(’,LZ’ i)H2 ) (16)

ini

3 Theoretical properties

In this section, we will present several technical conditions
and then analyze the theoretical properties of COCOISEE.

3.1 Technical conditions

Condition 1. (Closeness condition) Assume that the distribu-
tions of 2’ ¢ and s ; are identified by a set of parameters 6.
Then there exist universal constants C and ¢, and positive
functions ¢ and ¢, depending on 6 and o such that for any
<&, f-s,-s and S_S_, satisfy the following probability
statements:

Pr(|(ﬁls,75 )iy — (s sl = &) < Cexp(_cngzgil),

Vi,je(l,...pi—S). (17

Pr(l(i—&f)i sz e < Cexp(—cne’K>(™),
Vie(l,..,p}-5),j=€{l,...p} (18)
Condition 2. (Restricted eigenvalue condition) The restric-

ted eigenvalue of the Gram matrix X' = — X" X satisfies:
n

T
0<@= min =X (19)

x20 i <3l |]%][3

Condition 3. (Irrepresentable condition)

122 e < 1, (20)

KK kK

where « ={1,...,K} is the true support set of the regression
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coefficient vector 6*.

Condition 4. The entries of measurement error matrices A
and M are all independent and identically distributed sub-
Gaussian random variables.

Condition 5. The random vectors 7, obey a zero-mean sub-
Gaussian distribution with a finite variance parameter, i.e.,
o <C.

Condition 6. The Gaussian graph model we focus on satis-
fies the following conditions.

GM,K) =

{Q : each row has at most K
nonzero off-diagonal entries and
M < 2,(2) < 2,,,(2) < M)

1)

Condition 1 ensures that the surrogates 5 ; (and hence
3 ) and f,s,,- are close to 25 and X ;; respectively in
terms of the elementwise maximum norm. Condition 2 is the
restricted eigenvalue condition proposed in Ref. [34], and is
widely used in Lasso related articles. It imposes a lower
bound on eigenvalues of the Gram matrix 2 to constrain the
correlations between relatively small numbers of predictors in
the design matrix X. Condition 3 is the irrepresentable condi-
tion proposed in Refs. [35, 36], and was obtained to prove a
model selection consistency result for Gaussian graphical
model selection using the Lasso. Conditions 1-3 are neces-
sary conditions for proving Lemma A.1 introduced in Appendix.

Condition 4 imposes a mild assumption on measurement
error matrices since sub-Gaussians are a natural kind of ran-
dom variable for which the properties of Gaussians can be ex-
tended””. Condition 5 is standard and has been widely used in
high-dimensional linear regression models. Condition 6 guar-
antees that the number of links for each node is bounded by
K from above and that the precision matrix has a bounded
spectrum®".

Algorithm 1. COCOISEE

Input:

Sample matrix Z.

Additive error: covariance matrix 4 ; OR Multiplicative errors: mean
vector 4™ and covariance matrix M.

Output: An estimate of the inverse covariance matrix
HCOCOISEE
3 .

Q&?COISEE and

Construct

for S c{l,...,p}and i€ S do
1

$add  _ LT A
Zis,-s —1;Z_SZ_5 -8 g or
E‘f‘s‘"'is = ;ZTslfs ®(Zf4§,,5 +uM MO,

g5 =Clsos)es

- 1 - 1

Sl = ~Z1Z; or Zmult = ~2%Ziopl,

QCOCOISEE
ini

~ R -
0; := argmin(Z 07 E_g _s0; — 67 Z_s i + Aill6il11).
0;eRP-IS1

Bs = B)ies -
end for
Construct the block-diagonal entries f)g,s according to Eq. (12).
Construct block-diagonal entries Qsm, s, according to Eq. (13).
Construct the initial COCOISEE estimator QS‘?COISEE.

Construct f)gOCOISEE
QgOCOISEE _ TT(_Q%OCOISEE).
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3.2 Main results

Theorem 1. Assume that Conditions 1-6 hold and
AK — o(1). Then with probability 1 -4 tending to one the
initial COCOISEE estimator Q€™ in Eq. (14) satisfies that

(| QCOCcOsEE _ Q| = O(). (22)

Theorem 1 establishes the entrywise infinity norm estima-
tion bound for the initial COCOISEE estimator. From the
proof of Theorem 1 in Appendix, we see that the rate of con-
vergence for the initial COCOISEE estimator is the maxim-
um of two components A*’K and A for both block-diagonal
and off-block-diagonal entries of Q°°°* Since we assume
that AK — o(1), the rate of convergence O(1) dominates that
of O(X’K), meaning that the rate of convergence for the ini-
tial COCOISEE estimator is change into O(2).

Theorem 2. Assume that the conditions of Theorem 1 hold
and w, = min{lwy| : (j,k) € supp(2)} > w; =CA with C>0
and some sufficiently large constants. Then, with probability
1 -4 tending to one, and for any 7 € [cw},w,—cw;] with
c€(0,1/2), we have

supp(f)jocomEE) = supp(£). (23)

Theorem 2 shows that the sparse precision matrix estimat-
or Q;OCO'SEE enjoy good asymptotic properties.

4 Simulation studies

In this section, we simulated the finite-sample performance of
the proposed COCOISEE method. To illustrate the impact of
ignoring measurement errors, we compared two methods de-
signed for clean data sets: Glasso!” and ISEE"!. The three
methods were implemented as follows. Glasso was imple-
mented by the R package glasso and had a tuning parameter
that was chosen using five-fold cross-validation. ISEE®" se-
lected the tuning parameters in scaled Lasso" following the
suggestion of Ref. [39] and adapted the cross-validation
method proposed in Refs. [40, 41] for the threshold paramet-
ers. For the implementation of our COCOISEE approach, we
used 5-fold corrected cross-validation, similar to Ref. [29].
Specifically, we used 90% of the sample to calculate
QOO i) and  the remained 10% to calculate
f)ﬁ?CO‘SEE(nZ,i). Then, we choose 7 from 20 values with the
same interval by minimizing criterion (16) with the number of
random splits set to R = 5.

We generated 50 data sets. For each data set, we generate
the precision matrix £ in two steps. First, we produce a band
matrix £, with diagonal entries being one, 2,(i,i+1)=
Q,(i+1,i)=0.5 for i=1,...,p, and all other entries being
zero. Second, we randomly permute the rows and columns of
0, to obtain the precision matrix €. Thus, in general, the
final precision matrix € no longer has the band structure. We
next sample the rows of the nx p data matrix X asi.i.d. vec-
tors copied from the multivariate Gaussian distribution
N(0,927"). Then, based on different types of measurement er-
rors, the corrupted covariate matrices Z can be provided re-
spectively as follows.

e Additive errors case. The observed covariates Z = X + A,
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where the rows of A are i.i.d. vectors copied from N(0,7?)
with 7=0.2.

e Multiplicative errors case. The observed covariates are
Z = XOM, where the elements of M follow a log-normal
distribution, meaning that log(m,;)’s are i.i.d. variables from
N(0,7*) with 7 =0.2.

e Missing data case. The observed covariates are defined
as z;; = x,;m;;, where m;; = I(x,; is not missing), so that the co-
variates are missing at random with probability 0.1.

Due to high computational cost, we consider settings with
n =100, whose dimensionality p varies in {50, 100, 150,200}.

To compare the aforementioned methods, we consider the
same performance measures as suggested in Ref. [21]. The
first two measures are the true positive rate (TPR) and the
false positive rate (FPR), defined as

# of correctly identified edges

TPR = - - - >
# of identified edges in total

# of falsely identified edges

FPR = - - - )
# of identified nonedges in total

respectively. We use the Frobenius norm to calculate the nor-
malized estimation error (NEE) defined as

12 -2,

NEE(Q) = .
F

Tables 1-3 summarize the simulation results of these three
performance measures for additive, multiplicative error and
missing data cases. In view of TPR, FPR, and NEE in these
tables, it is clear that the NEE of COCOISEE is the best, and
both TPR and FPR are also doing very well.

5 Conclusions

In this paper, we have introduced a new methodology
COCOISEE to achieve scalable and interpretable estimation
for a Gaussian graphical model under both additive and multi-
plicative measurement errors. It takes full advantage of re-
cently developed innovative scalable efficient estimation and
the nearest positive semidefinite matrix projection, thus en-
joying stepwise convexity and scalability in Gaussian graph-
ical model estimation. The suggested method is ideal for par-
allel and distributed computing and cloud computing and has
been shown to enjoy appealing theoretical properties. Both
the established theoretical properties and numerical perform-
ances demonstrate that the proposed method enjoys good es-
timation, recovery accuracy, and high scalability under both
additive and multiplicative measurement errors. Similar the-
oretical conclusions can also be extended to random sub-
Gaussian settings. It would be very interesting to study sever-
al extensions of COCOISEE to more general model settings
such as the time series model, the generalized linear model
and the large nonparanormal graphical model, which are bey-
ond the scope of the current paper and demand future studies.

There are three main contributions in this paper. First, the
proposed COCOISEE method has scalability and high effi-
ciency, because the main calculation cost comes from the es-
timation of the regression coefficient in the case of measure-
ment error, and the other steps adopt matrix operation, which
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Table 1. Additive errors case.
. TPR SE(TPR) FPR SE(FPR) NEE SE(NEE)
p Algorithm (x10-2) (x1072) (x1072) (x1072) (x1072) (x1072)
Glasso 100.00 0.00 23.36 3.90 19.49 3.73
50 ISEE 99.97 0.19 9.01 1.27 15.67 1.54
COCOISEE 93.92 2.16 4.26 1.26 14.92 1.71
Glasso 100.00 0.00 14.07 1.25 28.59 2.76
100 ISEE 100.00 0.00 8.83 0.85 29.06 223
COCOISEE 91.14 2.64 3.27 0.31 21.70 2.55
Glasso 99.99 0.06 9.89 0.85 37.34 2.77
150 ISEE 100.00 0.00 9.34 0.75 45.00 3.42
COCOISEE 89.11 1.33 2.60 0.09 25.35 1.83
Glasso 99.97 0.10 7.67 0.66 44.08 3.01
200 ISEE 99.99 0.05 9.59 0.62 60.49 3.53
COCOISEE 89.10 3.49 9.31 9.63 33.66 2.14
Table 2. Multiplicative errors case.
. TPR SE(TPR) FPR SE(FPR) NEE SE(NEE)
P Algorithm (x1072) (x1072) (x1072) (x1072) (x1072) (x107%)
Glasso 98.30 1.63 24.83 8.60 71.92 4.08
50 ISEE 87.73 3.44 11.73 1.47 63.59 1.71
COCOISEE 80.74 3.25 6.47 0.91 46.11 3.49
Glasso 95.79 1.34 17.92 6.18 82.88 2.67
100 ISEE 80.44 2.96 10.79 0.89 76.92 1.10
COCOISEE 79.46 2.44 7.56 227 57.75 1.54
Glasso 92.49 1.83 13.73 4.39 87.71 1.74
150 ISEE 75.07 2.30 9.87 0.78 82.61 0.89
COCOISEE 85.04 2.59 12.01 4.17 65.66 0.87
Glasso 90.24 1.82 9.98 3.69 91.01 1.83
200 ISEE 72.15 225 9.77 0.72 86.02 0.73
COCOISEE 82.24 2.33 8.65 3.31 67.35 1.42
Table 3. Missing data case.
R R R
Glasso 99.62 0.72 24.57 9.21 53.61 7.18
50 ISEE 91.70 2.63 11.53 1.25 43.93 2.29
COCOISEE 81.49 3.26 3.79 0.34 39.02 2.69
Glasso 98.70 0.80 16.40 5.82 69.26 4.17
100 ISEE 87.03 2.17 9.75 0.67 59.78 1.89
COCOISEE 80.60 4.67 5.42 1.01 54.60 1.74
Glasso 97.29 1.07 12.69 4.72 77.40 3.79
150 ISEE 81.96 2.19 9.03 0.59 68.88 1.63
COCOISEE 82.28 2.87 8.74 2.49 61.20 1.57
Glasso 96.23 1.04 10.75 3.65 81.53 3.04
200 ISEE 79.15 2.39 8.65 0.55 73.94 1.30
COCOISEE 84.85 2.68 13.40 3.99 65.01 2.05
1105-6 DOI: 10.52396/JUSTC-2022-0108
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has relatively high calculation efficiency. Second, we use a
recently developed semipositive definite matrix projection
technique to mitigate the effects of measurement errors when
recovering high-dimensional coefficient matrices from
column-by-column regression. Therefore, COCOISEE en-
joys progressive convexity and computational stability.
Finally, we provide comprehensive theoretical properties to
the proposed method by establishing the consistency of the
estimator. Numerical results show the effectiveness of the
proposed method.
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Appendix

In this section, we will show proofs of Theorems 1 and 2. For convenience of representation we denote £, 5, as £;,. Lemma A.1
introduced below is fundamental to the proofs.

Lemma A.1. Under assumption conditions 1-6, for a suitable choice of penalty parameter A and for the convex optimization
problem in (10), we have

6. -¢6:|, = oK), (A1)

6. -6 = oK), (A2)
Lo @,- ) = o) (3)
”%X'ES,E,;, =0, (A4)
6. -8,]|. = o) (AS)

with the probability 1 —4 tending to one and it holds uniformly over all nodes i in the index sets S, with 1 </ < L.

Proof. The conclusion about the convergence rate in Lemma A.1 has been proven in many studies except Eq. (A3), such as
Ref. [28]. Their proofs are similar and we omit them.

We now prove Eq. (A3). Using the application of the triangular inequality and inequality (23) in Ref. [38], which is derived
from the Karush—Kuhn—Tucker condition, yields

1 A N 1 A
X, (0= Iz < OQK)(I6; ]I, 116, 11,) + ;IIXES,EUIIDO 116, =G,
Combining (A1) and (A4), we have

Lo o
~|Ixes -0, < oK),

Proof of Theorem 1. According to the estimation process of 2, we divide the proof process into two steps: The first step
proves the block-diagonal part, and the second step proves the off-block-diagonal part.

Step 1: Deriving the uniform bounds on block-diagonal entries of £. According to (5), the residual matrix is decomposed as
follows:

Es, = Xs, - X—s,@s, = Es, - X—s,@s, - X—s,@s, = ES, - X—s,(@s, - @s,)~ (A6)
Combining (12) yields
1

A 1 Ap o4 2 - 1 . A
Q-0 = ~E{ By~ Q) = B Eg = Q5 = E; X 5, (65, = 05)+ (65, = 05)' X[ X (65, = Oy)).. (A7)

4 2 3

For the ¢, part: According to Condition 6, the spectrum of the precision matrix £ is bounded between M~ and M, so the spec-
trum of its principal submatrix £, is also between M™' and M, its inverse £;' is same. Since —Ej E,[ is the oracle sample cov-

ariance matrix estimator for £;', using the concentration bounds in Refs. [29] and [40], Bonferroni’s inequality, and
max,|S,| = O(1) lead to

max

I<IKL

1
;E;E& _Q;,l

=0, (A8)

with the probability 1 —4 tending to one.
For the ¢, and ¢; parts: In Lemma A.1, bounds (A1) and (A4) control the maximum columnwise /; norm of matrix @s, -0,
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. . 1 . Lo
and maximum rowwise [, norm of matrix —E¢ X_g, respectively, which yields
n

N 1
ezl < HQS! - @S,”1 . “ZEST,X_S

= O(K). (A9)

Applying the Cauchy—Schwartz inequality to the bound (A3), we obtain a result for the ¢, part:
llesll = O K). (A10)

Thus, combining (A8)—(A10) leads to

max

I<IsL

|2, - 2;'||. = Ofmax(LK, 1)} (A11)
Next, we will derive the bounds for f)s,. Based on (A11) and |S,| = O(1), we have the Frobenius norm about f)g} -9 is
[[@25! - 251]], = Otmax (1K, ). (A12)
Then using matrix perturbation theory and large enough n leads to
A (25) = Ain(25))7" < (Aia( Q) — 125! = 27 11) < (M = Ofmax(X’K, )} <2M = O(1). (A13)

Note that the entrywise [, norm of any symmetric positive definite matrix is bounded above by its largest eigenvalue, and we
have

1192511 < A (L25,) = O(1),

A A (A14)
192 1. < A (£25) = OCD).
Combining (A11), (A14), and max,|S,| = O(1) leads to
Qi -0 ||, = 1205 - 252 ||, = Otmax(P K. )}, (Al5)

with the probability 1 —4 tending to one.
Step 2: Deriving the uniform bounds on off-block-diagonal entries of €. Note that by (13) and (A7), we have the following
decomposition of the X;, matrix:

Xs, = ES/QS, = ES,QS, + ES,(QS, _95,) - st,(@s, - @sl)gs, = XS, + ES,(QS, _QS,) - X—S,(@S, - @s,)gs‘,- (A16)

Combining (13) and (A16) yields

15 4
-X; Xs, =u+n i+, (A17)
n
where
1 — —
L= _X;Xsm’ (Alg)
n
1= A ~ N
b= Y_ZX; (Es, (25, —;,) — X5, (05, — 05, )€ ), (A19)
1 N a R —
L3 = ;(Es,(gs, - Qs,) - st,(@s[ - @S/)QS/)TXS,,(’ (A20)
1 A A A A ~
b= (E5, (25, — Qs,) — X_5,(O5, = 05 )85,) (E;5,, (25, — Qs,) — X5, (05, — 65,)). (A21)

. 1= =. . . . . . _
Part ¢,: Since —X"X is the oracle sample covariance matrix estimator for the precision matrix £. Similar to (A8), we have
n

“%)?Ti —9| <ow, (A22)

)

with the probability 1 —4 tending to one and provides a uniform bound on ¢, .
Part ¢,: Using (6), we can rewrite ¢, as
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1= N A ~

L= ;Xg,(Es,,( 82, -2 )—X;,(0;, —0;,)8,) =
1 o ~ A~
’;Q; E; (Es (-Qv - -Qs) - X—Sm(@sm - @sm )—Qv) =

1 ) 1 . .
Q (; Eg E;, ) (85, - Q) — 4 ( p X' Es)'(O5, —05,)0, =
| =&, (A23)

&3]

For the first term Z,. Since the mean of —E{FE; is 0, using the concentration bounds, Bonferroni’s inequality over
n

1 <l#m<Lyields

max

I<l#m<L

1
—ESEs || =0, (A24)
n

o

with the probability 1 —4 tending to one. Combining [|€2,,||. = O(1) and the result of (A15), we have
2]l = O{max(1°K, %)} (A25)
For the second term &,, we consider the intermediate matrix part &, :
1 N
&= (;XES”,ES/)T(@S,” - @s”,) =6H+ 6, (A26)
1 o
where &, and & are defined through matrix multiplication by taking the rows of —X"; E,, and O, — 0;, from nodes in index sets
S
(=S,)N(=S)) and S, respectively. According to (A1) and (A4) in Lemma A.1, we have
&N, = O K). (A27)
We also define &, as the submatrix of @5, — @, given by rows corresponding to nodes in §,. In view of (A5), we have

max

i€SI<I<L

b.,-0.. =0, (A28)

with the probability 1 —4 tending to one. Using similar arguments to those for proving (A24) yields

1
max || = X7 Es, — Q|| = 0(d), (A29)
1<i<L || n o
1
and combining the fact of [|2;!||.. = O(1) leads to ||~ X§ E; || = O(1). Therefore
n ©

1
lell. = | xnere| =ow. (A30)
Combining (A15), (A26), (A27), and (A30), we have
155l = O{max (21K, D)} (A31)

Since ¢; shares the same form as ¢,, putting (A23), (A25), and (A31) together leads to

max max(ofl. lull.) = O(max(LK, D), (A32)

1<l#m<.

with the probability 1 —4 tending to one.
Part ¢,: We expand the product form of (A21) into four terms:

u=I-Ir-r;+r,, (A33)
where
] A A
I“l = ;(Qs, _QS;)E;ES,,((QS”, —.Qs,,,), (A34)
1 0 A A
Fz = ;(.Qs, _QS/)EAT‘,X,S,,,(@S,,, - @S,,,)Qs,,,, (A35)
1105-10 DOI: 10.52396/JUSTC-2022-0108
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1. . A
I;= 2951(95, - @S[)TX—ES,ES,“(‘QSW -9s.), (A36)
1. . ~ .
r,= ;QS,(@S[ - @s/)TXTS,st,”(@s,,, - @s,,,)gs,,,- (A37)
Forterm I} :
IF 1. <O{max(2’K, )} - O0(2) - O{max(A’K, 1)} = O{A(max(1’K, 1))*}. (A38)

For term I, and term [5: In view of (A26), we have
r,= (Qs, _-Qs,)f]f)s,,,, (A39)
and I'? shares the same form as I',. Combining (A15) and (A31) along with the fact of ||y ||, = O(1) leads to
max([I1]l., I75]l,) <O{max(2°K, 1) - max(2°K, 1)} = Of(max(4’K, 1))’} (A40)

For the last term I',: Applying the Cauchy—Schwartz inequality to the bound (A3), we get

“%Qﬂ@&—@&fXLng@M—@M)wé(X%K) (A41)
Combining (A41) and the facts of ||.f)s,||oo = 0(1) leads to
Il < O(XPK). (A42)
Therefore, combining (A38)—(A42) yields
max [|ell. = O{max(A°K, 1)}, (A43)

I<l#m<L

with the probability 1 — 4 tending to one. Thus, combining (A22), (A32), and (A43) gives

1, o
‘%@&W:OMwWKDL (A44)
n

oo

with the probability 1 —4 tending to one.
By doing so, combining steps 1 and 2 with probability 1 —4 tending to one, € satisfies that

[©- 2| = Otmax(2K, 1)}
Since we assume that AK — o(1), the rate of convergence O(1) dominates that of O(2*K). Thus,
|2-2|_=ow.
Proof of Theorem 2. According to the assumption w; = CA with C > 0 some sufficiently large constants, we have

||‘Q_COCOISEE —,Q” < cw;,

ini

where ¢ € (0, %) is some positive constants, similar to Ref. [21]. Thus,
o If 7> cw;, supp(QjOCOISEE) C supp(£2).
o If 7 < wy — cw;, supp(£2) C supp(LLOOBEF),

Combining these two parts leads to

supp(£2) = supp(QEOCOISEE), VT € [cw;, wy — cw;].
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