N
+

UST
http://justc.ustc.edu.cn Received: July 20, 2022; Accepted: September 05, 2022

Machine learning in data envelopment analysis: A smart
mechanism for indicator selection

Jie Wu, and Yumeng Wu >
School of Management, University of Science and Technology of China, Hefei 230026, China

>Correspondence: Yumeng Wu, E-mail: wuyumeng@mail.ustc.edu.cn
© 2022 The Author(s). This is an open access article under the CC BY-NC-ND 4.0 license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Graphical abstract

Conventional methods Our work
v v ,
Rules of thumb Regulilalz:tlon A smart mechanism for indicator
methods selection
¥ Y
small data big data big data
scenarios scenarios scenarios
l _______________________________________________ Voo Yo, N,
/ i overfitting overfitting i i underfitting i black box
LASSO or Ensemble Mean score
EN methods approach
Data envelopment analysis  K——p Machine learning

The overall framework of our research.

Public summary

m The purpose of this study is to categorize big data scenarios encountered by data envelopment analysis into overfitting
and underfitting scenarios, and to develop a smart indicator selection mechanism based on numerous machine learning
approaches.

m This study advances the development of data envelopment analysis in the context of big data and combines it with ma-
chine learning to provide a convenient and intelligent indicator selection mechanism for scholars in the field of effi-
ciency evaluation.

m Most machine learning approaches in indicator selection are confined to certain circumstances, according to Monte
Carlo simulations, but the proposed mean score methodology performs well in both overfitting and underfitting scenari-
0s.
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Abstract: Indicator selection has been a compelling problem in data envelopment analysis. With the advent of the big data
era, scholars are faced with more complex indicator selection situations. The boom in machine learning presents an oppor-
tunity to address this problem. However, poor quality indicators may be selected if inappropriate methods are used in over-
fitting or underfitting scenarios. To date, some scholars have pioneered the use of the least absolute shrinkage and selec-
tion operator to select indicators in overfitting scenarios, but researchers have not proposed classifying the big data scenari-
os encountered by DEA into overfitting and underfitting scenarios, nor have they attempted to develop a complete indicat-
or selection system for both scenarios. To fill these research gaps, this study employs machine learning methods and pro-
poses a mean score approach based on them. Our Monte Carlo simulations show that the least absolute shrinkage and se-
lection operator dominates in overfitting scenarios but fails to select good indicators in underfitting scenarios, while the en-
semble methods are superior in underfitting scenarios, and the proposed mean approach performs well in both scenarios.
Based on the strengths and limitations of the different methods, a smart indicator selection mechanism is proposed to facil-
itate the selection of DEA indicators.

Keywords: data envelopment analysis; overfitting; underfitting; machine learning; indicator selection
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1 Introduction number of indicators is much smaller than that of DMUs, the
information provided by indicators of DMUs may be too in-
Data envelopment analysis (DEA) has long been used to com- sufficient to obtain a good result, which is the case of under-
pare and evaluate the efficiency of a set of decision-making fitting. In information theory, overfitting depicts a scenario
units (DMUs) with multiple inputs and outputs' . DEA is where a method goes beyond learning the true regularities in
prone to overfitting (a large number of DMUs are evaluated the data due to the inadvertent capturing of noise in the mod-
as efficient) when a limited number of DMUs are employed eling process, while underfitting is proposed to describe the
to estimate a high-dimensional frontier™, which is the reas- scenarios where a method fails to capture enough informa-
on for a series of discussions on the selection of DEA indicat- tion to obtain the true patterns of the data. For the sake of
ors. Golany and Roll" asserted that the number of DMUs visualization, we introduce the scenarios based on the two ap-
should be at least twice the number of inputs and outputs con- plication conditions in the real world. One is that the Min-
sidered. Boussofiane et al.!” stated that to effectively distin- istry of Education of the People’s Republic of China plans to
guish the DEA weights, the minimum number of DMUs use DEA to evaluate the performance of 20 universities in
should not be less than the product of the number of inputs China, with a total of 100 indicators for 20 universities, which
and that of outputs. Bowlin and Cooper et al.”’ claimed that s a typical overfitting scenario; the other is that Quacquarelli
the number of DMUs should be at least 3 times the sum of the Symonds (QS) intends to use DEA to evaluate the perform-
number of inputs and outputs to give a meaningful estimate. ance of 1000 universities worldwide to produce QS World
From a practical point of view, these rule-of-thumb decisions University Rankings, but some of the indicators are not pub-
are reasonable in the case of small data but may not work in licly available, so QS only obtains 20 indicators for 1000
big data scenarios™”. The boom in machine learning tech- DMUs, corresponding to an underfitting scenario. In both
niques has provided researchers with the opportunity to scenarios, indicator selection is essential. Indicator selection
identify good indicators from big data with noise, but if inap- in overfitting scenarios has attracted the attention of several
propriate indicator selection methods are used, low-quality in- scholars. Ueda and Hoshiai""" and Adler and Golany"* suc-
dicators may be selected. Specifically, if the number of indic- cessively used principal component analysis (PCA) to solve
ators is large compared to that of DMUs, a machine learning the indicator selection problem in DEA, but many of the
method is prone to overfitting, as the information provided by weights of the indicators defining the principal components in
each DMU in high-dimensional variable space is too suffi- PCA are negative!'", which can lead to counterintuitive integ-
cient to obtain good training results'°. In contrast, when the rated negative inputs”. Recently, some scholars* have be-
5-1 DOI: 10.52396/JUSTC-2022-0106
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come pioneers in marrying the least absolute shrinkage and
selection operator (LASSO)"! with DEA, illustrating that
LASSO can avoid overfitting challenges and excels in identi-
fying good indicators, but if the relationship between outputs
and inputs is nonlinear, then LASSO (using a linear model in
the original unit) will be misspecified . In underfitting scen-
arios, the relationship between outputs and inputs tends to be
nonlinear, so LASSO may fail to select good indicators. To
our knowledge, few studies have focused on underfitting
scenarios, and researchers have not proposed classifying the
big data scenarios encountered by DEA into overfitting and
underfitting scenarios, nor have they attempted to develop an
indicator selection system for both scenarios.

To fill these research gaps, the purpose of this study is to
establish a smart indicator selection mechanism for overfit-
ting and underfitting scenarios as an alternative to conven-
tional methods, thus helping scholars in the field of DEA se-
lect indicators in the context of big data. In this study, the fea-
ture selection system (including regularization, wrappers, fil-
ters, and ensemble methods) is used to prevent overfitting and
underfitting because regularization and wrappers are associ-
ated with cross-validation"* and grid search!” that are com-
mitted to overcoming overfitting, while ensemble models"* "
and kernel functions are developed to fit nonlinear and com-
plex data, thereby overcoming underfitting. Based on the fea-
ture selection methods, we propose a mean score methodo-
logy that is expected to perform well in both scenarios. Then,
we will learn the strengths and limitations of the different
methods by applying these methods and the proposed mean
score methodology in different DEA scenarios to establish a
smart indicator selection mechanism. To the best of our
knowledge, this paper is the first in the field of DEA to pro-
pose an indicator selection process for both overfitting and
underfitting scenarios. The remainder of this study unfolds as
follows: The next section briefly reviews the feature selec-
tion system, and a mean score methodology based on them is
proposed in Section 3. The purpose of Section 4 is to com-
pare and analyze the performance of the indicator selection
methods by Monte Carlo simulations in both scenarios and to
propose a smart mechanism for DEA indicator selection. Fi-
nally, Section 5 draws significant conclusions.

2 Preliminaries: The feature selection
system

With the past few decades witnessing the prosperity of ma-
chine learning methods, indicator selection has formed a com-
plete system, which falls into four categories based on how
the selection process relates to the relevant prediction task,
namely, regularization, filters, ensemble, and wrappers
methods!"*.

To propose an approach for indicator selection that is ex-
pected to perform well in both overfitting and underfitting
scenarios, we introduce the above machine learning system
for indicator selection.

2.1 Regularization methods

Assuming that a DEA scenario with n DMUs (each DMU has
p inputs and one output) is equivalent to a standard regres-
sion problem with n observations, where each observation has
p standardized input variables x;;,i=1,---,n;j=1,---,p and
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a dependent variable y,,i = 1,--- ,n, the objective of DEA is to
estimate the following production function:

»
yi:Zﬁjxij+a,i:1,-~-,n, (1
j=1

where « is the intercept and ; is the coefficient of input vari-
able x;;.

Regularization methods include LASSO (a linear model
trained with the L, penalty), ridge regression (linear least
squares with the L, penalty), and elastic net (linear regression
with the combined L, and L, penalty). Good indicators can be
selected by imposing an L, or L, penalty on the sum of coeffi-
cients and solving the following regression problem.

nr},iﬁnéi(yf—w2+lzp]|wfiir =
rBiljn%Z":[}’i—Zp:ﬁjxﬁ_a] +/IZP:||'BJ‘HH )

Here, we interpret y; and §; as true and predicted values, re-
spectively, whereas A is the tuning parameter (or penalty
price) that is chosen by cross-validation. Note that » can be |
and 2, where r = 2 corresponds to ridge regression, and r = 1
results in LASSO. Elastic net (EN) is a linear regression with
a combined L, and L, penalty, which can be illustrated as
follows:

n 2 n.p nop
mng (-3 +als3 Slellea-0 3 S|
i=1 =1 j=1 =1 j=1
3)

where ¢ denotes the ratio of the L, penalty.

Among the regularization methods, LASSO shrinks the
coefficient of certain indicators to zero so that indicators with
nonzero coefficients can be selected, and scholars*! have
demonstrated its powerful ability to select indicators in over-
fitting scenarios. However, LASSO will be misspecified if the
relationship between outputs and inputs is nonlinear and thus
may not select good indicators in underfitting scenarios.

2.2 Filter methods

Filter methods (mutual information " and Pearson correla-
tion coefficient™) rank indicators without prediction models
and have the fastest running time; however, they do not con-
sider variable dependencies and evaluate each variable separ-
ately”l. Moreover, they are not always effective for improv-
ing the generalization ability of the model, which is why fil-
ter methods are often used as an informative indicator selec-
tion method, as is done in this study.

Mutual information (MI) measures how much the informa-
tion of one random indicator is communicated with another.
Here, high MI means a large reduction in uncertainty, while
low MI indicates a small reduction. In this study, MIC"! is
used to measure the degree of association between two vari-
ables because it has higher accuracy than MI.

2.3 Ensemble methods
Gradient boosting regression (GBR) and random forest (RF)
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are two powerful ensemble methods that reduce the number
of indicators by solving predictive models"” and can be
solved by popular programming software.

Random forest (RF) creates forests of randomized decision
trees to handle high-dimensional data, which is why it is suit-
able for underfitting scenarios. In RF, the depth in the tree
where the indicators are used as decision nodes is employed.
The choice of depth is vital since it ultimately determines the
number of samples of the input dataset whose predictions will
depend on the given indicators. The indicator selection pro-
cess can be well performed as the variance is sufficiently
reduced.

Gradient boosting (GB) is capable of discovering complex
relationships between the indicators and the dependent vari-
able for underfitting scenarios. In the GB process, we scale up
the complexity with each iteration. At each stage, the error of
each model (i.e., the gradient of the loss function) is com-
puted. In the next stage, the new model makes up for the
shortcomings of the previous weak model"'”.

2.4

Wrapper methods”* evaluate the performance of variable sub-
sets on preselected predictors and have the advantages of bet-
ter generalization and robust interaction with the classifier
used for indicator selection”’. Recursive feature elimination
(RFE) is a greedy algorithm for finding the optimal subset of
indicators. It investigates and determines the optimal variable
subset by repeatedly removing irrelevant indicators. Under
RFE, models (regression model or machine learning model)
are constructed repeatedly. In this study, random forest-based
recursive feature elimination (RF-RFE)" and support vector
regression-based recursive feature elimination (SVR-RFE)™!
are used. Each time the chosen model is built, the best or
worst performing variable based on variable coefficients is se-
lected and set aside. The remaining indicators are then em-
ployed to repeat the same process, which is stopped until
there are no more indicators to create a model. Ultimately, all
indicators are sorted according to the order in which they
were eliminated, resulting in a subset of the best performing
indicators. However, the stability of RFE depends on which
model is used at the bottom of the iterative process. If a
model without regularization is used, then RFE is unstable.

3 Methodology

Wrapper methods: Recursive feature elimination

3.1 A mean score methodology

To build on the strengths and avoid the weaknesses of the
above machine learning methods, a mean score methodology
(Fig. 1) is proposed in this section. It consists of four types of
methods:

Type 1. Linear methods and regularization: (D Linear re-
gression (Linear); @ LASSO; 3 Ridge regression (Ridge);
@ EN (the ratio of L, penalty is 0.7).

Type II. Filter methods: & Pearson coefficient (Pearson);
® MIC.

Type III. Wrapper methods: @D RF-RFE; @SVR-RFE.

Type IV. Ensemble methods: @ RF; @ GBR.

The process of the mean score methodology is as follows:

Step 1: Ineach run, the score for each indicator is ob-

5-3

Scores for Calculate feature importance ‘E
each i under a specific method
feature s
Normalize The scores of features are
the scores : distributed from 0 to 1

Obtain
mean
score

Fig. 1. Flow chart for the mean score methodology.

tained based on the indicator importance (coefficient) under
each method. In line with Chen et al."l; the tuning parameters
are chosen automatically for each method (using cross-valida-
tion);

Step 2: Normalize the indicator score under each method
so that each indicator score is between 0 (lowest-ranked in-
dicator) and 1 (top-ranked indicator);

Step 3: The scores obtained from all methods are averaged
to obtain the mean importance score of an indicator, and the
indicators are ranked according to the scores.

3.2 A three-step approach for selecting indicators in the
DEA context

To apply the proposed mean score methodology and the
above methods to DEA indicator selection, we propose a
three-step approach:

@ Obtain indicator importance score: Obtain the indicator
importance score under each method by running the program.

@ Remove indicators: After obtaining the importance
score under each method, the input indicators are removed
based on the importance scores (since the scores are obtained
from their correlation with the output, we consider indicators
with scores less than 0.2 to be insignificant, and all indicators
with scores less than 0.2 will be eliminated).

(3 Run DEA: Based on the indicators selected in the previ-
ous step, the efficiency of each DMU is estimated by the fol-

lowing output-oriented variable return-to-scale DEA
estimator.
min 6,
St A <x,Yiel;
kek
Z/lkykj 20,y,,YjeJ; (4)

kekK

Z/lk= 1, 4, >0,VkeK:;

kek

where index o € K indicates a specific DMU (which is an
alias of index k), and the decision variables 6 and A, are the
efficiency estimator and the intensity multiplier for a linear
combination of DMUs, respectively .

4 Monte Carlo results and discussion

The purpose of this section is first to see if the above meth-
ods in Section 3 can obtain accurate indicator importance
scores to help identify truly relevant indicators and discard ir-
relevant ones, and then to illustrate the performance of these
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methods by the proposed three-step approach in different
DEA scenarios.

4.1 Indicator identification ability

In this section, we compare the performance of all methods in
Section 3 in overfitting and underfitting scenarios to explore
their indicator identification capabilities.

4.1.1 Data generating process

Real-world data are complex, with not only linear but also
nonlinear relationships between indicators and the output.
Therefore, instead of using the DGP of Chen et al."), we con-
sider complex scenarios where both linear and nonlinear rela-
tionships exist between indicators (inputs) and the dependent
variable. In addition, some interfering variables associated
with the truly relevant indicators are also considered. The
DGP used in this section is based on Friedman regression
datasets”**". The true output y" and the observed output y are
generated according to the following equations:

=10sin (- x,x,) +20(x, —0.5)* + 10x, + 5x5,

)
(6)

where the first 5 indicators x,,---,x; have a real effect on the
production function, the last 4 indicators are related to the
first 4 true indicators x,,---,x,, which are generated by
f(x) =x+N(0,p) (the correlation coefficient p = 0.025), and
the other indicators are independent of the dependent vari-
able. Note that the last 4 indicators were added by us, consid-
ering that some indicators may be interrelated in real life (the
deviation € ~ N (0, 1)).

Assume that the researcher does not know which indicat-
ors are truly correlated with the dependent variable, and we
use this DGP to generate 30 datasets (replications) in the fol-
lowing scenarios:

@ Overfitting scenario [ (overfitting scenario in a small
dataset): The dataset includes 100 indicators (5 true inputs, 4
correlated inputs, and 91 noisy inputs) and one output, but
only 30 DMUs. In this scenario, machine learning methods
tend to overfit (p = 100, n = 30; hereafter, n denotes the total
number of DMUs, and p means the total number of
indicators).

@ Overfitting scenario I (overfitting scenario in a large
dataset): There are 100 DMUs in total. The large dataset con-
tains 1000 indicators (5 true inputs, 4 correlated inputs, and
991 noisy inputs) and one output (p = 1000, n = 100).

(® Underfitting scenario I (underfitting scenario in a small
dataset): The dataset contains 5 true inputs, 4 correlated
inputs, 11 noisy inputs, and 1 output (the dataset includes 20
potential inputs and gives no clue about the correct model
specification). In this scenario, machine learning methods
tend to underfit since the number of DMUs is only 100,
which is too small relative to the number of indicators
(p =20, n=100).

@ Underfitting scenario II (underfitting scenario in a large
dataset): 5 true inputs, 4 correlated inputs, 91 noisy inputs,
and one output, and the number of DMUs is 100
(p =100, n = 1000).

y =10sin (7 x,x,) + 20(x; — 0.5)° + 10x, + 5x; + &,

54

4.1.2 Comparison and analysis

First, it is necessary to explain our criteria for classifying
large and small datasets: if n > 1000 or p > 1000, then the
dataset is considered a large dataset; otherwise, it is a small
dataset.

Next, we will describe our process for performing Monte
Carlo simulations:

@ Our program uses cross-validation to automatically
choose the tuning parameters for each method.

@ Each method will give every input indicator an import-
ance score, which indicates the degree of association between
this indicator and the dependent variable.

(3 The final score will be normalized to the interval [0, 1]
for comparison purposes.

@ Mean squared error (MSE) and mean absolute error
(MAE) are used to analyze and compare the indicator identi-
fication ability of the above methods:

L
MSE,, = E;(

-6 ), Vm=1,

im

0

MAE, = ~ Z lor

= ]’...,M,

inl> ®)

where 6] is the expected indicator importance score (theoret-

ically, the expected importance score of the true indicator
should be 1, while that of others should be shrunk to 0), and
@;, is the indicator importance score estimated by an indicator
selection method. After M Monte Carlo experiments, the av-
erage MSE (AMSE) and the average MAE (AMAE) are as

follows:

AMSE, = ZMSE,,, = Z Z( 0 -0), ()
m=1 m=1
AMAE, = %ZM:MAEW = Z Z lor —6.].  (10)
m=1 m=1

To facilitate comparison, underfitting and overfitting scen-
arios are discussed separately.

First, the above methods for identifying the five true inputs
in underfitting scenarios (both large and small datasets) are
considered. Fig. 2 shows the box plots for the MSEs in 30
datasets, from which we can see that the difference in per-
formance for these methods is fairly large:

(D For both large and small datasets, GBR is the best
among all methods, as the MSE under GBR is much smaller
than that under other methods, especially when we focus on
the median (the red line in Fig. 2); the second-best method is
the proposed mean score methodology.

(2 SVR-RFE and RF-RFE have the worst performance,
which shows that RFE is not suitable for either large or small
datasets in underfitting scenarios. Following them, the MSE
of LASSO is larger than that of others, indicating LASSO’s
inability to identify true input indicators in underfitting scen-
arios. In addition, LASSO has the widest data distribution,
meaning that LASSO is rather unstable and may select the
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Fig. 2. Comparison of indicator identification ability of methods in underfitting scenarios.

wrong indicators instead of the true ones in this scenario.

(3 Among all the regularization methods for both large and
small datasets, LASSO is the worst performing method, but
EN and Ridge perform quite well and are more stable. The
reason is that there are correlations between indicators in the
DGP (known as multicollinearity in statistics that LASSO is
not capable of handling), but EN and Ridge are different, be-
cause they both use L, regularization, which is more stable
than L, regularization. Therefore, LASSO is not recommen-
ded in underfitting scenarios.

Second, the indicator identification ability of each method
in overfitting scenarios is compared. Fig. 3 reports the results
and shows that:

(D The worst performances still belong to SVR-RFE and
RF-RFE for both large and small datasets.

@ The “top method” turns into LASSO in overfitting scen-
arios whether it is a big dataset or a small one. Close behind
LASSO, ensemble methods (GBR and RF) and the mean
score methodology perform well.

@ For linear regression and regularization methods, the
performances of EN, Ridge, and linear regression are good
and stable but not as outstanding as LASSO in these two
overfitting scenarios. Hence, we suggest using LASSO in
preference in overfitting scenarios.

4.1.3 Insights

The following insights are derived based on the above simula-
tion experiments:

@ In overfitting scenarios, linear methods (LASSO, Ridge,
EN, and linear regression) are preferred. The experimental
results that LASSO outperforms other machine learning
methods provide experimental evidence for previous literat-
uret*! on the application of LASSO to DEA.

@ In underfitting scenarios, LASSO fails to identify good

indicators, while ensemble methods (GBR and RF) perform
well, which supports the claim in the introduction that
LASSO is not suitable for the underfitting scenarios.

(3 The proposed mean score methodology can accurately
identify the true indicators in both scenarios, which is ideal
for “black-box” environments where researchers do not dis-
tinguish between underfitting or overfitting scenarios.

4.2 Indicator selection performance in DEA scenarios

The purpose of this section is to compare the indicator selec-
tion performance of the four methods in Section 3.1 in differ-
ent scenarios by comparing the true DEA efficiency scores
(without noise) with the estimated values after indicator selec-
tion through the proposed three-step approach for selecting
indicators in Section 3.2.

4.2.1 Data generating process
The DGP of Lee and Cai is used to generate the production
function with 100 inputs and 1 output.

1

v = ﬂxE)"T),Vk: 1,---,n,

iel

(11)

e
yZ:nx&w)xe—m’\{k:1,...’,,’ (12)

iel

where x,, represents the input i of the DMU k, and y,; denotes
the output. The inputs are generated by a uniform distribution
of the interval (10,20), and the inefficiency term g, is half-
normal with a mean of 0 and variance of 0.7. Here, y; is the
output of a true frontier, and the observed output y, repres-
ents an output affected by inefficiency.

Three sample sizes with 30 replications are considered in
our Monte Carlo simulations:

IF T T T 3
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Fig. 3. Comparison of indicator identification ability of methods in overfitting scenarios.
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(@ Overfitting scenario: the DGP has 30 DMUs (n = 30),
and each DMU contains 101 dimensions (p = 100, 100 in-
puts and 1 output);

@ Underfitting scenario in a large dataset: this DGP con-
tains 1000 DMUs (n =1000), each with 101 dimensions
(p =100, 100 inputs and 1 output).

In addition, to make the experimental results more convin-
cing, we add another set of data to describe underfitting scen-
arios:

(® Underfitting scenario in a small dataset: 100 DMUs
(n=100), each with 21 dimensions (p = 20, 20 inputs and 1
output).

4.2.2 Comparison and analysis

After running the proposed three-step approach, MSE, MAE,
AMSE, and AMAE between each true frontier and estimated
frontier under each method can be obtained by Egs. (7)—(10).
Note that 6] and 6;, indicate the true DEA efficiency score
and the estimated score after indicator selection, respectively.
Table 1 and Fig. 4 report the results.

First, the change in the AMSE of each method is analyzed
from overfitting to underfitting scenarios of Table 1. Theoret-
ically, if we fix p =100, then when n changes from 30 (an
overfitting scenario) to 1000 (an underfitting scenario), the
linear model-based methods tend to fail to select good indic-
ators, resulting in a large deviation between the estimated

Table 1. Comparison of methods in overfitting and underfitting scenarios.

value and the true value of efficiency, as evidenced in Table 1.
From Table 1, linear regression, regularization methods
(LASSO, Ridge, and EN), and Pearson show increases in
AMSE, with the most pronounced rise in LASSO and EN
(see Table 1 and Fig. 4a, LASSO increases from 0.127 to
1.0000 and EN rises from 0.120 to 0.882). The main reason
may be that LASSO and EN are not suitable for fitting linear
data rather than nonlinear data (data relationships tend to be
linear in overfitting scenarios but nonlinear in underfitting
scenarios). MIC, SVR-RFE, RF-RFE, RF, and GBR, which
can fit complex data and identify nonlinear relationships, are
considered in underfitting scenarios, and the results in Table 1
illustrate the superiority of these methods. The AMSE of
these methods decreases from the overfitting scenario
(p=100,n=30) to the underfitting scenario (p =100,
n=1000), and our mean score methodology also performs
well (AMSE decreases from 0.105 to 0.103).

The underfitting scenario with a small dataset
(p =20,n=100) is considered for comparison with the over-
fitting scenario (p =100,n =30), and Table 1 and Fig. 4b
demonstrate the results. From the overfitting scenario
(p=100,n=30) to this underfitting scenario (p =20,
n=100), LASSO and EN show significant increases in
AMSE, while both RF and GBR show decreases. These find-
ings are consistent with the above analysis when the overfit-
ting scenario (p = 100,n = 30) is transferred to the underfit-
ting scenario in the large dataset (p = 100,n = 1000). A differ-

Type |
Scenarios Linear regression and regularization Type Il Typelll Type IV Mean
Linear Ridge LASSO EN Pearson MIC  SVR-RFE RF-RFE RF GBR
(ngggﬁiffo) 0.106 0106 0127 0120 0125 005 0103 0102 0133 031 0.105
Underhtting
avgp  nsmalldataset 0120 0120 0909 0737 0127 0016 0075 0232 0021 020 O.1I8
(p=20, n=100)
Underfitting
inbigdataset  0.108  0.108 1000 0882  0.134 0101  0.101 0.100  0.125 0.107 0.102
(p=100, n=1000)
@nggﬁszO) 0213 0212 0268 0244 0247 0210 0206 0205 0268 0278 0210
Under’ﬁtting
AMap  nsmalldataset 0249 0249 0924 0780 0270 0242 0291 0339 0252 0249 0.246
(p=20, n=100)
Underfitting
inbigdataset 0232 0232 1000 0757 0288 0216 0218 0217 0275 0234 0221
(p=100, ~=1000)
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Fig. 4. AMSE of methods between the overfitting and underfitting scenarios.
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ent conclusion is that the AMSE increases significantly for
SVR-RFE and RF-RFE, indicating that the RFE-based ap-
proach is unstable. The reason is that RFE is dependent on its
underlying method, and if the underlying method is unstable,
RFE will hardly perform well.

In Fig. 4, except for LASSO and EN, there is no signific-
ant difference in the performance of most methods between
underfitting and overfitting scenarios, meaning that in under-
fitting scenarios, LASSO and EN (Type [ ) tend to fail in in-
dicator selection, while MIC (Type 1I), RF (Type IV), GBR
(Type 1IV), and the mean score methodology are all good per-
formers.

Then, the performance of each method by scenario is ana-
lyzed. In the overfitting scenario of Table 1, the AMSE of
MIC, the RFE-based methods (RF-RFE and SVR-RFE) and
the mean score methodology are all excellent performers,
which is the same conclusion as in Section 4.1. Not in line
with the findings in Section 4.1, the performance of LASSO +
DEA is moderate in the overfitting scenario and is not superi-
or to other machine learning methods. By observing
LASSO’s scoring of individual indicators, we find that the
reason for LASSO’s mediocre performance is that LASSO
gives most indicators a score of 0 (LASSO may be affected
by the results of automatic parameter tuning), meaning that
LASSO removes most indicators, even those of high import-
ance. The analysis based on AMSE may be biased, as the
mean value tends to be affected by outliers, so the results with
30 replications are plotted in Fig. 5. From Fig. 5, results sim-
ilar to Table 1 can be obtained: the two methods based on
RFE, MIC, and mean score methodology perform well, and
the performance of Ridge is comparable to that of linear re-
gression; the rest of the methods performed poorly, with RF
and GBR being the worst performers, which implies that we

should not easily use RF or GBR (Type IV) for indicator se-
lection in overfitting scenarios.

Next, the underfitting scenario with a large dataset
(p=100,n=1000) is analyzed. From Table 1, LASSO and
EN are the two worst-performing methods, while there is little
difference in the performance of the other good-performing
methods (see Fig. 4a). The results with 30 replications are
plotted in Fig. 6a. From Fig. 6a, the performance of LASSO
and EN is still the worst. To compare the performance of the
well-performing methods, we remove LASSO, EN, and the
two RFE-based methods (as LASSO and EN have too large
MSEs, and SVR-RFE and RF-RFE are not stable) to obtain
Fig. 6b. If we use linear regression as the benchmark, then
MIC performs the best, followed by the mean score methodo-
logy and Ridge, and finally GBR.

The results with 30 replications in the underfitting scenario
of a small dataset (p =20,n=100) are plotted in Fig. 7a,
which also shows that LASSO and EN are not suitable for un-
derfitting scenarios. Similarly, we remove LASSO, EN, and
the RFE-based methods to obtain Fig. 7b, from which we can
draw the same conclusions as the underfitting scenario in a
large dataset: MIC performed the best, followed by mean
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score methodology and ridge, and then GBR.
4.2.3 Insights

In overfitting scenarios, most indicator selection methods tend
to yield good results, except for ensemble methods (GBR and
RF) that are prone to overfitting. Considering the nature of
LASSO to produce sparse solutions and its overwhelming ad-
vantage in indicator identification, LASSO is the most recom-
mended method in overfitting scenarios, as demonstrated in
previous studies™ .

In underfitting scenarios, MIC is the best choice for the
univariate case (MIC identifies both nonlinear and linear rela-
tionships, and it does not require tuning parameters, leading
to small computational difficulty). In the multivariate scenari-
os, MIC is no longer applicable, while the ensemble method
(GBR) is the recommended method.

The mean score methodology proposed works well in both
scenarios, which enlightens us that it may be a good choice if
indicator selection is a black-box process (it is difficult to dis-
tinguish between overfitting and underfitting scenarios).

4.3 A smart indicator selection mechanism for DEA

Given the different dimensional relationships between DMUSs
and indicators (different DEA scenarios), indicator selection
methods may encounter overfitting or underfitting. To avoid
complex and time-consuming indicator engineering, it is ur-
gent to build a process that is superior in different scenarios.
Therefore, we propose a smart indicator selection mechanism
to address the problem (Fig. 8).

DEA indicator
selection start
Y

Input n DMUs
p Indicators

ifp>>n
(e.g. p>=10m)

black box

o l .........

. overfitting

T

LASSO or EN

Ensemble method Mean score

(GBR) approah
v v v
Select the

Select the Indicators
with score > 0.2

Select the Indicators

Indicators with
with non-zero score

score > 0.2

|

Y

Run DEA with the
indicators selected

Fig. 8. A smart indicator selection mechanism for DEA.

Step 1: Input » DMUs and p indicators.
Step 2: Identify scenarios based on the relationship
between p and n.

5-8

Step 3: Select indicators with the corresponding approach.
LASSO or EN is recommended in overfitting scenarios, en-
semble methods are suggested in underfitting scenarios, and
the mean score methodology is used in the black-box
scenarios.

Step 4: Run DEA with the indicators selected in Step 3.

5 Conclusions

The purpose of this study is to categorize big data scenarios
encountered by DEA into overfitting and underfitting scenari-
os and to develop a smart indicator selection mechanism to
facilitate the process of indicator selection. The main contri-
butions are as follows:

This study is the first to classify the DEA scenarios into
overfitting and underfitting scenarios and to propose a mean
score methodology based on machine learning methods, ad-
vancing the development of DEA in the context of big data
and its integration with machine learning.

The results of Monte Carlo experiments show that in over-
fitting scenarios, LASSO is superior to other methods,
providing evidence for previous literature on the application
of LASSO to DEA. In underfitting scenarios, however,
LASSO fails, while the ensemble methods perform well, il-
lustrating the importance of distinguishing between the under-
fitting and overfitting scenarios. Notably, our mean score
methodology outperforms other methods in both scenarios
and can serve as a good alternative in black-box environ-
ments.

However, our study has limitations because only single
output scenarios are considered. Future research should con-
sider extending our work to DEA contexts with multiple de-
sirable outputs and undesirable outputs.
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