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Data used to do inference

A tree-based algorithm for subgroup identification with high interpretability allows valid inference for tree estimators.

Public summary

m We provide a tree-based algorithm for subgroup identification that embeds a Robinson-style semiparametric model to es-
timate subgroup-level treatment effects.

m The method is stepwise convex, computationally stable, efficient and scalable.

m Both theoretical and simulation results verify the feasibility of our method.
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Abstract: Exploring heterogeneity in causal effects has wide applications in the field of policy evaluation and decision-
making. In recent years, researchers have begun employing machine learning methods to study causality, among which the
most popular methods generally estimate heterogeneous treatment effects at the individual level. However, we argue that
in large sample cases, identifying heterogeneity at the subgroup level is more intuitive and intelligble from a decision-
making perspective. In this paper, we provide a tree-based method, called the generic causal tree (GCT), to identify the
subgroup-level treatment effects in observational studies. The tree is designed to split by maximizing the disparity of treat-
ment effects between subgroups, embedding a semiparametric framework for the improvement of treatment effect estima-
tion. To accomplish valid statistical inference of the tree-based estimators of treatment effects, we adopt honest estimation
to separate tree-building process and inference process. In the simulation, we show that the GCT algorithm has distinct ad-
vantages in subgroup identification and gives estimation with higher accuracy compared with the other two benchmark
methods. Additionally, we verify the effectiveness of statistical inference by GCT.

Keywords: causal inference; tree-based algorithm; subgroup identification; semiparametric estimation; heterogeneous

treatment effects
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1 Introduction

Correlation analysis is used as the primary way to discover
relationships between variables; it measures increasing or de-
creasing trends quantified using a correlation coefficient!".
However, just looking at correlation may lead to confusing
conclusions. For instance, we know that blood circulating vit-
amin D levels correlate with a decreased risk of colorectal
cancer. While saying a high dose of vitamin D intake could
reduce the risk of colorectal cancer is implausible because the
relationship between them can be an illusion under the influ-
ence of other factors”. Correlation has limitations in answer-
ing the question if A causes B without confounding, which is
of more interest in today’s research, and that is what the caus-
ation does.

Exploring causality has drawn unprecedented attention in
many fields, such as public policy, econometrics, and medi-
cine. From the feasibility of practical application, the scenari-
os of conducting causal inference are increasingly shifting
from randomized experiments to observational studies. Since
tailored randomized experiments are usually time-consuming
and expensive, all covariates other than the “cause” should be
ensured to be similar in treated and control groups. However,
the observed data are easily accessible and economical. Fur-
thermore, with soaring data size and increasing diversity of
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samples, treatment will inevitably lead to different treatment
effects for individuals, the so-called heterogeneity. Hetero-
geneity in treatment effects essentially arises from the interac-
tions between treatment and covariates, making various mag-
nitudes of treatment effects appear in the population. Spe-
cifically, treatment may have a negative impact on the whole
but a positive influence on specific subpopulations. Thus,
learning heterogeneous treatment effects (HTE) is particu-
larly instructive in modern data analysis.

Owing to the strong capabilities of machine learning (ML)
in data mining, several meritorious ML algorithms have been
developed to estimate HTE over the last few years. A brief in-
troduction to related ML methodologies is shown in Section
2. Among the literature, the most popular ML methods gener-
ally give pointwise treatment effect estimators, e.g., estimat-
ing the treatment effect at the individual level, such as gener-
alized random forest'” or meta-learners'’. We argue that indi-
vidual treatment effects (ITEs) are too trivial to utilize in
large-scale data analysis, where researchers are more con-
cerned about subpopulations with distinct characteristics and
treatment effects. Meanwhile, ITEs cannot provide an intuit-
ive explanation of the heterogeneity mechanism for decision-
makers. Nevertheless, there is no unified operation to derive
subgroup-level treatment effects (STEs) by individual treat-
ment effects, especially since the statistical properties of
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derived STEs may be ambiguous. For this reason, gathering
similar individuals and directly estimating a uniform amount
to approximate their treatment effects will be more effective.

This paper aims to estimate STEs automatically with obser-
vational data and provide intelligible insight into the hetero-
geneity mechanism for practitioners. Trees have advantages
in capturing interactions between variables, recursively parti-
tioning the entire covariate space into distinct subspaces. The
intuitive idea is to set a well-performed splitting criterion in-
volving treatment effects in nodes to guide tree generation.
We note that the method used to estimate the treatment effect
will influence the performance of the tree, including the cor-
rectness of the partition and the accuracy of the STE estimat-
ors. Meanwhile, we hope to carry out statistical inference for
the final subgroup-level treatment effects. To our knowledge,
the work of Athey and Imbens™ is the first tree-based method
that allows for statistical inference of treatment effects on
subgroups in randomized experiments by conducting regres-
sion after tree building. In their paper, trees grow by the caus-
al tree criterion, which may pursue smaller variances in each
split and tend to split even when there is no heterogeneity. On
the other hand, they use the difference in the empirical mean
of outcome between treated and control groups as treatment
effect estimation, which may lead to unsatisfactory perform-
ance even by propensity score weighting for observational
data.

This article develops a tree-based algorithm to automatic-
ally estimate heterogeneous treatment effects in subgroups
with observational data, referred to as the generic causal tree
(GCT) algorithm. We use a straightforward criterion that aims
to maximize the heterogeneity in each split and apply the
Robinson-style!” treatment effect estimator to improve the
performance of the treatment effect estimators in observation-
al studies.

The rest of this paper is organized as follows. In Section 2,
we review the related literature. In Section 3, we expound the
GCT algorithm with a new subgroup treatment effect estimat-
or. In Section 4, we introduce the honest version of our GCT
algorithm and state the asymptotic properties of the STE es-
timators. We compare the performance of our GCT al-
gorithms against the other two previous tree-based methods in
simulation, as shown in Section 5. An application of GCT is
provided in Section 6 to illustrate the feasibility of GCT in
real data. Finally, our results are summarized in Section
7. The proofs of theorems, additional experiments, and sup-
plementary material of data analysis are provided in Suppor-
ted information.

2 Related works

Much of the literature uses ML methods to estimate treat-
ment effects at the individual level. The concept of construct-
ing a forest for causal inference has been prevalent since the
work of Wager and Athey", in which they aggregated regres-
sion or classification trees to construct a forest to allow for
pointwise treatment effect estimation. Afterward, Athey et
al.l! proposed the forest by an adaptive-weighted method
based on random forest, called generalized random forest
(GRF). The target parameter can be obtained by solving a
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weighted-specific moment condition, where heterogeneity is
embedded in the sample weights. Drawing inspiration from
the idea of nearest neighbor, a debiased 1-nearest neighbor al-
gorithm was proposed by Fan et al.l); they used a weighted
sum of two L-statistics estimators with different sample sizes
to eliminate the main order of bias. Kiinzel et al.”! proposed a
nonparametric framework called X-learner to avoid overfit-
ting caused by the unbalanced sizes of treatment groups. In
addition, several works”'? trained neural networks to fit
counterfactual functions in a prelearned representation space,
where the distributions of covariates are adjusted to be simil-
ar in both treatment groups.

However, in the preceding discussion, we have clarified the
limits of pointwise estimation in discovering the heterogen-
eity mechanism. Nevertheless, several tree-based works al-
lowed for it with reasonable interpretation. Su et al.'"”! first ad-
vocated building trees for subgroup analysis in randomized
trials. Yang et al.' generalized the interaction tree in Su et
al.'" to adapt observational data by replacing the treatment ef-
fect estimator with three adjusted estimators: inverse probab-
ility weighting estimator, G-formula estimator, and doubly ro-
bust estimator. Foster et al.'"! applied random forest as a tool
to predict treatment effects and took them as the outcome into
classification and regression tree!'” to detect the most af-
fected group by treatment. Athey and Imbens™ first proposed
a sound tree-based method that enables valid statistical infer-
ence for average treatment effects in subspaces. The confid-
ence intervals can be obtained through linear regression after
the tree model is constructed.

The estimation method in this paper is inspired by the liter-
ature inferring STEs through linear models. Due to the chal-
lenge of inferring ITEs directly, Chernozhukov et al.'”’ pro-
posed a generic ML framework to infer the key features of
ITEs instead, which includes the subgroup average treatment
effects. They postprocessed rough estimations of ITEs to ob-
tain STEs through a subgroup-specified linear model, where
the subgroups are designated according to some rules, such as
the quantiles of ITE estimators. Nevertheless, this will lead to
an unreasonable grouping when the true subgroups are un-
even, or the ITEs differ significantly. Park and Kang'"¥ pro-
posed a sample splitting linear model to infer STEs, where
subgroups are prespecified by the investigators’ scientific
grouping hypothesis or clustering algorithm, K-means. The
former grouping method relies on prior knowledge, which
may not be reliable in practical problems involving many fea-
tures—misspecifying effect modifiers or setting wrong split-
ting points will cause varied results. For the latter data-driven
approach, K-means cannot automatically highlight the vital
role of effect modifiers when measuring the similarity of ob-
servations in the whole covariate space.

In general, defining a scientific grouping strategy while en-
suring favorable statistical properties of STE estimators is our
main purpose. The ideal situation is to perform subgroup
identification based on a data-driven approach without addi-
tional prior expertise. Through the tree-based method, this
goal could be reached more readily only by making trees adapt
to statistical inference for STEs. Suppose the subgroups are
determined, constructing confidence intervals reduces to con-
ditional inference. Several papers give related references for
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the application; see Section 4 for details. Our approach makes
new contributions to subgroup identification through ML
methods, automatically forming subgroups, and giving the
treatment effect estimation and valid inferences. Tree-based
methods have been questioned in term of their estimation ac-
curacy since they use an average treatment effect to approx-
imate the individual treatment effects of the units belonging
to a subgroup. This may lead to the loss of accuracy com-
pared with some modern methods for ITE estimation;
however, it instead provides insights into heterogeneous
mechanisms more intuitively. Thus, one of our main focuses
is to improve the tree’s estimation performance. In this paper,
we seek to utilize the idea of partialling out by Robinson-style
method™ to give a better estimation, provably enhancing the
performance of trees.

3 Treatment effect estimation on

subgroups

3.1 Identification of treatment effect on subgroups

Suppose the observational data contain N i.i.d. samples in-
dexed by i=1,2,---,N. For each sample, we observe
(X,,A,Y) e R x{0,1} xR, where X, =(X",---,X") denotes
the p-dimensional covariates, A, is a binary indicator that
A; =1 means receiving treatment, while A; = 0 means not re-
ceiving treatment, and Y, is the outcome. Let Y' and Y° be the
potential outcomes"” under the treatment assignment A = 1 or
0, respectively.

Several assumptions are required to guarantee the identifi-
ability of subgroup treatment effects in the observational
study: a) Consistency assumption: ¥ =Y*=Y'A+Y°(1-A),
if A =a. The potential outcome Y“ is equal to the observed
outcome Y if the actual treatment takes value a.b) Uncon-
foundedness assumption: Y',Y° L A| X, namely conditional
on covariates X, the potential outcomes are independent of
treatment assignment. c¢) Positivity assumption: 0 <
P(A=a|X=x)<1 for all values for X and treatment A.
This assumption stipulates that each sample has a nonzero
probability of receiving both treatments.

Under these assumptions, the expected value of potential
outcome E(Y“|X = x) could be transformed as the condition-
al mean of observed outcome E(Y|A =a,X = x), which al-
lows us to identify treatment effects using observed data (see
Refs. [20,21] for more details about identifiability
conditions).

At the same time, we can derive a useful equation by tak-
ing the expectation of consistency assumption,

E(Y|X)=E(Y'AIX)+E(Y’(1-A)|X) =
(Consistency assumption)
EY''X)EAIX)+EXYX)-E(Y | X)EAIX) =
(Unconfoundedness assumption)
E(YIX) +6(X)e(X), (1)
where we denote (X) = E(Y' — Y°|X) as the treatment effect

of X, and e(X) = E(A|X) = P(A = 1| X = x) is the propensity
score denoting the probability of X receiving treatment.
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3.2 Estimator of subgroup-level treatment effect

We first construct suitable STE estimators that adapt to tree
splitting. The observed outcome consists of two main effects
implied on two paths: one is the baseline effect E(Y°|X)
from X to Y, and the other is the treatment effect A-60(X)
from A to Y, so we have

Y=EX'X)+A-0X)+e, E(e|A,X)=0.

Furthermore, the baseline effect E(Y°|X) can be replaced by
E(Y|X)—-6(X)e(X) according to Eq. (1).

During tree growth, the observations falling into the same
node could be viewed as a subgroup. Given a split s, a left
node C, and a right node C, will be formed, then, the model
for the observed outcome on the formed subgroups can be
built as

Y=E(YX)+(A-e(X)-1,(X)-0,+¢, E(e|A,X)=0,

@)

where we use the average treatment effect of the child node to
approximate the treatment effects of units falling into it, e.g.,
9X)=1,(X)-0,, 6,=(6,,0,)" isthe vector of treatment ef-
fects on left and right mnodes, and I.(X)=
(I(X €C),I(X € C,)) denotes the child node that X is falling
in. Model (2) is constructed following the Robinson-style
method™. There are several pieces of literature!****! estimat-
ing treatment effects based on the same idea from Robinson
transformation, which eliminates the effect of covariates from
treatment and outcome. From the perspective of the causal
graph, this model blocks the backdoor path from treatment A
to outcome Y by controlling the covariates X.

For the nuisance functions in model (2), the conditional
mean of the outcome E(Y|X), and the propensity score e(X),
we use their leave-one-fold estimators as plug-ins into model
(2). We randomly divide the indices set = {1,2,---,N} of the

K
whole sample into K folds with equal sample sizes, I =1,

|I,| = N/K. The nuisance functions are fitted on the samplkélin-
dexed by the complement of 7, denoted as I, and E(KlX,)
and ¢,(X;) are estimated on [, i€l Iterating through
k=1,2,---,K, we can obtain the nuisance estimators for the
entire sample. Given the estimated nuisances, the treatment
effect 6, of subgroups formed by split s can be estimated as

.= {Z PRCE 0 L(X»TA(X,»)} :

k=1 el

; - 3
{ZZ(Y,»—Ek(mx,))-(A,- —a(x,»))l.\(xif}.

k=1 el

To derive the properties for @,, we put some limitations on the
estimated nuisance functions. Here, we denote the L7(P)-
norm of random variable Z as ||Z||,, = {fllzll;dP(z)}”q, where
P(z) is the probability distribution of Z.

Assumption 3.1. (Bounded moment) The L‘(P)-norm of
outcome ||Y]|,, is bounded for all g > 2; E (€’ | X) is bounded.

Assumption 3.2. (Consistency of nuisance estimators) The
nuisance estimators E(Y |X) and ¢,(X) are estimated on the
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K
subset I, of sample I={1,2,---,N}, where I=(JI, and

|Il]=N/K. For each k=1,2,---,K, the nuisance eks:t]imators
obey the following conditions:

O |ExX-EXIX)|,, = 0, [e(X)—eX)],, - 0;

@

VN [1eu(X) = e(X)ll,2x
(1e.(X) = el + 1E(YIX) = E(YIX)l]) — 0.

Assumption 3.1 gives the bounded moment conditions of
model (2); Assumption 3.2 restricts the convergence rate of
nuisance estimators, and this rate could be available for many
modern ML methods™. A simple way is to fit nuisance func-
tions on the whole training data before tree building. As we
obtain the nuisance estimation for each sample, storing and
passing them into the tree-building process for subsequent
use, can reduce the frequency of model fitting and ensure the
full efficiency of the entire training data.

Theorem 3.1. Given a split s, suppose that Assumptions
3.1 and 3.2 hold. The treatment effect estimator 8, = (6,,0,)T
defined by Eq. (3) is asymptotically normal,

VN@®.-0,) 5 N©,2)), 4)

where X, =diag(o;,07) is a covariance matrix, and the
asymptotic variance of the treatment effect of C, and C, can
be estimated as

EK] DA -EX)EIX €C)

k=1 el

{ZK: D A-EX)) I(X, € C,)}

k=1 el

Var(®,) = j=Lr, (%)

where € = ¥~ E,(YIX)) - (A, = @(X)d.
3.3 Generic causal tree algorithm

In this section, we introduce the procedures of tree genera-
tion based on the above-defined STE estimators. We preserve
the core frames of interaction trees” ", including partitioning,
pruning, and selection, while using a different splitting cri-
terion and replacing the estimation idea. Since the semipara-
metric causal effect model in Section 3.2 is suitable for gener-
al scenarios with confounding interference and allows mul-
tiple machine learning algorithms to fit nuisance functions,
and the framework of such tree architecture is generic, we call
it a GCT.

3.3.1 Tree splitting

The central problem is to seek a split that immediately max-
imizes the heterogeneity on child nodes. For the disjoint sub-
groups in the left and right branches, we wonder if their treat-
ment effects are significantly different. Analogous to the two-
sample hypothesis test, we construct a splitting statistic:

2

where 6, and 6, are the estimated treatment effects of the left
and right child nodes formed by a given split s, respectively,
and Var(9), Var(d,) are their estimated variances. The estim-
ators in the splitting statistic (6) can be estimated by Egs. (3)
and (5). Here, the split statistic imposes two constraints on the
tree splits: 1) maximize the heterogeneity of treatment effects
in both subgroups; ii) minimize the uncertainty within each
subgroup. We calculate split statistics at all candidate splits,
then the split with maximum statistic 7 will be conducted. It
should be noted that, there exist some splits that violate the
above model setting and assumptions during the split-
searching procedure, we simply regard the estimators in Eq.
(6) as rough approximations at such times.

We repetitively execute the splitting procedure on new-
generated nodes until meeting a prespecified terminal condi-
tion, for example, reaching the minimum number limitation of
observations in each node. Here, both the number of treated
units and control units should be constrained to avoid poor es-
timation performance of the treatment effect in the nodes.

3.3.2 Pruning and tree selection

We adopt the pruning idea of CART" and generate a se-
quence of subtrees by gradually cutting the weakest branches
of the initial tree. The goodness of a given tree /7 is accumu-
lative of splitting statistics at all its splits, reflecting the het-
erogeneity it carries:

GUT) = Z T(s). )

Following the work of Su et al.!”, the heterogeneity-
complexity for a given tree I7 can be defined as

GY(IT) = GUD) - AT, ®)

where I7 represents a subtree containing all internal nodes of
I1, |- is the number of tree nodes, and A is a penalty parameter.
Let 71, denote a subtree that is rooted in an internal node &
and comprises all descendants of /. Subtree 77, is going to be
cut only when the heterogeneity and complexity of 77, im-
proves after pruning, leaving a single node 4. Then we have

7l G,
GUL)- 1|l = G"(1) < Gy =0= a5 L.

(Before pruning)

(After pruning) I |

During pruning, we iterate through each internal node % of a
given tree /7 and calculate the corresponding

g(h) =G (11,) /|IT,]. )

The branch with minimal g(%), denoted as g(h*), will be cut
off. That means once the degree of penalty A grows exactly
up to g(h’), the weakest split 77,, will be truncated while
other splits will remain.

Continuing the pruning procedure until the initial tree 71, is
pruned to be a root node 77,,, we can obtain a sequence of the
subtree {1,,---,I1;,11,}. Given a penalty parameter 1", we

6,-0
20y v
T*(s) = — — |’ (6) @ Ordinarily, we set A = y? (1), which is the 1 — @ quantile of the
v Var(6)) + Var(6,) asymptotic distribution of Eq. (6) when there is no significant difference
of treatment effects in two child nodes.
1102-4 DOI: 10.52396/JUSTC-2022-0054
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select the optimal tree by evaluating the heterogeneity and
complexity (8) of each candidate subtree with validation data:

1T = argmax {G* (I1,)} . (10)
me{0,1,....M}
The procedures for building the GCT are shown in Al-
gorithms 1 and 2.

4 Honest estimation for
treatment effect

subgroup

One of our central concerns is finding a solution to construct
confidence intervals for the tree-based treatment effect estim-
ators. It is still challenging to attempt direct inference since
the derived subgroups may change with different tree models.
Refs. [24, 25] suggested using conditional inference by condi-
tioning on the selected model to solve this issue since the un-
certainty of targets of inference is induced by the randomness
of the selected model. Additionally, Refs. [5, 17, 18] em-
ployed honest estimation, an approach based on data splitting
that usually appears in the context of conditional inference,
allowing for valid statistical inference with a given model that
is built independently of the data on which inference is based
Ref. [26]. This, combined with the theory of semiparametric
framework™, gives clear conditional distributions of our tree
estimators and sheds light on valid inference.

The key point of honest estimation is employing independ-
ent data for different tasks. Recall that in the regular version
of GCT, the same dataset is used to decide splits and estimate

Algorithm 1. Generic causal tree for subgroup identification

Input: Sample S, the minimum sample size minsize of treated and
control units in nodes, ML methods FitMethod used to fit nuisance, and
the number of folds K.

Output: Optimal tree I7*

1: Training sample S and validation sample S** «— SampleSplit(S)
2: Nuisance estimator A'f = (Ex(Y1X), e (X)), X € ST —
LeaveOneFold(SY, K, FitMethod)

3: Initial tree InitialTree «— INITIALTREEBUILD(S", 7", minsize)
> See Algorithm 2

4: Initialize a list of subtrees subtreeList

5: Initialize TreeToPrune I7 «— InitialTree

6: while |I7| > 1 do

7: Initialize the threshold vector g, «— Zeros(|II])

8: for node 1 € IT do

9: if /1 is leaf then

10: gn <— AddToVector (g, +o0) > See Eq. (9)
11: else

12: gn «— AddToVector(gy, GUT) /M) > See Eq. (9)

13:  Target node h* = argminy, g,

14:  TreeToPrune I1 «— Prune(I7, I1;+)

15:  subtreeList «— AddToList(subtreeList, 7)

16: Initialize a complexity vector G «— Zeros(|subtreeList|)
17: for ¢t = 1 to |subtreelList| do

18:  TreeToValid 77, «— subtreeList[7]

19:  Vector G «— CalculateComplexity (I1;, S**)
20: The index of optimal tree ¢* = argmax, G

21: Optimal tree I7* = subtreeList[r*]

22: return optimal tree /7*

* Note: The function LeaveOneFold(-) gives leave-one-fold estimators of
nuisance; CalculateComplexity(-) gives heterogeneity and complexity by
Eq. (8).

> See Eq. (8)
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Algorithm 2. Initial tree building
1: Procedure INITIALTREEBUILD (S", minsize, j")
2: Root node Py «— CreateRoot(S")
3 Queue Q «— CreateQueue(Py)
4: Parent node P «— Py
S: while NotNull(P) do
6 Extract the data on P, 8P «— S, #f «— =
7 if NP, Nf, >= minsize then
8 Initialize the split statistics 7, « 0
9: for candidate split s do
10: (9[,9,,6'51,5-5'_) «— DoEstimation(i”, S¥)
> See Egs. (3) and (5)
11: ts «— max{z;, SplitStatistic(?)l,9,.,&5[,&51,)}
> See Eq. (6)
12: Best split s* «— argmax#¢
13: Child nodes Cj,C, «— TreeSplit(P, s*)
14: Queue Q «— AddNodes(Q,C;,C,)
15: Queue Q «— Remove(P), remove node P from queue Q
16: Parent node P «— the earliest node in Q
17: return InitialTree

* Note: Ngl and NSI are the sample sizes of the treated units and control
units in node P. The function DoEstimation(-) estimate the treatment
effect and variance estimator on a node by Eqgs. (3) and (5). Splitting
statistic is calculated at each candidate split by SplitStatistic(-) through
Eq. (6).

treatment effects, as described in Section 3.3. Here, in the
honest version of GCT, we divide the whole sample into two
equal-sized parts. Half of the sample will be used to generate
the tree model; this procedure is the same as Algorithm 1;
The other half of the sample, called estimation data, will be
put into the given tree to estimate treatment effects and not
participate in tree building.

Let Q denote the covariate space. Given a specific parti-
tion 77 decided by data S*U.S™, the covariate space @ is di-

G
vided into G disjoint subspaces 2 =(J£,. The vector of

treatment effect 6 = (4,,60,,---,0;)" on tgﬁé formed subgroups
will be estimated with the estimation data S* as if subgroups
are prespecified. For the observed outcome, we construct a
model as follows:

V= B0 X)+ (A=) LX) 0+e )
E(e|A,X)=0,X €8,

where I7(X) = (I(X, € Q)),....](X, € Q;)) isa subgroup in-
dicator for indicating which subgroup X; belongs to under
map 1.

The nuisance functions can be replaced by their leave-one-
fold estimators on estimation data S*, then, the treatment ef-
fect 6 can be estimated as

0=
ZK] DA -EX)y Iﬁ(Xi>T1ﬁ<XI-)} :

k=1 el

12)
{ZZ(K—E(MX»(A,» —’e}(XJ)Iﬁ(X,-)T},

where /, is the partition of estimation data.
Assumption 4.1. (Nonempty partition) Let /7 denote the
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final tree model. The covariate space is divided into G
G

disjoint subspaces 2 =|JQ,. We assume that there exists a
g=1

constant 6 > 0, such that the given tree 7 satisfies the
s<P(I(x)=g)<1-6. (13)

That is, given a specified partition 77, fgk dP(x) > 4.

Note that the properties of tree estimators are generally de-
rived based on the simplification of fixed partitions, and the
following theorem is conditional on a built tree model.

Theorem 4.1. Given a specified partition 1, suppose that
Assumptions 3.1, 3.2, and 4.1 hold, the estimators of
subgroup-level treatment effects are asymptotically normal,

VN.B-6) | TT 5 N0, %), (14)

where 25 = diag(o-?ﬁ,...,a'éﬁ) is the diagonal covariance
matrix. For subgroup Q,, the variance estimator a'iﬁ can be
consistently estimated by

1 & .
v 22 A -aX) el (X eQ)
¢ k=l el

e (15)

| {Ni i Z (4, —E(X[)Yi(xi € Qg)}

¢ k=1 el

where €, = Y, - E,(Y.|X,) - (A, - ¢,(X,))I7(X,).

5 Simulation

In this part, we conduct two simulation studies to test the per-
formance of our GCT algorithm. The first study compares
GCT with two benchmark methods: causal tree™ and causal
interaction tree!'’, concentrating on their subgroup identifica-
tion and estimation abilities. In the second study, we test the
effectiveness of the GCT algorithm on statistical inference.
We retain the experimental setup and performance metrics
similar to those of Ref. [14].

5.1 Simulation setup

For the data generating process in the following experiments,
we draw N ii.d. samples of O, = (X,,A;,Y;) € R> x{0,1} xR.
The 5-dimensional covariate vector is generated from
X ~ N(0,2,), where X, is a covariance matrix with 1 for di-
agonal elements and 0.3 for nondiagonal items. We set all
variables as confounding to affect both treatment A and out-
come Y. The propensity score e(X) is designed as

1

e(X) = .
1+exp(-0.5X"+0.5X” - 05X +0.5X" - 0.5X")

The treatment A, for each individual is generated from a
Bernouilli distribution Bern(p;) with probability p; = e(X)).
Consider the following two cases:

(i) Homogeneous setting with the same treatment effect for
all units. The outcome is generated as follows:

Y, =2+42A+ (Xf”)2 +exp (ij’) +2X7 +31 (X,.“” > 0) + (st))3 +€,

where € ~ N(0,1). The treatment effect is equal to 2 on the
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whole population.

(i) Heterogeneous setting with treatment effects varying
from the values of the variable X. The outcome is gener-
ated as follows:

Y, =2+2A+ (X,“’)2 +exp (X;Z)) +2XV+
sa1{x > )1 (1) e

where € ~ N(0,1). The treatment effect of X; is equal to 5 if
X >0 and equal to 2 if X < 0.

5.2 Performance metrics

We evaluate these tree-based methods on test data with
sample size N, =1000. The following metrics will be
reported:

The probability of correct trees (corr.tree): Trees that
split at correct split variables with correct split times are con-
sidered as correct trees.

The number of leaf nodes (num.leaf): The correct num-
ber of leaf nodes of a tree should be 1 in the homogeneous
case and 2 in the heterogeneous case.

The number of noise splits (num.noise): It is the number
of times that tree splits at noise split variables. In homogen-
eous cases, all covariates are noise split variables; in hetero-
geneous cases, {X",X?®,X®,X®} are noise split variables.

Accuracy of the first split (fir.splt.acc): This is the pro-
portion of final trees that make the correct first split. Only ap-
plicable to heterogeneity setting. The first split variable is
generally of the greatest contribution to heterogeneity.

Pairwise prediction similarity (PPS)"Y: Measures the ac-
curacy of the subgroup partition, that is,

£ £ N, ’
i=l i
2

where 1,(i, j) and 1,(i, j) indicate whether the observations X;
and X fall in the same subgroup in the true model and the es-
tablished tree, respectively.

Mean of square error (MSE): 6(X) is the true treatment
effect and O(X) is the estimated treatment effect in test data:

1 ¢ A
DL (0x)~b(x))”

5.3 Implementation details

Code for the simulations is available at https:/github.
com/Caiwei-Zhang/GenericCausalTree. We implement our
GCT method in R based upon the user-written split functions
in the R package rpart and retain the main frame of the code
by Yang et al.'l. There are two options considered in our sim-
ulations to fit nuisance functions in GCT and CIT. In addi-
tion to fitting nuisance functions with the whole dataset be-
fore tree building, as we described earlier, the other way is to
fit nuisance with the samples in each parent node during tree
splitting. The latter enables the capture of the local data char-
acteristics but may also increase the risk of overfitting and
slow down tree generation. We will compare the two model-
fitting patterns and then select the better one to apply in the
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data analysis in Section 6. The penalty parameter A is chosen
to be the 95% quantile of y*(1). We set 80% of the data as
training data for tree splitting and the remaining 20% as valid-
ation data for tree selection. For honest GCT in the second
study, we will first take out half of the data for estimation and
the remaining half for tree building.

We implement the causal tree in the R package
causalTree”. The tree splitting and validation criteria need to
be specified before running the tree. Referring to Yang et
al.l'"! two versions of the causal tree are be considered: the
original version and the tuning version. The original causal
tree (Org.CT) takes the “honest causal tree” criterion as split-
ting and validation rules. For the tuning version of causal tree
(Opt.CT), several alternative splitting and validation rules are
provided in the package causalTree, and we will select the
optimal combination of rules with the best average perform-
ance by grid tuning”. In addition, we will perform propensity
score weighting in the estimation during the tree-building
process to accommodate observational data, as Athey and Im-
bens suggested”.

For the ML algorithms used to fit outcome models and
propensity score models, we try gradient boosting machine
(GBM) and logistic regression model, respectively. All the
ML algorithms are implemented with the same parameter set-
tings. We note that the conclusions about the performance of
these methods are ordinarily independent of the particular ML
algorithm. Many other powerful ML algorithms can be
chosen to fit the nuisance functions, such as random forest.

5.4 Simulation results

5.4.1 Comparison of benchmark methods

We summarize the results and provide general remarks on the
strengths and drawbacks of the CT, CIT, and GCT al-
gorithms in our simulations. All three algorithms are imple-
mented following Section 5.3. Table | reports the average
performance metrics in both heterogeneous and homogen-
eous settings among 1000 repetitions.

Overall, GCT has excellent subgroup identification and es-
timation performance, followed by CIT-DR and Opt.CT.
GCT slightly outperforms CIT in the heterogeneous setting,
and both Opt.CT and CIT perform well in the homogeneous
setting. In either setting, the estimation error of GCT is the
smallest. The performances of CIT under two model-fitting
patterns are similar in this experimental setting. However, fit-
ting nuisance functions in parent nodes seems to slightly en-
hance the performance of GCT. We note that in a more com-
plicated heterogeneous setting, fitting models in parent nodes
during splitting could be a wise choice since the response
functions are different for distinct parts of covariate space; fit-
ting models in subspaces can greatly aid the detection of local
structures.

In terms of tree splitting in the heterogeneous setting, GCT
builds the most correct tree models during 1000 repetitions
under both model-fitting patterns. Meanwhile, the first split
variable is generally of the greatest contribution to heterogen-
eity, obtaining the highest accuracy of the first split shows
that GCT has a strong ability to detect heterogeneity. Addi-
tionally, GCT shows good power in subgroup identification
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Table 1. The summary of average performance metrics during 1000 repe-
titions for three tree-based algorithms. The upper panel “Hetero” corres-
ponds to the results in heterogeneous setting; the lower panel “Homo”
corresponds to the results in homogeneous setting. The optimal metrics
are marked in bold text.

CT CIT-DR GCT
Org.CT Opt.CT fitBe fitln fitBe fitln
corr.tree  0.002 0459  0.803 0.806 0.822 0.862
31.108 2294 1.890 1.872 2.388 2.046
num.noise 22.859  0.490  0.025 0.015 0.309 0.070
Hetero fir.spltacc 0.622  0.677  0.837 0.836 0.970 0.939
PPS 0.621 0779  0.896 0.895 0.948 0.943
MSE 9.107  1.653  0.560 0.553 0.268 0.288
time 0.577 0504 5315 4514 1.079 2.401
corr.tree  0.037  0.987 0975 0976 0.956 0.956
num.leaf  9.324  1.023  1.032 1.037 1.055 1.059

Setting ~ Metrics

num.leaf

num.noise  8.324  0.023  0.032 0.037 0.055 0.059

Homo
PPS 0.259 0.995 0.990 0.989 0.980 0.980
MSE 4.557 0.138 0.052 0.051 0.033 0.034
time 0.512 0.501 2.593 3.278 0.483 1.561
with the best PPS.

We notice that the average number of leaf nodes of
CIT-DR is less than 2 and the number of noise splits is close
to 0, indicating that the splitting of CIT is relatively conser-
vative in the heterogeneous case. This may be attributed to
the method of treatment effect estimation. The treatment ef-
fect estimation of the CIT-DR algorithm is based on the
propensity score weighed counterfactual prediction. This
method pools the treatment A and covariates X together to fit
the counterfactual functions E(Y|X,A), where the treatment is
considered in the same position as the other covariates, which
may weaken the effect of treatment. When fitting this out-
come model, the response surfaces corresponding to A =1
and A =0 interfere, blurring the difference between them and
negatively affecting the prediction of E(Y|X,A). Since the
two response surfaces are more different in heterogeneous
settings than in homogeneous settings, we find that the CIT’s
performance in homogeneous settings is always better than
that in heterogeneous settings in the following simulations. At
the same time, the pooled data increase the difficulty of fit-
ting outcome model E(Y|X,A), which may place higher de-
mands on the ML algorithm used. The results in Supporting
information S.2.1 also demonstrate this point: CIT is relat-
ively sensitive to different ML algorithms. In contrast, for
GCT, we do not directly conduct the prediction involving A
on Y when fitting outcome models. We fit E(Y|X), the effect
of X on Y, and then remove this part of the effect from Y by
partialing out. This method can alleviate the interference

(D github.com/susananthey/causalTree

@ According to the tuning result, the best combination of parameters for
Opt.CT is split.Rule = “tstats”, split. Honest = “TRUE”, cv.option =
“matching” in heterogeneous setting, and split.Rule = “tstats”, split.Hon-
est = “FALSE”, cv.option = “matching” in a homogeneous setting.
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caused by obvious differences between response surfaces.
This may be why GCT outperforms CIT in this heterogen-
eous setting.

In addition, the performance of Opt.CT is far better than
that of Org.CT, indicating that the causal tree is extremely de-
pendent on parameter tuning. The Org.CT performs poorly in
both settings since it tends to generate very large trees. As we
noted, the causal tree criterion guides tree-splitting according
to expected mean square error (EMSE), and it is prone to in-
troduce split even when the two branches have the same treat-
ment effect, as long as the variances of outcome in the treated
group and control group decrease. Splitting on the noise vari-
ables that only have an impact on the outcome but not on the
treatment will also lower the EMSE.

In terms of estimation, the MSE shown in Table 1 and the
boxplot in Fig. 1 highlight the promise of the GCT algorithm
for accurate estimations of treatment effects. GCT yields the
lowest MSE among these methods in both settings.

To investigate the performance of these methods as the
sample size grows, we gradually increase the sample size
from 1000 to 20000 and report the trend of MSE as shown in

Heterogeneity

Fig. 2. The MSE of GCT and Opt.CT declines steadily as the
sample size increases. In contrast, the MSE by CIT al-
gorithms cannot converge under the given sample sizes, and
its splitting performance does not improve with the increased
sample size. The complete performance metrics are presented
in Supporting information S.2.2 because of limited space,
with a brief analysis of tree splitting and estimation.
Furthermore, we conduct additional experiments to evalu-
ate the performance of these methods in different scenarios
more comprehensively: (I ) We have mentioned above that
changing the ML algorithm used to fit outcome models will
not influence the ranking of these tree-based methods. To il-
lustrate this, we try to fit the outcome models of GCT and
CIT by random forest (RF) and generalized linear model
(GLM) in addition to GBM. The performance metrics are
summarized in Supporting information S.2.1. It demonstrates
that the choice of ML algorithms will affect the performance
of trees but could hardly change the ranking of trees: GCT
has better performance regardless of ML methods. It also in-
dicates that CIT is relatively sensitive to ML methods with

Homogeneity
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Fig. 1. The distribution of MSE over 1000 simulated datasets in heterogeneous (left) and homogeneous settings (right).
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~ CIT-DR-fitBe~ GCT-fitBe = Opt.CT
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Fig. 2. The MSE curves of three tree-based algorithms with sample sizes increased from 1000 to 20000. The curves of CIT-DR-fitBe and CIT-DR-fitIn

almost overlap in a homogeneous setting.
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larger fluctuations in the subgroup identification performance.
(IT) The results show that all three methods are negatively
impacted by unobserved confounding. In terms of tree split-
ting, the performance of CIT drops the most, followed by
GCT and Opt.CT drops the least. However, GCT still per-
forms best. For more details, see the results in Supporting in-
formation S.2.3.

5.4.2 The inference by honest GCT

For the second study, we test the effectiveness of honest GCT
in terms of inference. We report the coverage rate of 95%
confidence intervals on each subgroup in the correct tree
models. We further show the simultaneous coverage rate of
95% simultaneous confidence intervals on both subgroups,
following the approach of Hothorn et al.””, which allows for
simultaneous inference procedures in semiparametric models,
widening confidence intervals by controlling the type I error
for each null hypothesis lower than o = 1-(1-0.05)"¢. As
we can obtain the confidence intervals of all the nodes in each
tree by GCT, we wonder if the confidence interval at each
node in a tree could cover its true average treatment effect,
even if the tree is incorrectly built. To this end, we report the
coverage proportion (Cov.Prop), which shows the proportion
of confidence intervals covering the true average treatment ef-
fects of nodes in a tree.

The results are shown in Table 2. We notice two points
from the results. First, when N = 2000, nonhonest GCT per-
forms better than honest GCT. Focused on the heterogeneous
setting, the coverage rates of the single confidence interval
and simultaneous confidence interval by nonhonest GCT are
closer to the nominal coverage rate than honest GCT, indicat-
ing that halving the sample indeed sacrifices the accuracy of
both partition and estimation for honest GCT. However, as N
increases, the performance discrepancies in subgroup identi-
fication and estimation between the two versions of GCT nar-
row, such as the proportion of correct trees and MSE, are al-
most equal to those of nonhonest GCT. In general, both ver-
sions of GCT can give valid conditional coverage. Mean-
while, the average percentage of confidence intervals cover-
ing the true average treatment effects on the tree nodes is al-
most 90%. Thus, we can be more confident in inferring the
average treatment effect of each node in the tree by GCT.

In Supporting information S.2.4, we further implement the
honest GCT and honest CIT with sample size N =2000 to
compare their inference performance. The results show that
although CIT has good performance in splitting and estima-
tion as before, considering the inference performance, CIT
lacks validity, and its coverage rate of 95% confidence inter-
vals is much lower than the nominal coverage rate. Even in
the homogeneous case, CIT’s coverage rate of confidence in-
tervals is not ideal.

6 Data analysis

To illustrate the feasibility of the GCT algorithm proposed in
the proceeding sections, we conduct subgroup identification
in an observational study that evaluates the effect of race on
access to opioid use disorder (OUD) treatment in the United
States. These data come from the Treatment Episode Data
Set: Admissions 2015 (TEDS-A-2015), a program that
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Table 2. Summary of the performance metrics for honest GCT and non-
honest GCT. On the basis of the correct trees, we report the coverage rate
of their confidence intervals. In the heterogeneous setting, Covl and
Cov2 denote the proportion of times that confidence intervals cover the
true treatment effect on each subgroup during 1000 repetitions, and
“Covsim” reports the proportion of times that confidence intervals simul-
taneously cover the true treatment effects on both subgroups during 1000
repetitions. In a homogeneous setting, “Cov” denotes the proportion of
times that confidence intervals cover the true treatment effect on the root
node. The abbreviations for other metrics are described in Table 1.

N=2000 N=4000
honest GCT nonhonest GCT honest GCT nonhonest GCT
fitBe fitln fitBe fitln fitBe fitln fitBe fitln

Metrics

Hetero
corr.tree 0.767 0.873 0.849 0.910 0.857 0.916 0.857 0.920
num.leaf 2.315 2.068 2.568 2.156 2.580 2.156 2.934 2.160
num.noise 0.292 0.075 0.422 0.120 0.443 0.117 0.735 0.118
fir.splt.acc 0.915 0.953  0.999 0.996 0.994 1.000 1.000 1.000
PPS 0924 0951 0.975 0.982 0.972 0.983 0.976 0.989
MSE  0.288 0.206 0.070 0.063 0.059 0.045 0.039 0.025
Covl 0.939 0.935 0.939 0.948 0.940 0.937 0.956 0.952
Cov2 0.932 0940 0.947 0.953 0.949 0.948 0.946 0.949
Cov.sim 0.934 0.924 0958 0.956 0.935 0.932 0.953 0.952
Cov.prop 0.945 0.947 0.898 0.929 0.946 0.944 0.885 0.912
time  1.317 2.873 5.190 9.654 5.376 9.055 25.433 31.502

Homo
corr.tree 0.950 0.948 0.953 0.942 0.946 0.936 0.963 0.937
num.leaf 1.063 1.060 1.077 1.089 1.068 1.104 1.046 1.106
PPS 0978 0.979 0979 0.976 0.980 0.971 0.989 0.976
MSE 0.016 0.015 0.011 0.011 0.006 0.006 0.004 0.006
Cov 0954 0.961 0.956 0.968 0.962 0.959 0.963 0.963
Cov.prop 0.955 0.959 0.941 0.949 0.962 0.959 0.950 0.943
time  0.696 1.956 3.114 7.520 3.311 7.175 18.210 27.948

collected information on admissions to substance abuse treat-
ment in 2015, which is available on the website of Substance
Abuse & Mental Health Data Archive (SAMHDA)". We only
use the data of Maryland in the following analysis. The ori-
ginal dataset of Maryland contains information on 107509
participants with 62 variables. After removing the redundant
variables and filtering out invalid levels of some variables, the
final dataset contains 45396 observations with 26 variables.
The processed data provide demographic characteristics such
as age, gender, race, marital status, education, pregnancy at
the time of admission, and veteran status, as well as socio
economic characteristics such as employment status, living
arrangement, the source of income, health insurance, and
primary source of payment. Substance abuse characteristics,
such as whether the patient receives medication-assisted
opioid therapy, the number of prior treatment episodes, the

@ https: //www.datafiles.samhsa.gov/
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primary substance abuse problem and the usual route of ad-
ministration, are also included. In related studies™ ), the dis-
parities between African Americans and Whites are mainly
discussed. Here we set the treatment variable A as an indicat-
or for being African American or White, where A =1 de-
notes Whites (29901 participants) and A = 0 denotes African
Americans (15495 participants). The outcome variable Y is
the number of waiting days to receive OUD treatment. We
truncate the extremely large values of outcome Y as the 99%
quantile. A detailed description of all variables is provided in
Supporting information S.3.1.

We apply the honest GCT algorithm to the processed data-
set. GBM is used to fit both the propensity score and condi-
tional mean of the outcome before tree building. In the imple-
mentation of honest GCT, the ratio of training data and estim-
ation data is 1 . 1; and among training data, we extract 20%
as validation data to perform tree selection.

6.1 Analysis

The optimal tree by honest GCT is shown in Fig. 3. The final
tree consists of four terminal nodes, splitting at whether or not
medication-assisted opioid therapy (MAT) was received
(methuse), the primary source of payment (primpay), and the
number of prior treatment episodes (noprior). Thus, receiving
MAT is the most vital variable for racial disparities. Personal
financial status and previous substance abuse situations are
also critical factors that affect access to OUD treatment. Con-
trary to general knowledge, the treatment effect estimator in
the whole population (root node) is 0.042, indicating that the
average waiting time for Whites is slightly longer than that
for African Americans overall. However, the situation will be
different in subgroups. We find that after the first split, based
on whether a patient received MAT, the waiting days for

Whites is 0.18 shorter than African Americans in those who
received MAT (72% of the whole population). For another
branch that did not receive MAT (28% of the population),
African Americans have a priority of 0.61 day over Whites in
receiving OUD treatment. The second split is at the primary
sources of payment. Based on the first split, when the primary
sources of payment of patients fall in self-pay, health insur-
ance companies, medicare, medicaid, or other government
payment, which have a proportion of 70%, Whites still have a
slight priority of 0.078 day in access to OUD treatment. It is
worth noting that those who have not received MAT and
whose primary source of payment is other, experience the
most significant racial disparities in OUD treatment, reaching
3.3 days. Whites have overwhelming superiority to OUD
treatment in this subgroup.

The tree splits by the number of previous treatment epis-
odes at the third level. In addition to MAT and the primary
source of payment, if participants had no prior treatment epis-
odes, which cover 20% of the whole population, the waiting
time for Whites is longer than that for African Americans by
0.29 day. On the other 50% of participants who have had at
least one prior treatment episode, Whites have a priority of
0.21 day compared to African Americans. Although it is ha-
bitually believed that African Americans are generally at a
disadvantage over Whites in access to OUD treatment, the
results reveal that African Americans have priority in receiv-
ing OUD treatment in almost half of the participants in Mary-
land state. Strongest racial inferiority for African Americans
only appears in approximately 2% of the population who have
received MAT and pay by other primary sources for this
treatment episode.

Looking at the most affected subgroup in Fig. 4, Whites
also show a delay in receiving treatment compared with other

[ The disparities of Whites and Afircan Americans on the access of OUD treatment
[ Proportion of data in subgroup
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|
|
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|m———————
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| .
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0.29 -0.21
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Fig. 3. The final tree model for TEDS-A (Maryland, 2015). The square bracket under each node is the confidence interval for this subgroup.
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subgroups. However, African Americans are more affected,
so the waiting time still presents a substantial racial discrep-
ancy. In this subgroup, the distribution of days waiting of
African Americans is dispersed: Nearly half of the African
Americans wait for more than two days to enter OUD treat-
ment, while a similar waiting period is rare in other sub-
groups. Therefore, more attention should be given to patients
who have received MAT and use other sources of payment,
especially African Americans.

To further compare with the literature on the effect of ra-
cial disparities on access to OUD treatment, we extract the
baseline of valid trees (BVT), which is the most in-depth tree
among the trees that have positive heterogeneity and com-
plexities. The BVT is presented in Supporting information
S.3.2. It contains eleven leaf nodes with different treatment
effects. In addition to the first three splits shown in Fig. 3, the
BVT also splits at the service setting at admissions, the fre-
quency of use of the primary substance, education, the num-
ber of substances, the source of income, and pregnancy. Sev-
eral of these variables are considered as the most effective
variables for racial disparities™, demonstrating the rational-
ity of GCT in practical applications.

7 Conclusions

We believe that causal inference at the subgroup level will be
more intelligible for decision-making in large-scale data ana-
lysis. We gather specific units with similar characteristics and
treatment effects for subgroup identification and approximate
their individual treatment effects by an average value. We im-
prove the existing tree-based method, called GCT, that identi-
fies subgroups with significant heterogeneity and allows for
valid inference of the subgroup treatment effects. As dis-
cussed previously, the method of estimating treatment effects
on nodes contributes greatly to how trees behave. A semi-
parametric framework is embedded into GCT for treatment
effect estimation and allows us to provide explicit asymptotic
properties of the STE estimators by trees. We can further con-
duct valid conditional inference for the tree estimators
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combined with honest estimation in observational studies,
which has not been achieved before.

We conduct several experiments to compare GCT with the
other two benchmark tree-based methods. The GCT al-
gorithm performs better in heterogeneous settings than the
other two, showing good power in detecting heterogeneity.
Another strength of GCT lies in its estimation accuracy; the
idea of partialling out can better address the interference of
confounding on estimation. Moreover, the asymptotic proper-
ties of tree estimators provide us with theoretical guarantees
when using GCT to conduct inference. Through the simula-
tions, GCT shows good convergence in subgroup identifica-
tion and estimation and reaches the nominal coverage rate,
which coincides with our tree estimator theorems.

Depending on the scenarios and goals of data analysis, sub-
group identification has continued application prospects. Per-
haps it makes practical sense to adapt the model to more com-
plex data types, such as extremely imbalanced data. At the
same time, it is also valuable to further improve the opera-
tions and relevant theories of statistical inference of tree treat-
ment effect estimators.
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