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An algorithm for adding the exchange step to improve naive sparse linear discriminant analysis.

Public summary

m This paper extends LDA to a high-dimensional setting by adding an ¢, penalty to produce a discriminant vector in-
volving only a subset of features.

m We propose an SLDA-BASS algorithm to directly solve the estimation of sparse LDA with £, constraint, avoiding the
unnecessary information loss caused by relaxing the constraint in the conventional algorithm.

m Compared to other estimation methods, the SLDA-BASS algorithm is derived from a natural criterion and is superior in
terms of sparsity recovery as well as computational efficiency.
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Abstract: We consider the problem of interpretable classification in a high-dimensional setting, where the number of fea-
tures is extremely large and the number of observations is limited. This setting has been extensively studied in the chemo-
metric literature and has recently become pervasive in the biological and medical literature. Linear discriminant analysis
(LDA) is a canonical approach for solving this problem. However, in the case of high dimensions, LDA is unsuitable for
two reasons. First, the standard estimate of the within-class covariance matrix is singular; therefore, the usual discriminant
rule cannot be applied. Second, when p is large, it is difficult to interpret the classification rules obtained from LDA be-
cause p features are involved. In this setting, motivated by the success of the primal-dual active set algorithm for best sub-
set selection, we propose a method for sparse linear discriminant analysis via ¢, constraint, which imposes a sparsity cri-
terion when performing linear discriminant analysis, allowing classification and feature selection to be performed simul-
taneously. Numerical results on synthetic and real data suggest that our method obtains competitive results compared with
existing alternative methods.
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1 Introduction than random guessing when p > n. In addition, in this case,
the sample covariance matrix is singular, and its inverse mat-
Linear discriminant analysis (LDA) is a prevalent supervised rix is not well identified. Consequently, it is challenging to
classification tool in many applications, owing to its simpli- select and extract the most discriminative features for super-
city, robustness, and predictive accuracy. LDA uses label in- vised classification. A natural solution is to replace the in-
formation to learn discriminant projections, which can dra- verse matrix with the generalized inverse matrix of the
matically maximize the between-class distance and decrease sample covariance matrix. However, such an estimation is
the within-class distance, thus improving classification accur- highly biased, unrobust, and can contribute to the poor per-
acy. Simultaneously, low-dimensional data projections in formance of the classifier. When p is large, the resulting clas-
most discriminant directions are valuable for data interpreta- sifier is difficult to interpret because the classification rules
tion. LDA classifiers can be constructed in three different involve a linear combination of all p features. Thus, when
ways: the multivariate Gaussian model, optimal scoring prob- p > n, one may desire a classifier with parsimonious features,
lem, and Fisher’s discriminant problem (see, for example, that is, a classifier that involves only a subset of p features.
Hastie et al.!"). Such a sparse classifier ensures that the model is easier to in-
LDA is effective and asymptotically optimal when the di- terpret and can reduce the overfitting of training data.
mension p is fixed and the number of observations n is large; Recently, several studies have extended LDA to high-
that is, its misclassification rate converges to 0 over the op- dimensional settings. Some of this literature addressed non-
timal rule as n increases to infinity. Shao et al.” indicated that sparse classifiers. For example, in multivariate Gaussian mod-
LDA remains asymptotic when p diverges to infinity at a rate els of LDA, Dudoit et al.™ and Bickel and Levina®! assumed
slower than +/n. However, with tremendous advances in data the independence of features (naive Bayes) and Friedman"
collection, high-dimensional data with dimension p poten- suggested applying a ridge penalty to the within-class covari-
tially larger than the number of observations n are now fre- ance matrix. Xu et al.”! considered other positive definite es-
quently encountered in a wide range of applications, and the timates of the within-class covariance matrix. In addition,
classification of these data has recently attracted considerable some research on sparse classifiers has been conducted. Tib-
attention. Common applications include genomics, functional shirani et al.”! adapted a naive Bayesian classifier by soft
magnetic resonance imaging, risk management, and web thresholding the mean vector, and Guo et al.”) combined a
searches. ridge-type penalty on the within-class covariance matrix with
In high-dimensional settings, standard LDA performs a soft thresholding operation. Witten and Tibshirani” em-
poorly and may even fail completely. For example, Bickel ployed an ¢, penalty for Fisher’s discriminant problem to ob-
and Levina® indicated that LDA could not perform better tain sparse discriminant vectors, but this approach does not
4-1 DOI: 10.52396/JUSTC-2022-0045
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generalize to the Gaussian mixture setting and lacks simpli-
city if it is in regression-based optimal scoring problems.

Motivated by the Fisher’s discriminant framework of Wit-
ten and Tibshirani®, we develop a sparse version of LDA
with the ¢, constraint. Previous sparse LDAs were typically
implemented by imposing penalties of ¢, £,, or a mixture of ¢,
and ¢,, because ¢, regularization is non-convex and NP-hard.
Whether the optimization problem is more correct is based on
the prediction effectiveness, false discovery rate, and sparsity
interpretation. ¢, penalized methods have lower error bounds
than ¢, methods. Mathematically, for a pre-specified degree of
sparsity s, the discriminant vector can be determined by the
following optimization problem:

maximize,, BiZ.B.
subject to 2B =1, X B=0 VI<k,
1Bl < s,

where ||8]|, denotes the number of nonzero elements of 8, %,
is the between-class covariance matrix, and X, is the within-
class covariance matrix. Further details are introduced in
Section 2.

This study presents a new iterative thresholding algorithm
to estimate linear discriminant vectors, which is a develop-
ment of the primal-dual active-set algorithm proposed by Zhu
et al. ' to solve the best subset selection problem in regres-
sion. The contribution of this study is two-fold. First, we con-
sider addressing the estimation problem of sparse LDA by
directly solving the ¢, constrained optimization problem,
which avoids unnecessary information loss owing to relaxing
the constraints. Second, we constructed a polynomial al-
gorithm for estimating sparse linear discriminant vectors,
which is computationally efficient and easy to implement.

The remainder of this paper is organized as follows. In Sec-
tion 2, we review LDA and classical solution procedures and
then propose a new solution for sparse linear discriminant
analysis. Sections 3 and 4 compare the results of our pro-
posed method and existing methods in simulated experiments
and applications to real data, respectively. Section 5 presents
our conclusions.

2  Methodology

2.1

Let X be an n X p data matrix with p features measured on n
observations and suppose that each of the n observations be-
longs to one of the K classes. In addition, we assume that
each of the p features is centered to satisfy the zero mean and
is normalized to have an identical variance if they are not
measured on the same scale. Let x; denote the ith observation
and C, denote the index set of observations in the kth class.

Consider a simple multivariate Gaussian data generation
process in which the distribution of observations in class & is
N(u.,2,), where u, € R? is the mean vector of the kth class
and X, is a p X p within-class covariance matrix over all K
classes. Here, [Ci|™" X, X; is the estimate of p, and
Yy Diec, (X — p)(x; — )" is the estimate of X, where |- |
denotes the cardinality of the index set. The LDA classifica-
tion rule then results in the application of the Bayesian rule to
estimate the most likely class for a test observation.

A review of linear discriminant analysis

4-2

LDA can also be argued to arise from Fisher’s discrimin-
ant problem. We define the between-class covariance matrix
X, =35 mul, where m, is the prior probability of class k.
Fisher’s discriminant problem involves solving for the dis-

criminant vectors B,,---,B_;, which sequentially maximizes
the vector. The corresponding optimization problem is
maximizey, BiZ.B.
subject to T ZB=1, 2B =0 Vi<k.

Because the rank of X, is at most K — 1, the above-general-
ized eigenproblem has at most K — 1 nontrivial solutions and,
therefore, at most K — 1 discriminant vectors. These solutions
are the directions in which the data have the maximal between-
class covariance relative to their within-class covariance.
Moreover, it has been demonstrated that classification based
on the nearest centroid of matrix (XB,,---,XB«.) produces
the same LDA classification rule as the multivariate Gaussi-
an model described previously (see Hastie et al.'). One ad-
vantage of Fisher’s discriminant problem over the multivari-
ate Gaussian model of LDA is that it allows for reduced-rank
classification by performing nearest centroid classification on
the matrix (Xp,,---,Xp,) with ¢ < K — 1. It can be proven that
performing nearest centroid classification on this n X ¢ matrix
is exactly equivalent to conducting a full-rank LDA on the
n X g matrix.

The standard estimate of the within-class covariance mat-
rix X, is:

513 S o - ()

k=1 ieCy

where f1, denotes the sample mean vector for class k. In this
subsection, we assume that X, is nonsingular. Furthermore,
the standard estimate for the between-class covariance matrix

2, is given by:
1 1 v
I=_XX-%=- ;nkﬂkﬂ: :

where n, = |C,/.

In later subsections, we will make use of the fact that

2z,

1
—X'YY'Y)'Y'X,
n

where Y is an n X K matrix and Y} is an indicator of whether
observation i is in the kth class. Then, the empirical version
of LDA can be written as

BIZ.B
BZB. <1, BB =0 Vi<k

maximizey, @)
subject to

Problem (2) is commonly written in terms of the equality
constraint instead of an inequality constraint, but the two are
equivalent when f is full rank, as detailed in Ref. [9,
Appendix A]. The solution fik to problem (2) is generally re-
ferred to as the kth discriminant vector. Problem (2) can be
solved by the variable substitution B. :’E\‘L/z ., where f 2 s
the symmetric matrix square root of X,.. The Fisher’s
discriminant problem was then reduced to a standard eigen-
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problem. However, when p > n, T, becomes singular. Any
discriminant vector in the null space of f but not in the null
space of X, can lead to an arbitrarily large value of the object-
ive function.

To address this singularity problem, some modifications to
the Fisher’s discriminant problem have been proposed. Krz-
anowski et al.l'l have considered a modification of problem
(2) by trying to find a unit vector B that maximizes BTEbﬁ
subject to ﬁwaﬂ = (. Tebbens and Schlesinger'” further re-
quired that the solution does not lie in the null space of 3, It
has also been proposed to modify problem (2) using positive
definite estimates of X,. For example, Friedman®, Dudoit et
al.", and Bickel and Levina™ considerd the use of a diagonal
estimate

b &i)?

T = diag(67,- -

where &2 is the jth diagonal element of %, in Eq. (1). There
are of course some other forms of positive definite estimates
for 2, suggested in Xu et al.“. Given a positive definite es-
timate f, the resulting optimization problem is

BIZ.B.
BZB. <1, BZB=0 Yi<k

maximize
Bre (3)

subject to

The new optimization problem (3) addresses the singular-
ity issue but not the interpretability issue. At this point, we
extend problem (3) such that the resulting discriminant vec-
tor is interpretable. We use Lemma 2.1, which provides a re-
formulation of problem (3) to obtain the same solution.

Lemma 2.1. The solution 3, to problem (3) is equivalent to
the solution to the following problem:

maximize, {828} subjectto BB <1,

where

1
= —XTY(YY) PPAYTY) YT X.
n

P; is defined as follows: P} =1, and for k > 1, P/ is an ortho-
gonal projection matrix in a space orthogonal to
(YY) '"2Y" X, forall i < k.

The proof of Lemma 2.1 can be found in Ref. [9]. When
we obtain the discriminant vector ﬁl, e ,Bk, we use fﬁ*‘ to re-
place fﬁ and repeat the same procedure for computing B,
until we obtain all the discriminant vectors.

In this study, we modify problem (3) by imposing ¢, con-
straint on the discriminant vectors. Given a pre-specified de-
gree of sparsity s, we define the kth sparse discriminant vec-
tor B3, as the solution to the following optimization problem:

subjectto  BiZ,B =1, 1Bl <s. (4)

maximize,, {8/ 2B}

2.2 Sparse linear discriminant analysis

Recall that the Lagrangian form of (4) is as follows:

minimize,.., L(B) = —B"2 B+ A(B"Z,B—-1) subject to |Bl|, < s,
)

where 4> 0 is a parameter that controls the normalization to
X, of the discriminant vector 8. We denote B° as a coordinate-

4-3

wise minimizer of problem (5). If the active set
A ={j:p;#0} is known, then by disregarding the con-
straint ||8]|, = s, we can minimize the objective function L(f)
without £, constraint.

To determine a valid active set A, we introduce the defini-
tion of sacrifice 4 ={4;: j=1,---, p}, which is similar to that
in Ref. [10]. Specifically, the jth sacrifice 4, measures the in-
crease or decrease in the value of the objective function L(B5)
with the current 3; set to 0 during each round of iterations.
Consider the mth iterative process, by fixing the other co-
ordinates to their current global optimum, the new marginal
optimal of B, is given by B/""=pg"+d", where d" =
_ LB/,

OL(B)/ 8B, lesm
dual variable of 5", X, denote the jth row of Z* and X, de-
note the (j, j)-element of f,f Here, we add the symbol “(m)”
in the upper-right corner of each variable to indicate that this
is the value taken during the mth iteration. Then, the sacrifice
4; is defined as 4" = (16 —fj/-)(ﬂg”” +d")%, which indicates
an approximation of the loss change. Denote the inactive set
I*=A"={j:p;=0}. With the primal-dual condition, we
have

o If je A, then B; # 0, d; = 0.

elf je I’ thenf;=0,d; = (Z,f - 1676/ (A6 - Z)).

The purpose of problem (5) is to minimize the objective
function L(B), which implies that the sacrifice should be as
small as possible. That is, among all candidates, we enforce
that the coordinates corresponding to the smaller sacrifice are
set to zero. To achieve this, we rearrange {4,,j=1,---,p} in
decreasing order; that is, 4, > 4, > --- > 4,,, where 4, de-
notes the ith largest value among {4,,j=1,---,p}. We then
truncate the ordered sacrifice vector at position s, that is, set
the estimate of the active set A={j:4;, > 4,,}.

When A is given, we can extract the corresponding rows
and columns of f,f and fw, from which the problem becomes
a classical LDA problem. The solution to this problem is then
obtained, with B, being the first eigenvector of
(Ej‘/zz‘jf;‘/z)ﬂﬂ and B; = 0. The above discussion is summar-
ized in Algorithm 2.1.

=(Z,B"-A6°B")/(A6° -2} denote the

Algorithm 2.1. Naive algorithm for sparse linear discriminant analysis

Input: data matrix X, indicator matrix y, sparsity s.
Output: [31 ,Bq.

1:Z,=n'XTYXTY) YT X.

2: %, =X"X/n-2, and Z,, = diag{Z,,}.
3:fork=1,---,q do

4 @Z=n'XTYYTY)V2PEYTY) YT X.

5: (b) Initialize B with normalization Bszﬁk =1
6: (c) Iterate until convergence or a maximum number of iteration is
reached:

Aj= (A2 =Z;) B +d): A={j: 4;> Ay and T = A.
B, 7 1s the first eigenvector of (f;l/ zf,ff;”z)m and By 7 = 0.

‘Update dual variables d; = (Z; B — A5y, )/ (162 = ).
7: end for
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2.3 Best subset selection

Owing to the discontinuity of the ¢, norm, the naive al-
gorithm for sparse linear discriminant analysis may converge
to a local minimum and encounter the problem of periodic it-
erations. To obtain sparse linear discriminant vectors more ef-
ficiently, an iterative algorithm based on the primal-dual con-
dition of problem (5) was proposed in this subsection. Motiv-
ated by Zhu et al."”, who developed a novel algorithm based
on exchanging active sets to avoid periodic iterations in solv-
ing the best subset selection problem in linear regression
models, we extended their work to the sparse LDA problem.
An exchanging step is added to Algorithm 2.1 to prevent the
algorithm from entering a loop, that is, choosing a subset of
the active set to exchange with a subset of the inactive set.
We then decide whether to adopt the new candidate solution
by comparing the objective function values before and after
the exchange.

Specifically, at the mth iteration of computing the kth dis-
criminant vector of Algorithm 2.1, we obtain the sacrifice
A™. Subsequently, we classified the variables that needed to
be exchanged in the active and inactive sets.

e Subset of the active set that need to be exchanged to the
inactive set:

B ={jeA”: Y A" >4")<c).

i€ Am

e Subset of the inactive set that need to be exchanged to
the active set:

BY={jel™: Y 14" <A <c),

ieg(m

where ¢ is an arbitrary constant ranging from 1 to
min{s, p — s}.

Then, we updated the active and inactive sets using
A = (AW [BIYUBY and T = (T /BYYU B, Given
A™ and I™, we define B as the solution to problem (5),
which is given by

ﬂ((rn) =arg maxﬂ[w =0, BT, p=1 ﬁTZbﬂ.

Further, for accuracy, we search ¢ over 1 to min{s, p — s} and
determine an optimal sparse vector with the smallest value of
L(B), that is, ¢ = argmax, L(B"). Algorithm 2.2 displays the

Algorithm 2.2. Exchange step

Input: EII)‘ s fw, A, sacrifice 4, active set A, inactive set 7, sparsity s.
Output: discriminant vector 3, dual variables d and sacrifice 4.
1:L=-B"ZB+AB LB~ 1.
2:for ¢ =1,---,min{s, p— s} do
3: Ber={jeA: Yiealldj>4;)<c}and

Bep={jel: Tierl(d; <) <c).
4 Ac=A/B)UBcrand I =(T/Bc2)UBc 1.
5: Calculate B. based on A, and L= —ﬁjf’ljﬁc + /l([ijfwﬁc -1).
6: IfL>T.thenL L and (A, L,B) «— (A, I..B).
7: end for

8: Update dual variables d and sacrifice 4.

4-4

Algorithm 2.3. SLDA-BESS for sparse LDA

Input: data matrix X, indicator matrix Y, sparsity s, 4.
Output: g1, ,8,.
1: 2, =n ' XTY(YTY)IYTX, 3, = X" X -2, and Z,, = diag(Z,}.
2: Initialize B©) with normalization 8O 7Z,,8® = 1.
0 _ 5 22 (0 o =
3: Caleulate d” = ;80 - 2626 /(16% T ))).
4:form=0,---,M do
50 45=(67 —fj,-)(ﬁ;’”) +dj.’"))2, A={j:4;> A} and T = AC.

6: Set B(;I"H) be the first eigenvector of (fv;l/zfgf;”z)ﬁy( and

(m+1)
B =0.
7: Update (8D, d+D) by Algorithm 2.2 with g+D, 4m+D) 7
and 7.

8: When ||B0+D — g0m)||, is sufficiently small, break.
9: end for

10: Repeat the above steps to achieve the rest discriminant vectors.

process of exchanging some variables in the active and inact-
ive sets.

Based on the exchange step proposed above, we developed
an efficient algorithm to avoid falling into a local minimum
and guarantee convergence. Specifically, we added an ex-
change step after updating the primal and dual variables in
Algorithm 2.1. The details are presented in Algorithm 2.3,
which is called SLDA-BESS.

The improved Algorithm 2.3 has the theoretical guarantee
of Theorem 2.1, which indicates that such a best subset selec-
tion algorithm incorporating the exchange step is feasible.

Theorem 2.1. The SLDA-BESS algorithm terminates after
a finite number of iterations.

Proof. The objective function always increases, and the
choice of the active set is finite. Algorithm 2.3 terminates
after a finite number of iterations.

3 Numeric studies

We compared SLDA-BESS with penalized LDA-¢{,"), nearest
shrunken centroids (NSC)", and shrunken centroids regular-
ized discriminant analysis (RDA)® in simulation studies.
LDA-¢, is a method that adds a ¢, penalty to the objective
function B7XB. NSC is a simple modified version of the
nearest centroid method that divides a between-class standard
deviation when calculating the centroid distance and is a
modified version based on NSC. In each simulation, 1200 ob-
servations were set to belong equally to several different
classes. Arbitrary 300 of these 1200 observations are set as
the training set, and the remaining 900 belong to the test set.
Each simulation consisted of measurements of 500 features,
i.e., p=500.

Simulation 1. Consider four different classes where the
features are independent of each other and the mean value is
shifted. Given the set of indicators for four classes, C,, C,, C;
and C,, x;, ~ N(u,I) if i € C,, where yu,; = 0.7 for 1 < j<25,
W, =0.7 for 26 < j <50, p;;=0.7 for 51 <j<75, p; =0.7
for 76 < j < 100 and g, = 0 otherwise for j=1,...,500.

Simulation 2. Consider two different classes where the
features are dependent of each other and the mean value is
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shifted. Given the set of indicators for two classes, C, and C,,
x; ~N(@©,2) for ieC, and x,~N(u,X) for ieC,, where
u;=0.6 if j<100 and u,=0 otherwise and X'= (X)) =
(0.6, The covariance structure ¥ is intended to mimic gene
expression data, in which genes are positively correlated
within a pathway and independent between pathways.

Simulation 3. Consider four different classes in which the
features are independent of each other and have only one di-
mension, where the mean is shifted. Given four indicator sets,
C,, C,, C; and C,, for ieC,, x,;, ~ N((k—1)/3,1) if j<100
and x; ~ N(0,1) otherwise. The one-dimensional projection
of the data fully captures the structure of the class.

For each method, the models were fitted to the training set
using a range of values for the tuning parameters. Tuning
parameter values were chosen to minimize errors in the valid-
ation set. The parameters estimated for the training set were
then evaluated for the test set. After obtaining the estimated
discriminant vectors, we applied the KNN method to the new
dataset to perform classification. This process was repeated
200 times.

The classification error in the test set and the number of
non-zero features used by the discriminant vectors are listed
in Table 1. In the “errors” row of each simulation result, the
average number of misclassified individuals on the test set
with 900 observations is presented, and the standard devi-
ation is in parentheses. Correspondingly, in the “features”
row, the average number of non-zero features used in estimat-
ing the discriminant vectors is reported, with the standard de-
viation in parentheses. As shown in Table 1, our method has a
smaller error when the number of features used is almost
equal. Moreover, it is easier to adjust the parameters using the
¢, penalty method.

4 Real data analysis

This section compares our SLDA-BESS method with three
existing methods: penalized LDA-£,, NSC, and RDA.

Table 1. Simulation result.

We applied the four methods to the three gene expression
datasets.

Ramaswamy dataset!"’: A dataset consisting of 16063 gene
expression measurements and 198 samples belonging to 14
distinct cancer subtypes.

Nakayama dataset!": A dataset consisting of 105 samples
from 10 types of soft tissue tumors, with 22283 gene expres-
sion measurements per sample. We shall limit the analysis to
five tumor types with at least 15 samples in the data, result-
ing in a subset of data containing 86 samples.

Sun dataset: A dataset consisting of 180 samples and
54613 expression measurements. The sample falls into four
classes: one non-tumor class and three glioma classes.

Each dataset is split into a training set containing 75% of
the samples and a test set containing the remaining 25% of the
samples. A total of 100 replications were performed, each
with randomly selected training and testing sets. The results
are presented in Table 2. The results suggest that the four
methods perform roughly equally in terms of error, but our
SLDA-BESS method utilizes fewer features. Moreover, our
SLDA-BESS method is more suitable for remarkably sparse
models, whereas the other three methods may fail when
using a few features.

5 Conclusions

Linear discriminant analysis is a commonly used classifica-
tion method. However, it fails if the number of features is
large relative to the number of observations. This study exten-
ded LDA to a high-dimensional setting by adding an £, pen-
alty to produce a discriminant vector involving only a subset
of features. Our extension is based on Fisher’s discriminant
problem, such as a generalized eigen problem, and then uses
the SLDA-BESS algorithm, which combines the naive al-
gorithm and the exchange step to solve the sparse discrimin-
ant vector. Sparse discriminant vectors were generated while

Simulation SLDA-BESS Penalized LDA-{; NSC RDA
errors 57.90(10.69) 81.73(13.05) 56.44(18.93) 66.38(12.30)
: features 95.76(4.19) 98.35(3.56) 95.91(3.52) 95.30(6.38)
5 error 46.62(9.09) 66.43(13.61) 56.00(8.75) 81.82(17.59)
features 100.00(0.00) 111.5(7.02) 107.11(7.53) 107.37(10.80)
3 errors 101.62(13.36) 115.12(15.53) 358.64(26.63) 318.18(14.98)
features 100.00(0.00) 99.79(0.71) 102.01(1.87) 107.99(14.98)
Table 2. Results obtained on three different gene expression datasets.
SLDA-BESS Penalized LDA-{ NSC RDA
errors 13.00(1.82) 15.90(2.52) 11.27(2.68) 10.50(2.79)
Ramaswamy
features 429.52(10.56) 9426.00(573.78) 2629.66(321.19) 927.16(108.64)
errors 4.86(1.74) 4.98(1.62) 4.84(1.51) 5.40(1.72)
Nakayamy
features 213.18(5.75) 11044.88(376.34) 1517.92(163.49) 2858.82(278.98)
Sun errors 14.80(2.58) 16.06(2.29) 13.24(3.34) 24.14(3.39)
features 215.24(14.03) 20715.10(2396.99) 14453.12(1280.76) 4740.70(670.81)
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making the classifier more interpretable in practical situ-
ations. The results of both numerical simulations and analys-
is of real data demonstrate the superior performance of our
SLDA-BESS method. The convergence rate and complexity
of the SLDA-BESS algorithm, as well as the theoretical prop-
erties of the minimax lower and upper bounds of the estimat-
or, can be further considered in the future.

Acknowledgements

This work was supported by the National Natural Science
Foundation of China (71771203).

Conflict of interest

The authors declare that they have no conflict of interest.
Biographies

Qi Yin is currently a graduate student at the University of Science and
Technology of China. His research interests focus on variable selection.

Lei Shu is currently a Ph.D. student at the University of Science and
Technology of China. His research interests focus on high-dimensional
statistical inference, including variable selection, change point detection,
and factor analysis.

References

[1] Hastie T, Tibshirani R, Friedman J H, et al. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed.
Berlin: Springer, 2009.

Shao J, Wang Y, Deng X, et al. Sparse linear discriminant analysis
by thresholding for high dimensional data. The Annals of Statistics,
2011, 39 (2): 1241-1265.

Bickel P, Levina E. Some theory of Fisher’s linear discriminant
function, ‘naive Bayes’, and some alternatives when there are many
more variables than observations. Bernoulli, 2004, 10 (6): 989—1010.

Dudoit S, Fridlyand J, Speed T P. Comparison of discrimination

methods for the classification of tumors using gene expression data.

Journal of the American Statistical Association, 2002, 97 (457):

77-87.

Friedman J H. Regularized discriminant analysis. Journal of the

American Statistical Association, 1989, 84 (405): 165-175.

Xu P, Brock G N, Parrish R S. Modified linear discriminant analysis

approaches for classification of high-dimensional microarray data.

Computational Statistics & Data Analysis, 2009, 53 (5): 1674—-1687.

Tibshirani R, Hastie T, Narasimhan B, et al. Diagnosis of multiple

cancer types by shrunken centroids of gene expression. Proceedings

of the National Academy of Sciences of the United States of America,

2002, 99 (10): 6567-6572.

Guo Y, Hastie T, Tibshirani R. Regularized linear discriminant

analysis and its application in microarrays. Biostatistics, 2007, 8 (1):

86-100.

Witten D M, Tibshirani R. Penalized classification using Fisher’s

linear discriminant. Journal of the Royal Statistical Society:Series B

(Statistical Methodology), 2011, 73 (5): 753-772.

[10] Zhu J, Wen C, Zhu J, et al. A polynomial algorithm for best-subset
selection problem. Proceedings of the National Academy of Sciences
of the United States of America, 2020, 117 (52): 33117-33123.

[11] Krzanowski W, Jonathan P, McCarthy W, et al. Discriminant

with matrices: Methods and
applications to spectroscopic data. Journal of the Royal Statistical
Society:Series C (Applied Statistics), 1995, 44 (1): 101-115.

[12] Tebbens J D, Schlesinger P. Improving implementation of linear
discriminant analysis for the high dimension/small sample size
problem. Computational Statistics & Data Analysis, 2007, 52 (1):
423-437.

[13] Ramaswamy S, Tamayo P, Rifkin R, et al. Multiclass cancer
diagnosis using tumor gene expression signatures. Proceedings of
the National Academy of Sciences of the United States of America,
2001, 98 (26): 15149-15154.

[14] Nakayama R, Nemoto T, Takahashi H, et al. Gene expression
analysis of soft tissue sarcomas: Characterization and reclassification
of malignant fibrous histiocytoma. Modern Pathology, 2007, 20 (7):
749-759.

[15] Sun L, Hui A M, Su Q, et al. Neuronal and glioma-derived stem cell
factor induces angiogenesis within the brain. Cancer Cell, 2006, 9
(4): 287-300.

[3]
(6]

(7]

(8]

]

analysis singular  covariance

DOI: 10.52396/JUSTC-2022-0045
JUSTC, 2022, 52(8): 4


https://doi.org/10.1214/10-AOS870
https://doi.org/10.1214/10-AOS870
https://doi.org/10.1214/10-AOS870
https://doi.org/10.1214/10-AOS870
https://doi.org/10.1214/10-AOS870
https://doi.org/10.1214/10-AOS870
https://doi.org/10.1214/10-AOS870
https://doi.org/10.1214/10-AOS870
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1214/10-AOS870
https://doi.org/10.1214/10-AOS870
https://doi.org/10.1214/10-AOS870
https://doi.org/10.1214/10-AOS870
https://doi.org/10.1214/10-AOS870
https://doi.org/10.1214/10-AOS870
https://doi.org/10.1214/10-AOS870
https://doi.org/10.1214/10-AOS870
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1214/10-AOS870
https://doi.org/10.1214/10-AOS870
https://doi.org/10.1214/10-AOS870
https://doi.org/10.1214/10-AOS870
https://doi.org/10.1214/10-AOS870
https://doi.org/10.1214/10-AOS870
https://doi.org/10.1214/10-AOS870
https://doi.org/10.1214/10-AOS870
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1214/10-AOS870
https://doi.org/10.1214/10-AOS870
https://doi.org/10.1214/10-AOS870
https://doi.org/10.1214/10-AOS870
https://doi.org/10.1214/10-AOS870
https://doi.org/10.1214/10-AOS870
https://doi.org/10.1214/10-AOS870
https://doi.org/10.1214/10-AOS870
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.3150/bj/1106314847
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1016/j.csda.2008.02.005
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1093/biostatistics/kxj035
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.2307/2986198
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1016/j.csda.2007.02.001
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1073/pnas.211566398
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1038/modpathol.3800794
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.1016/j.ccr.2006.03.003
https://doi.org/10.52396/JUSTC-2022-0045

	1 Introduction
	2 Methodology
	2.1 A review of linear discriminant analysis
	2.2 Sparse linear discriminant analysis
	2.3 Best subset selection

	3 Numeric studies
	4 Real data analysis
	5 Conclusions
	Acknowledgements
	Conflict of interest
	References

