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Public summary
m We propose a bootstrap procedure to conduct simultaneous inference for Gaussian graphical models.

m The procedure is applied to large-scale graphical models and allows the dimension of the parameter vector of interest to
exceed the sample size.

m Both theoretical and simulation results verify the feasibility of our method.
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Abstract: Gaussian graphical models have been widely used for network data analysis. Although various methods exist
for estimating the parameters, simultaneous inference is essential for graphical models. In this study, we propose a boot-
strap procedure to conduct simultaneous inference for Gaussian graphical models. The simultaneous inference procedure is
applied to large-scale graphical models and allows the dimension of the parameter vector of interest to exceed the sample
size. We prove that the simultaneous test achieves a pre-set significance level asymptotically. Further simulation studies

demonstrate the effectiveness of the proposed methods.
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1 Introduction

In the era of the rapid development of information techno-
logy, vast amounts of information are being introduced for a
range of applications, including modern healthcare, online
marketing, and quantitative finance. Graphical models have
been widely used in the analysis of networks comprising
many individuals. In Gaussian graphical models, the condi-
tional independence of two variables is equivalent to that of
the corresponding element with a value of zero in the preci-
sion matrix (inverse covariance matrix)". Therefore, Gaussi-
an graphical models can accurately describe and estimate
functional brain networks. Comparing the functional con-
nectivity of subjects in the two populations calls for the com-
parison of these estimated Gaussian graphical models.
Belilovsky et al.”! proposed an approach to identify differ-
ences within such a model, which is known to have a similar
structure.

As Gaussian graphical models find many applications, nu-
merous studies have estimated the precision matrices of such
models. A widely used method for estimating the precision
matrix is to maximize the penalized Gaussian likelihood or
minimize the penalized empirical risk” . The penalized re-
gression or Dantzig selector-type optimization methods have
also attracted interest’®*.. The above methods have the advant-
ages of rationality and theory, but they are unsatisfactory in
terms of computation when the sample dimension p is large.
The innovated scalable efficient estimation (ISEE)” com-
bined the advantages of high-dimensional sparse modeling
and large covariance matrix estimation. This computational
problem was solved to a certain extent for large-scale graph-
ical models. The aforementioned methods mainly focused on
the point estimation of the precision matrix and did not char-
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acterize the uncertainty of the estimated entries.

In recent years, several studies have focused on de-biasing
the penalized estimators by inverting the Karush-Kuhn-
Tucker (KKT) condition"” such that the asymptotic normal
distributions for linear and generalized linear models can be
obtained. The de-bias method is also used to deal with the
Gaussian graphical model estimator. For example, Jankov and
van de Geer!"" proposed a de-sparsified graphical lasso estim-
ator by inverting the KKT condition based on a penalized em-
pirical risk estimator. A similar study was conducted by them
in Ref. [12]. Recently, Zhou et al."*"! adopted a similar ap-
proach to achieve asymptotic normality in the elements of the
de-sparsified ISEE estimator. The problem with the inference
methods of graphical models is that only one element of the
precision matrix can be inferred at a time, whereas research-
ers tend to prioritize the state of a block's connection. Jankov
and van de Geer"* indicated the problem of support recovery
for multiple variables, but it was not discussed in depth. Thus,
it is necessary to develop new methods for simultaneous in-
ference of the precision matrix. Several studies have been
conducted on the simultaneous inference of high-dimensional
linear models based on de-sparsified estimators'*. We con-
sider using a similar method to process simultaneous infer-
ences for Gaussian graphical models.

In this study, we propose a bootstrap procedure to conduct
simultaneous inference for Gaussian graphical models based
on the ISEE" and its de-sparsifying estimator!”l. We over-
come the problem wherein the de-bias estimator recovers the
precision matrix based only on a single point. This procedure
can naturally construct simultaneous confidence intervals;
support recovery is carried out on the entire graph. In theory,
a simultaneous testing procedure asymptotically achieves a
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pre-specified significance level, and the test set can even
overwrite all elements in the precision matrix. Moreover, it
inherits the computational advantages of ISEE, which can
deal with ultra-large precision matrices with simple tuning.
The simulation results also support the reliability of the pro-
posed method.

The remainder of this paper is organized as follows. In Sec-
tion 2, we introduce the simultaneous inference method for a
large precision matrix. The theoretical results are provided in
Section 3. Simulation studies are also presented in Section 4.
The proofs of the theorems in Section 3 and the technical de-
tails are included in the Appendix.

Notation. For a vector x € RY and p € (0,0), we use the
notation ||x||, to denote the p-norm of x in the classical sense.
By e;, we denote a p-dimensional vector of zeros, with one at
position i. For matrix A € R*¢, we use the notation A, = Ae,,
llAlll. = max,/le’ All,, l|A]l. = max, JA, |, and supp(A) = {(i, ) :
A,; #0}. We define G(M,K) ={A, where each row has at
most K nonzero off-diagonal entries, and M~ < A,;,(A) <
Awx(A) <M, where Ke N, K<d and M€ R,M >0}. For
two numbers, a and b, let aVb=max{a,b} and aAb=
min{a,b}. For sequences f,,g,, we use the notation f, = O(g,)
if f, <Cg, and f, = Q(g,) if f, > Cg, for some constant C > 0
independent of n. We write f, <g, if both f, =0(g,) and
fo=€(g.), and f, = o(g,) if lim,_. f,/g, = 0.

2 Simultaneous inference procedures

2.1 Model setting

We consider a p-variate zero-mean Gaussian random vector,

x=(X,....X,)" ~N(0,2),

where X' =(2};) denotes the population covariance matrix of
x. Suppose that X = (x,,...,x,)" is an n X p sample matrix with
n 1.i.d. observations x;, 1<i<n, where x, ~N(0,2). Let

= I .. . .
2=~ E x,x] be the empirical covariance matrix of X, and
n i=1

let @ = 27" be the inverse of the covariance matrix, which is
also called the precision matrix. In Gaussian graphical mod-
els, an edge exists between nodes X; and X; is defined as the
conditional dependence between X, and X;. X; and X, are con-
ditionally dependent if and only if ©;; # 0.

In Section 1, we introduce several estimation methods for
the precision matrix @ and an inference method for a single
estimation point. However, in high-dimensional graphical
models, it is important to analyze the connection of a set of
variables. Thus, we focus on the simultaneous inference of
the elements of the precision matrix @. Consider the hypo-
thesis testing problem:

Hy;:0,;=0, for all (i,j)eGC

{(k,D:1<k<p,1<i<p} (1)

versus alternative H,;: 0, # @U for some (i, j) € G, where
((:),-‘,-) with (i, j)) € G is a vector of pre-specified values. Spe-
cifically, the test can be applied to support the recovery of &
when &, = 0 for all (i, j) € G. The problem of recovering the
Gaussian graph is equivalent to supporting the recovery of @
because of the characterization of the edge set based on 6.

Moreover, we expect that a testing set with index set G in
0 =(0,) can be designed arbitrarily. To solve this problem,
we propose a bootstrap method for the simultaneous infer-
ence of @ based on de-bias estimator.

2.2 The de-sparsified estimator

It is essential to obtain a valid initial estimate of the precision
matrix to address the hypothesis testing problem. We select
the ISEE estimator™”, which converts the precision matrix es-
timation problem into that of a large covariance matrix estim-
ation as the initial estimator for @ because it can deal with
ultra-large graphical models and provide high computational
efficiency. In the remainder of this study, we denote the ISEE
estimator @dm ¥ by 6.

A scalable inference method exists for a single element in
0. Let

T=20-026=(T,)

be the de-sparsified ISEE estimator proposed in Ref. [13].
Then, we obtain

VT, 0,) = Z +0,(1), )

where Z! converges to the Gaussian distribution N(0,07;) with
0,;>0,0;,=06,0,+06;, and the negligible term does not de-
pend on (i, j). Although the above conclusion is a good de-
scription of the asymptotic properties of individual elements,
it is not sufficient for simultaneous inferences.

2.3 Bootstrap method for simultaneous inference

Based on the estimator T, we propose a test statistic

max \/’Tl(f, - @i/)

(i.))eG
for hypothesis testing Eq. (1). Specifically, under the null hy-
pothesis @, = @, for every (i, j) € G, we obtain

ijs

max V(T —0,)=max Va(T, - 0,) =max(Z;+o,(1)). (3)
@i.))eG @i.))eG @i.))eG

We hope that this method can eliminate the influence of tail
item in Eq. (2), such we only need to consider the distribu-

tion of maxZ}, which has been proved in the next section.
(i,))eG

Note that @ is a symmetric matrix. For an efficient calcula-
tion, we only consider hypothesis testing for the upper trian-
gular block of the inverse covariance matrix @ without loss of
generality. Thus, G C{(i,j): 1 i< j< p}.

As the distribution of max \/71(? ;— 0,;,) cannot be obtained,
one alternative is to obtai(fi’)eacreliable approximation of the dis-
tribution for Eq. (3). We construct a simple bootstrap method.
Note that Z}, is asymptotically normal, and the remainder in
Eq. (2) is negligible; thus, we use a multivariate normal ran-
dom vector to simulate the distribution of our test statistic. It
can be proven that the sequence {Z'},.;, follows an asymp-

ij
totic normal distribution with the covariance matrix

£=(0,0,+0,0,),;u, 1<i<j<pl<k<I<p,

p(p+1)xp(p+l)

where ' is a matrix with the diagonal ele-

ments (07;,);.;. Based on this form of the covariance matrix for
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{Z:}1<icj<p» We define

(0]

= (b:ikb:jl + éizb:_;k)ij.kl, I<i<j<pl<k<i<p

as the estimator of &, with diagonal elements Eff = ’O:”’O:,/+
’ézj . We then generate a random vector {Z,-}KKK,, ~N(0,§)
and define
Wg = maxZ ”
(@i, )eG
By definition, W, has an approximate distribution as follows:

max \/ﬁ(ﬁj—@”). The bootstrap critical value is given by
(i.))eG

co(a) =inf{t € R : P(W; < 1|X) > 1 —a}. Our method is used to
generate a bootstrap sequence of i.i.d. random vectors
2 imh<nen and  select the «-quantile of the sequence

{max{Z,,,
(i.))eG

Moreover, we can adjust the test and bootstrap statistics to

obtain a similar regularization test. We consider the student-

ized statistic

}iemen} @S a substitute for c(a).

max Vi(T, - 6,)/7,
(i.)€G
where 7;>0 and &7 = Z):,-,-@U+’@\ff. Correspondingly, the
bootstrap critical value can be obtained via (@)=
inf{t € R: P(W,; < t)X) > 1 —a}, defined as
W, = maxZ,/7,.
(i,)eG
We now consider a simultaneous confidence interval. Sup-
pose there is a given set G C{(k,]): 1 <k<p,1<I<p},
which is the index set of the subset to be tested for 6. To ad-
dress the hypothesis testing problem, we generate a nXx|G]|
bootstrap sequence {Z,} ., With n ii.d. samples, where
(Z.j)(,‘,j)gG ~N(0,5,), B, is a |G| x|G| subblock of £. The se-

{maxZ.j},l has an approximate distribution of
(i.J)€G
max Vn(T,;— ©,,)/6,. We then obtain the hypercuboid I; =
(i.J)€G _

I, x1,x...x1g as the confidence region of {0}, With a

quence

confidence level 1—a, where I, = (f-k o — O Co(a/2)] \n,
T. +6,.

ik Jk ik Jk

¢s(@/2)/ v/n). The confidence region I; can also be
the acceptance domain of the null hypothesis & = @ for the
hypothesis problem (1), with confidence level 1 —a.

3 Theoretical results

This section presents theoretical support for the procedures in
Section 2. The theorems demonstrate the consistency of the
asymptotic distribution between W, and \/ﬁ(’T\,j—@,,). Thus,
the bootstrap method is established as reasonable. We also
prove the validity of the support recovery process.

The following four assumptions are necessary to support
this result:

Assumption 3.1. Assume that @ € G(M, K), with M = O(1),
M > 1 and p > n,log p/n = o(1). For every i # j, there exists a
positive constant c, in which ||/ /0,0, <c < 1.

Assumption 3.2. There exists a certain sparsity level
s> K, s=0(d) =o(+n/logp) and some constants 0 < a <
1/2 and £ > 1, such that the /1-norm cone invertibility factor

IZull

F., = inf{ leeselly < Eleasll, # 0
for some S € {1, ..., p}with |S| < O(K)}

of covariance matrix X' = @' satisfies F_' = O(K*).
Assumption 3.3. We assume that (log(pn))’/n < C,n™ for
constants ¢;,C, > 0.
Assumption 3.4. There exists a sequence of positive num-

bers a, — oo, such that a,/p = o(1) and a,(log p)*K 10% =
o(1), (log p)* max 4;; = 0,(1).

Based on Alé/s\fxmptions 3.1 and 3.2, We obtain the asymp-
totic normality of a single element of the de-sparsified estim-
ator T (Lemma A.1). We then propose a theorem to ensure
the theoretical feasibility of simultaneous inference. Assump-
tions 3.3 and 3.4 are necessary to prove this theorem, as they
control for the bias of the covariance of the bootstrap
statistics.

The following theorem justifies the validity of the boot-
strap  procedure for the studentized-type  statistic

max \/ﬁ(i,—@lj)/?f,j. This is an important theoretical basis
(i.)eG

for the simultaneous confidence interval inference.
Theorem 3.1. Suppose that Assumptions 3.1-3.4 hold.

Then, for any G C {(k,]): 1 <k <I<p},
sup |P(max ‘/ﬁ(fu - @//)/6:// > (@) —al =o(l).

ae(0,1) (L.)eG

“4)

The theorem demonstrates the reasonability of using the
bootstrap quantile ¢;(@) as the quantile of the distribution for

max Vﬁ(ﬁ,—@ij)/ﬁij. A crucial feature of this bootstrap-

(i.))eG

assisted testing procedure is that it explicitly accounts for the
effect of |G| because the bootstrap critical value cs(@) de-
pends on G. Thus, the result is readily applicable to the con-
struction of simultaneous confidence intervals for (@,-,-) with
@, )eqg.

Next, we consider the inference of support recovery. The
major goal of support recovery is to identify nonzero signal
locations in a pre-specified set G. The procedure involves set-
ting an appropriate threshold 7 in the set

Su(1) =1{(i.)) € G : IT,| > \Jx67,Tog(IGI) /).

where 7 is the appropriate threshold. We then define the real
support

So=1{G,)eG:0,;+0}.

Theorem 3.2 in the following section shows that the above
support recovery procedure is consistent and effective if 7 > 2
and provides the theoretical optimum separation parameter
7, = 2. Next, we conduct a power analysis for the above pro-
cedure. When |G| is fixed, the test is consistent (based on the
asymptotic normality of a single element in 7). Thus, we fo-
cus on the case where |G| — co. Note that no signal strength
assumption is required in simultaneous confidence interval in-
ference. However, this assumption is necessary to support re-
covery.

We define the separation set as follows:

Us(c) ={0" : max|O;, — 0,|/T; > c \/log(IG])/n}.
(.)€G
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The separation set U, (c) shows that there is at least one ele-
ment in G, such that I@;‘j—@,jl/&}j > ¢ +/log(|G|)/n. The fol-
lowing theorem shows that the test rejects the null hypothesis
as long as one element in G satisfies the above condition.
Theorem 3.2. We assume that G C {(i,j): 1 <i<j<p}l
Under the assumptions of Theorem 3.1, for any ¢, > 0,
inf  P(max VilT, - 6,|/F, > (@) > 1. (5)

Ol (V2+e) (i,))€G

Theorem 3.2 supports the conclusion that the proposed pro-
cedure is highly sensitive in terms of detecting sparse altern-
atives. This is the theoretical basis for the support recovery
procedure.

From the proof of Theorem 3.2, we also observe that the
separation rate ( V2+¢) v1og(|G|)/n for any ¢, > 0 derived in
Theorem 3.2 is minimax optimal under suitable assumptions.
The following theorem shows that the support recovery pro-
cedure is consistent and effective if the threshold value is set
as 7, =2 and further justifies the optimality of 7,. A similar
support recovery test procedure was presented by Ref. [12].
We show the relationship between the optimal threshold para-
meter and the number of test variables in the following
corollary.

Corollary 3.1.Under the assumptions in Theorem 3.2, we
obtain the following:

sg}pr(lzf@ P(8,(2)=8,) — 1, (6)

Y(cy)= {@z(@ij) . min(LjuesO'@ij'/O'ij > Cy VIOg(|G|)/n}-

Moreover, forany 0 <7< 2,

where

sup P(8y(1) = Sy) = 0, )

OeS*(s0)

where §'(s)) =10 =(0,): . 116, #0} = s}
<i<j<p
This observation, in part, has motivated the consideration
of the numerical study procedure in Section 4.

4 Numerical studies

In Section 4, we present the simulation results for the applica-
tions of the simultaneous inference process, including simul-
taneous confidence interval and support recovery.

4.1 Simultaneous confidence interval

We consider the following model setting to demonstrate the
proposed method. @ = tridiag(p; 1;p) where a given p = 0.45
is a tri-diagonal matrix. For every data set, the rows of sample
X are sampled as i.i.d. copies of N(0,0"). We consider vari-
ous sample sizes, n, and dimensions, p, where @ € R, The
index set G of the inverse covariance matrix for the test is set
as follows: (I) G contains the top 50 lines of a column of @
with |G| = 50. (Il) G is a column of @, with |G| = p. For both
cases, we test the top 10 columns for each set of data. (III) G
is an upper tri-diagonal subblock of @ without the diagonal
elements. The subblock is an 11x 11 submatrix such that
|G| = 55. (IV) G is defined as the above case with a d X d sub-
matrix, where d =min{p/10,[ y/2p+1/21}, such that |G| is
close to p. For both cases, we test 10 disjoint subblocks for
each set of data. The tuning parameter is set as the value sug-
gested by Ref. [9], and the confidence interval is shown in
Section 2. All the performance measures are averaged over
N =50 replications.

Although our procedure is applied to achieve the simultan-
eous confidence interval of the entire precision matrix 0, it is
not computationally feasible because of the complexity of

Table 1. The simultaneous confidence interval result in Cases I and II. "C" denotes the coverage rate of the confidence interval and "L" denotes the

length of the confidence interval. They are similarly defined in the following table as well.

Case ] Case 11

" 90%C 90%L 95%C 95%L 90%C 90%L 95%C 95%L
200 150 0.87 0.1126 0.916 0.1352 0.814 0.0974 0.892 0.1175
200 300 0.878 0.1129 0.93 0.1354 0.862 0.0905 0.918 0.1092
200 450 0.892 0.1124 0.934 0.1350 0.866 0.0873 0.918 0.1056
350 450 0.9 0.0851 0.946 0.1023 0.862 0.0659 0.92 0.0794
500 450 0.9 0.0710 0.936 0.0853 0.858 0.0551 0.922 0.0663
500 600 0.898 0.0712 0.94 0.0856 0.856 0.0537 0.918 0.0648
500 750 0.894 0.0712 0.94 0.0855 0.872 0.0526 0.932 0.0636

Table 2. The simultaneous confidence interval result in Cases III and IV.
Case III Case IV

" P 90%C 90%L 95%C 95%L 90%C 90%L 95%C 95%L
200 150 0.848 0.1155 0.916 0.1383 0.856 0.1053 0.902 0.1267
200 300 0.86 0.1153 0.914 0.1384 0.868 0.0930 0.926 0.1119
200 450 0.868 0.1156 0.922 0.1388 0.876 0.0887 0.94 0.1068
350 450 0.86 0.0875 0.922 0.1050 0.896 0.0671 0.938 0.0808
500 450 0.882 0.0731 0.944 0.0877 0.872 0.0562 0.934 0.0677
500 600 0.878 0.0732 0.948 0.0877 0.884 0.0546 0.946 0.0658
500 750 0.886 0.0731 0.942 0.0877 0.9 0.0535 0.944 0.0645
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computing the square-rooting matrix of size p* X p’.

We report the results at two confidence levels:
a =0.1,0.05. The results are summarized in Tables 1 and 2.
The length of the interval is the confidence interval of

max(f-j —0,;,)/0;. From Tables | and 2, we observe that sim-
(G.J)€G

ultaneous confidence interval inference is effective in a vari-
ety of situations. In particular, the procedure performs satis-
factorily and stably under high-dimensional conditions, where
n < p. Notably, the length of the confidence intervals de-
creases with an increase in the size of sample n and test set
|G|. This result is consistent with the theoretical results.

4.2 Support recovery

We consider the most challenging and valuable scenario,
where G = {(i, j)},«<j,» because the test for non-diagonal ele-
ments is of practical significance. We consider two model set-
tings to demonstrate the proposed method: (Type I)
0 = tridiag(p; 1; p) with a given p >0 being a tri-diagonal
matrix; we set p =0.45. (Type 1) @ = five-diag(py;p:;0,),
which is defined by

Pos lf i= ]a

o, - Pis ?f|l:—J:| =1;
P2, ifli—jl=2;

0, else;

Table 3. The support recovery result, where @ follows Type I, d = d(8(2),S0).

and set @= five-diag(1,0.5,0.4). The setting of sample X is
the same as that in simultaneous confidence interval infer-
ence. To assess the performance of support recovery, we con-
sider the power and number of false positives (FP) of the pro-
cedure. We simultaneously compare the result with the estim-
ated support set by ISEE, which is defined as
{(Z,)): |5§j€e| > 107*}. Moreover, in line with Ref. [14], we con-
sider the following similarity measure:

1So(r) NS,

ISo@)I XIS

We also compare the effect and computation speed with De-
GLasso and De-NLasso, as recommended by Ref. [12]. All
performance measures were averaged over N =50 replica-
tions.

The results are summarized in Tables 3, 4, and 5. Al-
though ISEE has a remarkably high recognition rate for
nonzero elements, some zero elements are picked out incor-
rectly. Thus, our approach provides a better way to support
recovery. Tables 3 and 4 show that the sample size n has a
significant influence on the result compared with the dimen-
sion p. To ensure that the sample size n is sufficiently large,
our procedure performs well even when p is larger than n.
Based on Table 5, we see that although the effects are similar
among the different methods for estimating @, De-ISEE en-

d(8y(1),8,) =

De-ISEE ISEE

" P FP Power d FP Power d
200 150 1.1 0.9729 0.9826 8.94 1 0.9714
200 300 0.88 0.9490 0.9726 11.26 1 0.9817
200 450 0.8 0.9264 0.9616 16.3 1 0.9823
350 450 0.94 1 0.9990 23 1 0.9754
500 450 0.76 1 0.9992 36.48 1 0.9618
500 600 0.74 1 0.9994 41.46 1 0.9671
500 750 0.74 1 0.9995 44.04 1 0.9719

Table 4. The support recovery result, where @ follows Type II.
De-ISEE ISEE
n p

FP Power d FP Power d
350 450 2.88 0.9992 0.9980 16.42 1 0.9909
500 450 2.42 1 0.9987 24.86 1 0.9864
500 600 2.38 1 0.9990 27.1 1 0.9889
500 750 2.3 1 0.9992 29.26 1 0.9904

Table 5. The support recovery result and computation time for the different estimators, where @ follows Type 1.
De-ISEE De-GLasso De-NLasso
" ! d CPU-time d CPU-time d CPU-time

200 150 0.9826 2.783 0.9997 19.382 0.9959 60.057
200 300 0.9726 14.548 0.9993 167.97 0.9945 148.46
200 450 0.9616 31.54 0.9988 635.22 0.9920 267.19

350 450 0.9990 40.49 1 730 0.9997 539
500 450 0.9992 59.91 1 792.67 0.9998 1102.3
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ables much faster calculation than De-GLasso and De-
NLasso.

5 Conclusions

In this study, we propose a bootstrap method to deal with
simultaneous inferences for Gaussian graphical models. The
method is based on de-sparsified ISEE so it has asymptotic
normality and computational advantages. We then demon-
strate the effectiveness of the proposed method both theoretic-
ally and through simulation. Notwithstanding our findings,
the problem of simultaneous confidence interval inference for
the entire graph continues to persist because of the high com-
putational cost involved. This is a direction for future
research.

Appendix

In the appendix, we provide proofs of the main results of this
study. First, we list the notation used in the proofs. Let
#=0x=(X,...X,). Tt is evident that ¥~ N(0,0). Let
{Z;}h1<i<j» b€ @ p(p + 1)/2 sequence of the mean zero independ-
ent Gaussian vector with Ez[/zf,. = Z. We use the notation =,
to show the ijth row and klth column element of =, which
can be regarded as the covariance of the variance ¥% — 6,
and ¥¥ — ©,,. We define

6= (@i// V@ii@/j)lsi,jép

as the centralized result of matrix . Let &, = 0xx;0,—
©,. As each element in an i.i.d. sequence {@x,}; , has the
same distribution as ¥, we observe that {£;},<<;<, and {z;;},<i<<,
have the same mean and covariance matrices.

We then present several lemmas that are used in the proof
of the theorem in Section 3.

Lemma A.1. (™m0 T et T be defined in Section 2. Un-
der Assumptions 3.1 and 3.2 and |||, = O(1), we obtain

\/E(Tij -0, = Z(Q;Txkngj -0,/ \/E+Aij7
k=1

where 4, = o(1) for all 1<, ;< p, Moreover, the de-sparsi-
fied estimator has the following asymptotic distribution.
\/ﬁ(Tij - @[j)/o-[j = Z,n, + 0,)(1):

where 0, = 0,0, + 07, and Z, ~» N(0, 1).
Lemma A.2. Under the assumptions in Theorem 3.1, for
any Ge{(i,j):1<i<p,1<j<p}andc>0,

sup lP(ma)é;é‘,-jk/ Vn<x)- P(mgz,-_,- <vl<nt. (A1)

xeR (@, )€

Lemma A.3. Under Assumption 3.1, for i # j, we obtain

max Z EL.<G
1<i<j<p »
I<k<l<p
and
max |Eij.kl|/ Eij,ijEkLkl <¢ <1, (A2)
I<p

I<i<j<p.l<ks

where (i, j) # (k,[) for constants C, and ¢, > 0.
Lemma A.4. Suppose Assumptions 3.1-3.4 hold. Sub-

2-6
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sequently, for any G C {(k,]): 1 <k <I<p},
sup [P(max V(T, - 0,) > c(@) —al =o(1).  (A3)
ac(0,1) (i.)eG
Appendix A.1 The proof of Lemma A.4
Let r(v) = Cv'*(1 Vv (log(p/v))** with C, > 0, and
I' = max |~:E'ij,kl _Eij,k1|- (A4)

[(H)XC}

From Ref. [9], we obtain

_ 1
|@—@|M=O[K,/%),

which implies that
10— Z, =10,0,+ 6,0, -6,0,-0,0,| <
10,6,-6,0,/+16,0,—6,0,] <
10,(0,—0,)|+160,(0, — 0,)|+

10.(0,,—0,)1+16,(8,-6,)| =

oA

for all 1<1, j,k,I< p, where the triangle inequality is used,
and |@|., = O(1),]0|.. = O(1). Thus, we obtain

r:o(m/loﬂl.
n

Let c.;(@)=inf{r € R: P(maxz, <f)> 1 —a}. Following the
arguments in the proof of Ref’ [15, Lemma 3.2],

P(cs(a) <cgla+mn(v) = 1-PU >v),

P(c.s(@) < csla+n(v) > 1-PUI >v).

As log pmax4,; = o(1), let & = 1/log p; then, we obtain

1<i,j<p
P(max | Va(T,=0,)= » &,/ Vil > £)=P(max || > £) < &,,

(i.)eG pa (i.))eG
(A.5)

where &, = o(1). Based on the arguments in the proof of Ref.
[15, Theorem 3.2], for every v > 0,

sup |P(max Va(T,, - 0,) > cs(@)) —a <

ae(0,1) (i.)eG
sup |P(max " &,/ Vi > cg(@)) - al +£ T VIog(p/&) +£ <
ac) )G 4=
sup |P({n_)a7ézij > co(@) —al+n~ +§ V 1Vlog(p/é)+é& <
i,j)Et

a€(0,1)

W)+ P(I'>v)+n+& +2logp +é&,.

Under Assumption 3.4, by choosing v = 1/(a,(log p)*), we
deduce that

sup [P(max Va(T,; - 0,)) > co(@)) —al = o(1).

a€(0,1) (i.)eG
This completes the proof of Lemma A .4.
Appendix A.2 The proof of Theorem 3.1

Given a probability tending to one, we obtain
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6,-6,|= O[K\/k’%] =o(1), [6,]=0(1),

forall 1 <i<
ing:

Jj < p values. Thus, we can conclude the follow-

5, -

7=

0,=0(1),

0,0,+62|=0(1),

o7 =10,0,,+ 67| =O0(1),

7%~ 031 =16,0,,+ 62— (0,0, +6})| <
6,0, 6,0,|+16’, - 62| <
10,10, 6, +10,6, - 60,/ +16,+ 6,16, -

1
O(K /EJ,

n
— logp
o, —oyl=lo,— o/l +<T,,I—O[K\/ . )

|6:ij6:kl O-kll < |a:ij||b:kl_0-kl| + |o-kl||6-\ij _o-ijl =

o)

@i/" =

for each 1 <i< j< p. Then we have

max | va(T, - 0,)/7, - Z&,-k/( Vo)l <

(i.j)G

1 1 =
(@,)e g i

O(|A|w)+0[ Togp K,/lofp]

Under Assumptions 3.3 and 3.4, there exist &, and &, that
satisfy &, 4/1 Vlog(p/&)) = o(1) and &, = o(1); then, we obtain

maxIA,jI/O',, +max| Zf,,klmaxl—

P(max (T, = 0,)/F, —max > &, /(Nno )| > &) < &,
(i.)eG (i.)eG =

Letl" = max |E,,,/(6,0) — Z,./(0,0)|, which then yields
[GS)X(EN))]

_ 1 1
I' < max |5},| max |——— |+
(<k<h s T 0y 00
max |:'ij,kl_‘:ij.kll max |—=——| <
(<k<h <hksh OOy
/10 P
O(1) max |00, — 0, a'k,|+O(K g
(i<j). (k<) n
logp
O|K
n

to arrive at the following conclusion:

= [log p
max |5}, —Zl =0|K\[—|.
(i<j), (k<) n

Using the above arguments, we can show that P(I" > v) =
o(1) for v=1/(a,(log p)*). The remaining proofs are similar
to the proof of Lemma A.1; as such, we have omitted the details.

Appendix A.3 The proof of Theorem 3.2

We  define Z;=z;/0
{Zij}l<i</<p ~ N(O’E) with

for 1<i<j<p. Thus,

2-7

g= (Eij,kl/

==
'—'ij,ij‘—’kl,kl)i</, k<l

where is the regularization result of the matrix 5. As we have

P(max V(T - ©,)/6, ~ mafo,-,k/ Vo, > €) <&,

(i.))eG

where &, /1 V1og(p/é)) = o(1) and &, = o(1) from the proof of
Theorem 3.1, the distribution of max n|T,, - ©,|/7,; can be

(i,))eG

;. Under Lemma A.2, by Ref. [16,
Lemma 6] for any YR and as |G| — oo, we obtain

Z,/’~21og(IG]) +loglog(IG]) < x) —

F(x):= exp{—%exp(—%)}.

approximated by max |Z;

P(max |
(i.)G
(A.6)

Thus, we have

P(max n| T

—0,P /7% <
(i.j)eG

2log(IG|) - loglog(IG)/2) — 1.

The bootstrap statistic is a Gaussian variable; thus,
(2;)* = 21og(IG]) + loglog(IG) — g.| = o(1).

where ¢, is the 100(1 —a)% quantile of F(x). There is a

(k,) € G such that |8, — 0,|/F, > (V2 + &) \flog(IG)/n. For
any § > 0, using the AM-GM inequality, we have

1@y — O, /7%, <(1+ 5 IT, = O, [T+
(1+0)n|Ty, — @ulz/a:iz’
where
n[T, = 0,42/, = O(1) = o(log(IGI))

as (k, 1) is fixed and |G| is sufficiently large. From the proof of
Theorem 3.1, we know that the difference between
nl@, -6, /7% and nl@, -6, /d? is asymptotically negli-
gible. Thus, given that @ € U( V2 +¢,), we obtain

0,k/7,

= 1
maxn|T; - > m( V2 + &)’ (log|G|) — o(log|G)).

(i.))eG
Thus, for € — 0, we have

inf  P(max \/ﬁm, -

@ij|/é-if > E*G((l)) — 1.
Ocls(V2+e) ()G

Appendix A.4 The proof of Corollary 3.1

Similar to the proof of Theorem 3.2, the distribution of
max /7 |T,] 0,/|/7; can be approximated by maxl ;|- Under
(i.)eG

Lemma A.2, by Ref. [16, Lemma 6], for any )?ER and as
|G| = o0, we obtain

Z;" - 21og(IG]) + loglog(IG]) < x) —

F(x) = exp{—%exp(—%)}.

P(max|
()G

It implies that

P(maxnlT, /7 < 2log(IG]) - loglog(IGI)/2) — 1.

G.)ess

(A.7)
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However, it is evident that

Ti/|2/0',?j-

2maxn|T
(@i, ))e

min n|T,[* /07, <

~T,/07,+2minn|
@.peSo ‘ =

As the difference between min n|T,
(@i.))€So

is asymptotically negligible, and P(2 maxnIT T, /o7 <
(i,))ES
41og(|G]) —loglog(|G])) — 1, we obtain ’

P(min n|T,[* /7, > 2log|G|) >

(=
T,l/

s /0' and rn1nn|T,j| /0',,

P(2 min n|

(i,j)eSo

6:?,. +4log|G|—loglog(|G|) > 8log|Gl) — 1.
(A.8)

Hence, Eq. (7) follows from Egs. (A.7) and (A.8).

Next, we prove the optimality of 7 =2. For a sufficiently
large M, we can choose the set G: such that ®,, =0 for
(i,j) € G, and |G| = M. Based on the above arguments, we

know that the distribution of max /| If —-0,|/T; canbe ap-

(i.))eG

proximated by r_n_a)g |Z;;]. From (A.7), we obtain the following:

P(max n|

(i.))eG

P/, > clog|Gl) - 1,

where ¢ < 2. Thus, the conclusions follow.

Appendix A.5 The proof of Lemma A.1

The proof of Lemma A.1 is shown in Ref. [13
this conclusion in this study.

], and we use

Appendix A.6 The proof of Lemma A.2
As we have (log(pn))’/n < Cin, let B=0(1) be a positive
constant. Thus,

B*(log(p*n))’ /n < B*2'(log(pn))’ /n <

where C; =2"B*C, = O(1). Hence, we consider the applica-
tion of Ref. [15, Corollary 2.1] to the i.i.d. sequence {&;,};_;.
Only its Condition (E.1) must be verified. For clarity, we state
the following condition:

EE, < C,, max E €./ B + Eelir/? < 4

C; -

(A9)

uniformly over j, where ¢,,C, >0 and B=0O(1). As ¥ is a

normal random vector with ¥ = x@, we obtain the following:
EE, =var(¥¥) =0}, = 0,0+ 0.

Thus,

®n @u
20,0 <

2,,(0),

‘min

<22 (0).

ez
EE, <

It is straightforward to see that max E I{f, #71 = 0(1); therefore,

0(1) SuCh that max El{_“”|2+l/B1

Let B, :=|0; |/10g(2) As X is normal, there exists a con-
stant B,, such that Ee%/® < 1 and Ee¥’® < 1. Now, let

B =max{B,,B,,B;} = 0(1),
we then obtain
max E|&,[** | B' + Ee¥in/? < 2 + Ee/XXiHous ¢
=12

2+2EeX 5P < 2+ 2Ee %P < 2 4 2EeN P EetP < 4,

where we use the average and Cauchy inequalities in the third

2-8

and fourth inequations, respectively. This completes the proof
of Lemma A.2.

Appendix A.7 The proof of Lemma A.3

First, we prove that there is a constant 0 <c¢ <1 such that
|6, < c foralli# j. As @ € G(M,K), with M = O(1), we have

- S /lmin(g) < /lmux(g) < M
Let z =e,/ VO, —e,;/ /O, Then, we have
2-20, =E(%/ O, %,/ \J0,) = E(Z'%%"z) =

1
T@ /lmm @ =|—+ /lmm 0 =z
2’0z > A,,,(0)7"z = (0“ @”) @)=
2
Mﬂmm(gl
_ 1 1
Thus, 0, <1—- —. Similarly, we prove that -0, <1- —.
M M?

1
Letc=1-— <1, wehave |0, <cforalli#j.
M? ’
Notably,

e = Z@Z

Forall1 <i<

<2,.(0)<

‘max

=0(1).

J<p,
“”kz = Z (0,0, + @zl@Jk)

1<k<I<p

2 2(911(@,‘1 + @il@jk)z <

k=1 I=1

222(@2 & +0.0%) =

k=1 I=1

422@2(92 42@;2@; <4M*.
k=1 =1

k=1 I=1

I<ksi<p

Let C, = 4M*; then,

Now, we consider two cases and prove that in each case

max |‘—‘1;AI|/(
(@i, j)# (kD)

E i) S ¢ <1

holds. As max [®,] <

I<i<j<p

following:

¢ < 1, for each i < j,k <, we obtain the

(0,0, + @u@;k)z
(0,0,,+6;)6,06,+ @f;)

(@M@/I-‘-@d@/k)z
(1+@2)(1+@,)

5l EiiBuw) =
Case 1. The indices in (i, j) and (k,[) are the same.
Owing to the symmetry of (i,)), (k,)) in

Eiu=0,0;+0,0,, for convenience, we assume that /= j.
Then, we have that i # k and |@,| < ¢ because (i, j) # (k,]).

Thus,
)2 (c+1)2
< A s
2

where the Cauchy inequality is used in the first inequation.

c+0,0,;
l+@ @

(040,+6,0,)
1+6)(1+ 6)

(@,k+@ 10, (
(1+6,0,y
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— =
= =)

EiiEun < ¢, for all

Let ¢,=1-

@ j) # (kD).
Case 2. The indices in (i, j) and (k,[) are not the same.
The target formula can be rewritten in the following form:

(E(-iijzj - Qi,f)(fckxz - ka))z
E(jzijzj - @ij)zE(-ik-il - @kl)z '

< 1. Then, [Zl/

2

=]

‘—',-j,k,/(Ei,',ijEkl,u) =

We divide the Gaussian variable ¥; into two independent
Gaussian parts X, and X/ such that X, = X + X/, with ¥/ being
the projection of % onto the linear space
span{¥, : 1 <k < p,k #1i, j}. This implies that with an appro-
priate pXx 1 parameter vector u with u, =u; =0, we obtain
X¥'=u"®. This also implies that EX% =0 and
ExX %, =EXX =0.Let 2 = e,—u; we then have

EX? =Ez"'%%'7 =2"E(Xx")z =
7707 > 4,,(0)7'7 > 4,,(6).

Therefore, EX > i We then use the same partition method
to divide X; into ¥, and ¥/. It is evident that X/, ¥, are inde-
pendent of ¥/, ¥/ and are all zero-mean Gaussian variables.
Defining EX,¥, = ©;, and EX/ ¥/ = 0, we have
Exi = E®+X)E+5)=0,+0=0,,

where we use the independence of %, X and X, X Thus, we
have

BE -0, = (RF - 0)+(WF —0,)+(XF +I/%).

Notably,
E(jzixj - @ij)(xk-il - @kl) =
E(X¥ - 0,)E(%% - 0,) + EXEX|(%.% — O)+
EXEX! (%X — 0y) + E(X/ X - O])(%.%,— 0,) =
E(j;/x;, - @;;)(;Ckfcl - le),
and
0,0,+06. = E(%X;-0,) =
E((%%-0)+((X'X - 0,)+ (XX + )”c;’)"c}))z =
E(XX -0, +EX% -0/ +E®¥ +X/%) >
E(XX. - 0,)+EFX -0,
where we use the independence of these Gaussian variables.
As

E(%%-0,) = 0,0, + 6, <22, (0) < 2M’,

‘max

this implies that

=

Sijkl (E()’Ei-ij - @[j)(-ik-i/ - @k/))2 _
Eij.ijEkl.kI B E(xijéj - @ij)zE(jEkjél - @ld)z -
(E(X'%) - 0))(X5 - 0,))
E(%,%,~ 0, E(%% — 0y
E(¥'%) - 60, ELT - 6u) _
E(%%,~ 0, E(Xfi— 0y)*
E(E%-0,)
|_EREF+6] 1
2M? 2M*

A

where we use the Cauchy inequality in the first inequation

1
and E)?;2>M. If ¢,=4/1- <1, we have |5,/

\/E[j,i/Ekl.kI < 6.
Combining Cases 1 and 2, let ¢ = ¢, V ¢,; we then have
[Zul/

for all (i, j) # (k,D).
This completes the proof of Lemma A.3.

2M*

=
i Sc <1
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