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Graphical abstract

A penalized  likelihood  approach  is  proposed,  in  which  the  low-rank  and  sparsity  structure  are  considered  simultaneously.  New  al-
gorithm sparse factored gradient descent (SFGD) is proposed to estimate the parameter matrix.

Public summary
■ The data-driven conditional  multinomial  logit  choice model  with customer features has a  good performance in assort-

ment personalization problem when a low-rank structure of parameter matrix is considered.

■ Our proposed method considers both low-rank and sparsity structure,  which can further reduce model  complexity and
improve estimation and prediction accuracy.

■ New algorithm sparse factored gradient descent (SFGD) is proposed to estimate the parameter matrix, which enjoys high
interpretability and efficient performance in computing.
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Abstract: The data-driven conditional multinomial logit choice model with customer features performs well in the assort-
ment personalization problem when the low-rank structure of the parameter matrix is considered. However, despite recent
theoretical  and algorithmic advances,  parameter  estimation in  the choice model  still  poses  a  challenging task,  especially
when there are more predictors than observations. For this reason, we suggest a penalized likelihood approach based on a
feature matrix to recover the sparse structure from populations and products toward the assortment. Our proposed method
considers simultaneously low-rank and sparsity structures, which can further reduce model complexity and improve its es-
timation and prediction accuracy. A new algorithm, sparse factorial gradient descent (SFGD), was proposed to estimate the
parameter matrix, which has high interpretability and efficient computing performance. As a first-order method, the SFGD
works well in high-dimensional scenarios because of the absence of the Hessian matrix. Simulation studies show that the
SFGD algorithm outperforms  state-of-the-art  methods  in  terms  of  estimation,  sparsity  recovery,  and  average  regret.  We
also demonstrate the effectiveness of our proposed method using advertising behavior data analysis.
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1    Introduction
As  an  important  part  of  revenue  management,  assortment
planning has  a  wide  range  of  applications  in  retail,  advert-
ising, and e-commerce. Personalization techniques are used to
optimize the selection of products or services for certain cus-
tomers. A key factor in optimizing assortment successfully is
the ability to understand and predict the demand or customer
preferences. Customer-specific data are available for compan-
ies  in  the  scenario  of  many  online  applications.  The  feature
information of customer data is of great significance in mod-
elling the  relationship  between  features  and  purchase  de-
cisions.  In Refs.[1, 2], transactional  data were used to estim-
ate customer preferences. They rely on the discrete context of
each customer type; that is, certain types of customers are dis-
covered before the estimation.  A practical  algorithm for per-
sonalization under inventory constraints was proposed in Ref.[3].
The  full  feature  data  of  customers  are  considered  in  Ref.[4],
where covariate information was learned from the data.

Logit models are commonly used to better understand cus-
tomer preferences and demands in practice. This is an advant-
age  of  interpretability  and  simplicity,  which  makes  the  logit
model a popular choice. Such a framework is widely used in
targeted  advertising[5],  pricing[6], and  assortment  personaliza-
tion[1,3,4].  The data-driven logit model framework, as a special
type of generalized linear model, uses the information of cus-
tomer features to estimate the coefficients, based on which as-
sortment optimization is carried out. In big data applications,
it is challenging to learn and infer dependence structures, be-
cause  the  responses  and  predictors  in  such  a  generalized

linear model (GLM) framework may be related through a few
latent  pathways  or  a  subset  of  predictors.  Furthermore,  with
the exponential  growth  in  data  volume,  the  curse  of  dimen-
sionality  and  massive  amounts  of  data  make  estimation  and
prediction  more  difficult  to  process.  To  successfully  recover
the sparse structure of predictors associated with the response,
regularization  methods  such  as  lasso[7],  group  lasso[8],  and
group lasso for logistic regression[9] are used.

In the multi-response scenario,  the data-driven multinomi-
al logit model tackles the associations between the predictors
and responses via a sparse and low-rank representation of the
coefficient  matrix.  Sparse  reduced-rank  regression  has  been
extensively  researched  in  the  literature,  which  maintains  the
interpretability of the estimated matrix by eliminating irrelev-
ant  features,  and  the  low-rank  structure  helps  to  reduce  the
number of free parameters of the model[10–13]. Sparse reduced-
rank regression  has  applications  in  social  network  com-
munity  discovery[14],  subspace  clustering[15], and  motion  seg-
mentation[16]. In  multitask  learning  and  noisy  matrix  decom-
position,  there  are  abundant  references  that  have  considered
the sparse reduced-rank representation; see Refs. [17–19] and
also note that these references therein have estimated matrices
with a low-rank plus sparse structure which is different from
our  work,  as  we  focus  on  the  estimation  of  a  matrix  that  is
jointly  low-rank  and  sparse  (see  Refs.  [10–12]  for  similar
frameworks).  Regarding  the  sparsity  of  the  parameter
matrix,  Refs.  [20,21]  focused  on  the  co-sparsity  structure  in
the matrix. However, the sparsity in our assortment personal-
ization problem aims to help select the features of customers,
and row-wise sparsity is introduced. To the best of our know-
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ledge, in  the  application  of  assortment  personalization  prob-
lem,  the  simultaneous  sparse  and  low-rank  structure  in  the
coefficient  matrix  of  the  multinomial  logit  model  have  been
rarely considered in the literature. To meet this requirement in
our multinomial  logit  model,  we choose the penalized likeli-
hood framework.

L1

To derive a sparse reduced-rank approximation of the para-
meter  matrix,  it  is  common  to  choose  and  nuclear  norm
regularizers. There are several methods for solving the penal-
ized likelihood problem because of the convex relaxations to
the sparsity and low rankness of a matrix. The resulting prob-
lem is  convex and can be solved by the alternating direction
method of multipliers (ADMM)[22]; see Ref. [14]. Other meth-
ods include the sequential  co-sparse unit-rank method [20] and
sparse  eigenvalue  decomposition[23]. All  the  above  sparse  re-
duced-rank  approaches  have  desirable  theoretical  properties.
However, they  cannot  be  directly  used  in  penalized  likeli-
hood frameworks. For the GLM problem, the factored gradi-
ent descent method[24] is commonly used in problems that can
be posed as matrix factorization; see Ref. [25] for the precise
convergence  rate  guarantees  for  a  general  convex  function.
Such  a  first-order  method  works  in  an  alternative  way  and
does  not  require  the  SVD  of  the  parameter  matrix  at  each
step,  which  makes  high-efficiency  computation  a  possibility
in solving the penalized likelihood problem.

The main contributions of this study are threefold. First, we
provide  the  framework  for  the  assortment  personalization
problem, which maximizes the expected revenue over a feas-
ible assortment. We introduce customer features related to the
utility model and present our data-driven conditional multino-
mial  logit  choice  model.  For  the  sparsity  of  the  parameter
matrix,  we use a group lasso-type penalty to derive the row-
wise  sparsity,  which  is  the  same  as  the  feature  selection  for
customers.  Thus,  we make the estimation in the high-dimen-
sional feature scenario available.  Second,  to  solve the penal-
ized  maximum  likelihood  problem,  we  propose  a  first-order
sparse  factored  gradient  descent  (SFGD) approach,  in  which
both sparsity  and  low-rank  structures  are  considered.  Be-
cause of  the  low rank of  the  parameter  matrix,  the  SVD can
be used to reduce the number of parameters. We illustrate the
details of the thresholding rule in SFGD and how it proceeds
in  the  alternative  updating  of  the  two  matrices  derived  from
the decomposition.  Moreover,  we  show  the  local  conver-
gence of SFGD and present a structure-aware dynamic assort-
ment  personalization  procedure  based  on  the  SFGD method.
Third, our  simulation,  which  contains  high-dimensional  set-
tings, shows  that  SFGD  can  consistently  estimate  the  para-
meter matrix  and  accurately  recover  the  support  of  the  fea-
tures.  The  average  regret  of  different  structure  settings  was
compared with the growth of the time horizon, and the SFGD
method  with  the  sparse  reduced-rank  structure  considered
outperformed the sparsity structure-ignorant methods. We ap-
plied  the  proposed  method  to  advertising  behavior  data,  in
which the features of both users and advertisements are con-
sidered. Furthermore, the SFGD based assortment personaliz-
ation procedure exhibited the best precision. 

2    Model specification
In this section, we present our modeling framework for data-

zi

i Z zi j j
zi

Z = (zi j) ||Z||F =
√∑

i, j z2
i j ||Z||2,1 =

∑
i ||zi||2

||Z||1 =
∑

i, j |zi j| l2,1

l1 σ1(Z)
Z

driven assortment personalization problems, in which custom-
er features are considered. Throughout this paper, bold letters
are used to denote the matrices and vectors. In this study,  is
the column vector of the th row of , and  is the  element
of  the  vector  without  special  instructions.  For  any  matrix

,  denoted  by ,  and
 denotes the Frobenius norm, rows -norm and

element-wise -norm. Furthermore,  is the largest singu-
lar value of .

T
t = 1, · · · ,T t

xt p
S t ⊂ {1, · · · ,q} jt ∈ {1, · · · ,q}

t

In the  assortment  personalization  problem,  the  retailer  re-
cords the observed transactional  data in the past,  which con-
tains customer  features,  items  (products)  chosen  by  custom-
ers, and the assortment arrangement provided by the retailer.
For  time  horizon ,  the  decision  maker  observes  customer
data in the past time . At time , the decision maker
obtains customer data  with  features that include individu-
al information, assortment , and items ,
which were chosen by the  customer. 

2.1    Data-driven  conditionally  multinomial  logit  choice
model

X T × p

PΘ( j|S )
Θ

Θ
j ∈ {1, · · · ,q} r j r0 = 0

In  the  data-driven  assortment  problem,  we  assume  that  the
customer  data  matrix  of  size  is  obtained  directly
from the past, also known as feature vectors. We assume that
customers choose among the products according to some con-
ditional  probability  when the assortment  is  shown to
the  customer.  Here,  is  the  parameter  matrix  that  plays  an
important  role  in  the  conditional  multinomial  logit  choice
model. The choice of  will be presented later. For each item

, let  be the associated revenue.  Here,  in
revenue for the no-purchase option. Then, the decision-maker
maximizes the expected revenue.

f (S ) =
∑

j∈S

r jPΘ( j|S ) (1)

S ⊂ {1, · · · ,q}over a feasible assortment . The assortment per-
sonalization problem aims to find an assortment that maxim-
izes the expected revenue.

Ŝ = argmax
S⊆{1,··· ,q}

f (S )

Θ

x ∈ Rp

To obtain a clear view of , we first introduce the utility of
items. A popular way to model customer choice probability is
to utilize the random utility  model[26]. We assume that  a  cus-
tomer with the feature vector  has utility

U x
j = V x

j + ϵ j (2)

j V x
j

j ϵ j

S ⊂ {1, · · · ,q}
x S

U x
j V x

0

V x
j =

⟨
x,Θ∗j

⟩
Θ∗j ∈ Rp 1 ⩽ j ⩽ q

V x = XΘ∗
Θ∗ = (Θ1, ...,Θq) ∈

for  each product ,  where  can be interpreted as  the mean
utility  of  product  for  this  customer  and  is  a  standard
Gumbel random  variable  with  a  mean  of  zero.  When  a  de-
cision  maker  offers  assortment  to  a  customer
with feature , the customer will choose the product in  with
the  highest .  The  utility  of  no-purchase  option  it  to  be
zero.  Here,  we  assume  that  the  mean  utility  is  given  by  the
linear model , where  for . Hence,
we  obtain  the  mean  utility  matrix  for  all  items ,
where  the  underlying  parameter  matrix  is 
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Rp×q.

t = 1, · · · ,T j = 1, · · · ,q
I J

S ⊂ {1, · · · ,q}

The data-driven conditional multinomial logit choice mod-
el  is  over  time ,  and  items . We  intro-
duce two random variables:  customer  and item (choice) .
Using a well-known result from discrete choice theory[27], giv-
en assortment , we derive a personalized case of
choice probability

PΘ∗ (J = j|S ) =
eV x

j

1+
∑

j′∈S eV x
j′
=

exp{
⟨
x,Θ∗j

⟩
}

1+
∑
j′∈S

exp{
⟨
x,Θ∗j′

⟩
} (3)

x Θ∗j V x
j

J
We  choose  the  linear  model  of  and  to  represent ;

then, the choice  has the conditional distribution

PΘ∗ (J = j|I = xt;S ) =
1

1+
∑

j′∈S exp(xt
TΘ∗j′ )

×
1, j = 0
0, j , 0, j < S
exp(xt

TΘ∗j), j , 0, j ∈ S
(4)

J = 0
S

xt ∈ X, t = 1, · · · ,T, X ⊂ Rp

xt

||xt ||∞ ⩽ 1 t = 1, · · · ,T

where  indicates  that  no  product  has  been  purchased  in
assortment . A no-purchase option is common in the choice
model. In our data-driven framework, the decision maker can
observe customer features  where  is
a space of possible contexts. We also assume that  is scaled
to satisfy , for . 

2.2    Penalized maximum likelihood approach

T (xt , jt,S t)
t = 1, · · · ,T S t

{1, · · · ,q} K jt

PΘ∗ (J = j|I = xt;S )

We  suppose  that  we  have  observations  for
,  where  comes  from  the  set  of  subsets  of

 of size , and  are i. i. d., according to model (4).
Based  on  the  specific  form  of  in  (4),  we
define  the  loss  function  constructed  from  the  negative  log-
likelihood as

L(X;Θ) =
1
T

T∑
t=1

log

(1+∑
j∈S t

exT
t Θ j )(I( jt=0) + I( jt,0)exT

t Θ jt )−1

 (5)

Θ∗

Θ∗ Θ∗

x

Θ∗

Similar to classical methods, we often assume that the un-
derlying  parameter  matrix  has  a  certain  special  structure,
such as the low-rank structure of  and the sparsity of [12].
In the customer choice model, it is reasonable to assume that
for customer , only a few features have a significant impact
on the utility of choosing different items. Because sparsity de-
pends on the items, we introduce the row-wise sparsity of .
To  recover  the  sparse  structure  of  the  parameter  matrix,  the
regularization method can be helpful for variable selection as
well as sparsity recovery. In sparse reduced-rank learning, we
tend to recover the sparsity and low-rank structures simultan-
eously. Choosing a large number of features is also a proced-
ure  for  variable  selection  in  our  generalized  multi-response
regression problem.  When  large  numbers  of  predictor  vari-
ables  (i.e.,  features)  are  available,  some  may  not  be  helpful
for both the estimation and prediction. Therefore, it is import-
ant to perform feature selection using the shrinkage method.

Inspired  by  the  regularization  method  in  regression,  we
chose a grouped lasso-type[8,12] penalty to avoid overfitting and
improve  interpretability.  Another  widely  used  method  is  to

X Θ

l2,1 Θ
l1 1 ⩽ r̃ ⩽min{p,q}

derive the sparsity in the matrix using an element-wise lasso
penalty (see Refs. [28,29]). However, note that element-wise
sparsity does not imply the row-wise sparsity that we expect
to have, and the model will be unable to select the features of
data .  In  our  problem,  setting  the  entire  row  of  to  zero
corresponds  to  excluding  a  feature  from  the  customer  data.
Therefore, we introduced the  norm of  rather than an ele-
ment-wise  norm.  Let ;  then,  we  have  the
form of our problem as

minimize Q(X;Θ) =L(X;Θ)+λ||Θ||2,1
s.t. rank(Θ) ⩽ r̃

(6)

r̃ =min{p,q}

r̃
Θ∗ r

Θ∗ ui = (ui1, · · · ,uir)T v j = (v j1, · · · ,v jr)T

i = 1, · · · , p j = 1, · · · ,q Θ∗i j∑r
l=1 uilv jl U = (uil)p×r V = (v jl)q×r

V
U

XΘ
1
√

T
XΘ =( 1

√
T

XU0 D0

)
VT

0 =
1
√

T
XUVT U = U0 D0 ∈ Rp×r V =

V0 ∈ Rq×r D0 = diag{d0
1 , · · · ,d0

r } U
V Θ Θ = UVT

U V
Θ

Θ U V
Θ

Θ
λ

||Θi||2 i U
U Θ

In  a  full-rank  problem,  must  be  chosen.
However,  if  the  problem  has  a  low-rank  structure  or  if  we
want  to  enforce  a  low  rank,  then  we  use  a  proper  choice  of
smaller ,  reducing  storage  and  computational  work;  see  a
similar motivation in Ref. [1]. If  has rank , we may factor

 to  find  the  vectors  and 
for  and  such that  is approximately
equal to . We denote  and ; then,
the right factors  can be considered latent item weights, and
the  left  factors  as  latent  features[1]. We now derive  an  ap-

pealing  sparse  SVD  representation  of  as 

 where , 

, .  This encourages us  to  use 
and  to factorize the matrix ; that is, . Thus, it is
feasible to introduce the first-order method over  and  to
derive  the  estimation  of .  It  is  worth  mentioning  that  our
goal is  to  accurately  provide  a  low-rank  and  row-sparse  es-
timate  of  rather  than  the  estimates  of  and  independ-
ently. This factorial form of  allows our method to approx-
imate  alternately.  A  similar  framework  can  be  found  in
Refs.  [1,25].  The  tuning  parameters ,  which  are  chosen
based on an information criterion, are discussed later. We can
shrink  to  zero  by  setting  the th  row of  to  zero  and
then derive the row-wise sparsity on  and  accordingly. In
our  generalized  multiresponse  regression  problem,  all  the
items have probabilities  to  be chosen,  which motivates  us  to
introduce row-wise instead of column-wise sparsity.

Θ̂ Θ∗

rank(Θ∗)≪min{p,q}

We  define  our  estimator  for  as  the  solution  to  the
maximum  likelihood  problem  with  the  low-rank  assumption

. Because problem (6) is convex, we can
apply  a  variety  of  convex  methods.  In  the  next  section,  we
will attempt to use a first-order algorithm on the non-convex
and factored forms. 

3    Algorithm
Q(X;Θ)With  the  convexity  of , many  fast  optimization  ap-

proaches, such as the alternating direction method of multipli-
ers,  accelerated  projected  gradient  descent,  and  factored
gradient  descent,  can  perform  well.  The  commonly  used
method  for  estimating  a  parameter  matrix  with  a  low-rank
structure  is  the  factored  gradient  descent  method[24].  In  this
section,  we  introduce  a  data-driven  sparse  factored  gradient
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Θ∗

U
U V U

descent  (SFGD)  algorithm  to  approximate  using  a  low-
rank and sparse structure. The SFGD is an interactive method
in which the row-wise sparsity of  is considered and the up-
dates of  and  overlap. In the update of , we used a sub-
gradient  approach  that  cooperates  with  the  gradient  descent
method.
 

3.1    Sparse factored gradient descent method

Θ̂

In a scenario of high dimensions, the computation of the Hes-
sian matrix  can  be  difficult  or  even not  feasible.  In  this  sec-
tion,  we  introduce  a  first-order  algorithm  for  computing ,
which works on the factored form of the low-rank and sparse
constraint likelihood optimization problem (6). First, we con-
sider the problem without regularization.

minimize L(X;UVT)
s.t. U ∈ Rp×r,V ∈ Rq×r,r ⩽ r̃

(7)

r× (p+q)
p×q

U
V Θ = UVT

It is clear that the algorithm reduces the computational cost
because this model has only  optimization paramet-
ers,  rather  than .  Moreover,  our  SFGD algorithm works
in  an  alternative  manner;  that  is,  we  optimize  the  factors 
and  of  the  parameter  matrix  rather than  produ-
cing SVD at each step.

L(X;Θ) ΘFrom the convexity of  with respect to , it is feas-
ible  to  use  the  gradient-descent  method.  Inspired  by  the
factored  form  of  our  problem,  we  introduce  the  factored
gradient descent  procedure,  which  is  a  data-driven  noncon-
vex method and a fundamental part of SFGD. The SFGD al-
gorithm first  solves  the  unconstrained  problem (7)  using  the
alternate updating rule

U′ = U−η∇UL(X;UVT)
V′ = V−η∇VL(X;UVT)

}
(8)

U V
r ⩾ 1

η = 1
β

which  is  closely  related  to  the  alternating  convex  search
(ACS)  method,  as  in  Refs.  [20,30].  The  main  difference
between our  SFGD is  that  and  overlap with  each other
with rank ,  rather than the unit-rank problem. We begin
the line search with a step size of , after which the adapt-
ive  step  size  is  repeatedly  decreased  by  a  shrinkage  factor 
until the objective decreases.

It  is  easy to  compute the gradients  of  the  objective in  (7).
According to the chain rule of the differentiable function, we
have

∇UL(X;UVT) = XT∇L(X;UVT)V,

∇VL(X;UVT) = ∇L(X;UVT)T XU.

∇L(X;UVT)
u v r×1

U V

Here, we do not need to explicitly form  to com-
pute  gradients.  Recall  that  and  are  the  column vec-
tors of rows of  and ; then, we have the following form of
gradients:

∇UL(X;UVT) =
1
T

T∑
t=1

(∑
j∈S t

exT
t Uv j xtvT

j

1+
∑

j∈S t
exT

t Uv j
− xtvT

jt

)
,

∇VL(X;UVT) =
1
T

T∑
t=1

(∑
j∈S t

exT
t Uv j e j xT

t

1+
∑

j∈S t
exT

t Uv j
− e jt xT

t

)
U,

which  clarifies  the  gradient  descent  direction.  See  Appendix
A for more details.

Θ

(m)
U(m)

||u(m)
i ||2 = 0 j xt xt j

i = 1, · · · , p u(m)
i

We now introduce the row-wise sparsity of . To solve this
problem, in the th step, we used the subgradient method to
screen  the  rows  of ,  which  aims  to  find  sparsity  when

.  The th  element  of  is  denoted  as .  For  any
, we use the subgradient method with respect to 

and let the subgradient be zero, which leads to

1
T

T∑
t=1

(∑
j∈S t

exT
t U(m)v j xt j v j

1+
∑

j∈S t
exT

t U(m)v j
− xt j v jt

)
+λ

u(m)
i

||u(m)
i ||2
= 0 (9)

si =
u(m)

i

||u(m)
i ||2

||u(m)
i ||2 , 0 si r

||si||2 < 1 ||u(m)
i ||2 = 0

Let  if . Further,  is an  vector satisfying
 if ; then, we have

si = −
1
λT

T∑
t=1

(∑
j∈S t

exT
t U(m)v j xt j v j

1+
∑

j∈S t
exT

t U(m)v j
− xt j v jt

)
(10)

We present the SFGD details as follows
(i) (m+1)

U(m)

 For  the th  repeat  in  gradient  descent,  we  screen
the row-wise sparsity before finally updating .

(ii) i = 1, · · · , p xt j j xt

si j U(m)

 For , denote  for the th element of , then
compute .  Update  the th  row  of  using  the  threshold
rule

u(m+1)
i =

1
||si||2 −1

(||si||2 −1
)
+
u(m)

i ,

(z)+ =max{0,z} z ∈ R
||si||2 −1 = 0 u(m+1)

i = u(m)
i

where  for  all . Without  loss  of  general-
ity, if , we let .

(iii) U(m) U(m)

U(m+1)

 After screening for all rows of , update  derive
 and then enter the next iteration or stop.

L(X;Θ)
−∇L(X;0) −∇L(X;0) = Ũdiag(σ̃1, · · · ,

σ̃min{p,q})ṼT Ũr Ṽr r Ũ
Ṽ r ⩽ r̃ E1

p×q (1,1)

Our  SFGD  method  can  be  initialized  using  the  technique
from Ref. [25], which only requires gradients of . By
the  SVD of ,  it  entails 

. We denote by  and  the first  columns of 
and , where  is one of the tuning parameters. Let  be
a  matrix  that  has  a  value  of  one  in  the  element
with other zeros. Then we initialize

U0 = ω−1/2diag
( √
σ̃1, · · · ,

√
σ̃r̃

)
Ũr,

V0 = ω−1/2diag
( √
σ̃1, · · · ,

√
σ̃r̃

)
Ṽr,

ω = ||∇L(X;0)− (∇L(X; E1)+λE1)||Fwhere . Besides, the ter-
mination of our algorithm is met when the decrease in the ob-
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τjective function value is smaller than the tolerance .
λ

β η

The  selection  of  the  tuning  parameter  was  based  on  the
information criterion which will be discussed later. Consider-
ing  the  overshooting  problem in  the  line  search  process,  the
step size shrinkage factor  adjusts  to ensure that the local
optimal  is  not  missed.  The details  of  SFGD are  presented in
Algorithm 3.1.

Algorithm 3.1 Sparse factored gradient descent (SFGD)
{(xt, jt,S t)}Tt=1

Θ p,q (λ,r)
β τ U← U0 V← V0 f ′ ←∞

Input Feature, item and assortment data ; dimen-
sions of : ,  tuning parameters ,  step size shrinkage
factor , and tolerance . , , .

1  repeat
η← 1, f ← f ′ ,∆U←−λU,∆V←−λV2　　 

t = 1, · · · ,T3　　  for  do
j ∈ S t4　　　　 for  do
w j ← exT

t Uv j ,W ←W +w j5　　　　　　 
6　　　　 end for

∆U← ∆U− 1
N

(
xtvT

jt
− 1

W
∑

j∈S t
w j xtvT

j

)
7　　　　 

∆V← ∆V− 1
N

(
e jt xT

t −
1
W

∑
j∈S t

w je j xT
t

)
U8　　　　 

9　　  end for
10　　repeat

U′ ← U+η∆U,V ′ ← V+η∆V11　　　　
f ′ ←L(X;U′V ′T)+λ||U′V ′T||2,112　　　　

η← βη13　　　　
f ′ ⩽ f14　　until 

i = 1, · · · , p15　　for  do

u′i =
1

||si||2 −1
(||si||2 −1

)
+
u′i si16　　　　  with  defined  in

                           (10)
17　　end for

U← U′
,V← V ′18　　

f − f ′

f ′
⩽ τ19 until 

Θ̂ = UVTOutput 
 

3.2    Local convergence of SFGD
Now, we provide the convergence performance of the SFGD
algorithm as follows: Appendix B provides the proof.

Θ = UVT Θ′ = U′V′T

M > 0 η ⩽
1

3M(σ1(UTU)+σ1(VTV))

Theorem 3.1. Let  and  denote the  in-
put  and  output  of  an  iteration  of  SFGD.  Then  there  exist  a

constant , if the step size ,
then

Q(X;Θ′) ⩽ Q(X;Θ)− 5
6
η||[∇L(X;Θ)]TU||2F (11)

Θ̃ = ŨṼT Q(X;Θ)
Q(X; Θ̃)

There  exists  an  optimum  such  that  con-
verges to .

η

Q(X;Θ)

The  theorem  states  that  the  step  size  adjusted  by  the
shrinkage  factor  is  always  below the  upper  bound.  Updating
by such a step size ensures that  decreases towards the
optimum value. 

3.3    The structure-aware dynamic assortment personaliz-
ation problem

In  the  scenario  of  the  dynamic  assortment  personalization

T
S t

(xt, jt,S t)
Θ

T
p,q

r C(T )
T C(T ) =Cr(p+q)log(T ) T
C(T )

A
C(T )

T

problem, we learn from the past until the time horizon , first
by affording random assortments  and recording the obser-
vations ,  which  is  the  exploration  procedure.  In  the
next  step,  we  implement  the  SFGD  algorithm  to  estimate 
using both low-rank and sparse structures. With an increase in

,  the in-sample prediction of  the assortment  can be derived
by maximizing expected revenue (1).  For the given ,  and
, there is a critical value as a function  that depends on
, such as  in Ref. [1]. When  meets

, the problem becomes exploitation, which is the out-of-
sample prediction of the assortment. We denote by  the col-
lection  of  observations,  and  slowly  varies  with  respect
to .  We then present  the  details  of  our  dynamic assortment
personalization problem in Algorithm 3.2.

Θ̂ Θ̂
xt

t

After the exploration step, it  yields the structure-aware es-
timate , and based on , we derive the conditional distribu-
tion  using  (4)  with  respect  to  the  new data .  Now,  we  can
see that our structure-aware dynamic assortment personaliza-
tion  approach  serves  every  incoming  individual  at  time 
rather than several types of customers, as in Ref. [1].

Algorithm 3.2 Structure-aware dynamic assortment personal-
ization
Input C(T), λ
A← ∅1 

T = 1,2, · · ·2  for  do
t← T3　　 

T ⩽C(T )4　　 if  then
5　　　　 Exploration:

S t {1, · · · ,q}
K

6　　　　  choose  uniformly at random form 
of                        size ,

(xt, jt,S t) A←A∪ (xt, jt,S t)7　　　　 observe  and ,

L(X;Θ) =
1
T

∑
(xt , jt ,S t )∈A

log
1+

∑
j∈S t

exT
t Θ j

I( jt=0) + I( jt,0)exT
t Θ jt
,8                 

Θ̂ ∈
{
Θ : argmax Q(X;Θ),s.t. rank(Θ) ≤ r̃

}
9　　　　 
10　　else
11　　　　Exploitation:

S t ∈
{
S : argmax

S⊆{1,...,q}

∑
j∈S r jPΘ̂( j|S )

}
12　　　　

13　　end if
14 end for

· · ·15 Output S1, , ST
 

4    Simulation studies

λ r

In this section, we describe the implementation of the simula-
tion to demonstrate the advantages of the proposed approach.
We use the generalized information criterion (GIC)[31] for high-
dimensional penalized likelihood settings to select the tuning
parameter  and rank  by minimizing

GICaT (λ,r) =
1
T
{L(X; Θ̂λ,r)+aT |αλ|},

αλ ⊂ {1, · · · , p} Θ̂
α0 Θ̂

λ0 αλ0 = α0 aT

T
aT aT =CT log(T ) CT

where  is  the row-wise support for estimate .
Denote by  the true row-wise support of . Then, there ex-
ists  a  such  that .  In  addition,  is a  positive  se-
quence that  depends only on .  We choose a modified BIC-
type  such that  with a diverging  sequence,

Shao et al.

5–5 DOI: 10.52396/JUSTC-2021-0214
JUSTC, 2022, 52(3): 5

https://doi.org/10.52396/JUSTC-2021-0214


CT =

clog(log(T + p+q)) c
λ r GICaT (λ,r)

as in Ref. [32]. In this study, we used this strategy by letting 
, where  is a positive constant. In the fol-

lowing analysis, we select  and  by minimizing . 

4.1    Estimation accuracy
Θ∗

p×q Θ0

Θ0 Θ0 = Udiag(σ1,σ2, · · · )VT r
Θ1 = Udiag(σ1, · · · ,σr,0, · · · ,0)VT

Θ2 = Θ1/sd(vec(Θ1))
S ⊆ {1, · · · , p} |S | = s

Θ2

Θ∗ X
N(0,Σ) Σ = (σi j)p×p

σi j = 0.5|i− j| S t, t = 1, · · · ,T
{1, · · · ,q} K = 10 jt

r = 2,3,5 r̃ = 2r,
s = 10, τ = 10−10,η = 0.05 c = 5

GICaT (λ,r)
r ⩽ r̃ (λ,r)

GICaT (λ,r)
r̃

λ

First,  we  generate  true  as  follows:  First,  we  generate  the
 matrix  from the elemental standard normal, take the

SVD  of  as ,  reserve  the  first 
singular values, and derive .
Then, .  Finally,  we  derive  row-wise
sparsity  by  randomly  choosing  and  as
the corresponding non-sparse rows of  with other row zer-
os, which yields .  Let customer data  be drawn from the
normal  distribution ,  where  with

,  assortments  be  uniformly  drawn
from  with subset size , and then derive  ac-
cording to the conditional distribution, as demonstrated in (4).
We considered different settings of true rank  with 

, and . To tune the parameter se-
lection,  we  minimize  for  every  fixed  value  of

,  and  then  we  finish  the  tuning  by  choosing  that
minimize  globally.  In  a  real-world  application,
GIC  will  in  turn  help  approximate  the  upper  bound  of  the
low-rank  constraint  because  when  the  rank  reaches  a  certain
value and after, the GIC value will hardly change with differ-
ent .

Θ

Θ
Θ Θ

min{p,q}

In  the  method  comparison,  we  considered  the  ordinary
factored  gradient  descent  (OFGD)  method,  which  solves
problem (7) using the alternative updating rule (8). OFGD re-
covers only the low-rank structure of . Moreover, we intro-
duce the maximum likelihood estimation (MLE) method with
the  structure-free ; that  is,  both  sparse  and  low-rank  struc-
tures  of  are  ignored,  and  the  rank  of  is  chosen  as

.
The error of estimation is measured by root mean squared

error (RMSE)

RMSE(Θ) =
1
√

pq
||Θ−Θ∗||F .

Er(XΘ)
To evaluate the utility error, as declared in Eq. (2), we in-

troduce , defined by

Er(XΘ) =
1
√

Tq
||Σ 1

2 (Θ−Θ∗)||F .

FPR =
FP

FP+TN
FNR =

FN
FN+TP

Θi

Θ∗i = 0 Θ̂i , 0 i FP
FN,TN,TP

k

η

Moreover,  we  choose  two  indicators:  the  false  positive

 and  false negative rate  to

evaluate  the  results  of sparsity recovery,  in  which  for ,  if
,  but ,  then  goes  into  the  counter  of ,  and

 are calculated by analogy. We also introduce the
number of iterations , which sums the total updating times of
the  alternate  updating  rule  (8)  in  the  SFGD  with  a  proper
choice of step size .

p > T
c = 5 λ

In Table 1, we compare the performance of OFGD, SFGD,
and MLE in 100 replications and report the results in a high-
dimensional  setting  with .  As  reported  in Table  1,
under the setting  in the tuning of , the structure-aware
SFGD method outperforms all the other methods in terms of
the error  of  both  estimation  and utility.  Moreover,  as  expec-

FPR FNR
p > T

r

Θ k

ted,  the  OFGD  method,  which  only  considers  the  low-rank
structure,  performs  better  than  the  structure-ignorant  MLE
method. The  SFGD  has  the  ability  in  sparsity  recovery  be-
cause  and  are well controlled. In a high-dimension-
al  setting  when ,  the  SFGD maintains  the  performance
of estimation accuracy as well as sparse recovery. For differ-
ent settings of true rank , we find that SFGD still enjoys the
lowest RMSE and has good control of the FNR, which indic-
ates the robustness of our methods for different structures of

.  The CPU time and number of  iterations  are also repor-
ted in Table 1, from which we determine the efficiency of our
sparse  reduced  rank  method  SFGD  in  both  low-and  high-
dimensional settings. 

4.2    Regret for low-rank and sparse structure

Θ

Next,  we  consider  the  dynamic  assortment  personalization
problem.  We  compared  the  average  regret[33] of  the  three
methods.  One  alternative  is  the  structure-ignorant  algorithm,
in  which  we  fit  a  single  MNL  model  by  MLE  to  the  entire
population  without  the  low-rank  and  sparse  structure  on .
We first define the average regret as follows:

(p,q,Θ∗)
π T

Definition 4.1. Given an instance , the average re-
gret of algorithm  at time  is

AveRegret(T ;π) = EπΘ∗
[ 1
T

T∑
t=1

rt

]
−Eπ

[ 1
T

T∑
t=1

rt

]
.

X Θ∗
In  the  simulation  of  the  average  regret,  the  feature  matrix
 and underlying  are generated based on the previous sim-

ulation of the estimation accuracy. We now construct the true
revenue for each product as follows:

(i) K q ri = 1  out of  items have revenue parameters .
(ii) (q−K)

[0.05,0.1]
 For  the  other  items, both  revenues  are  uni-

formly distributed in .

O
(
rmax(p,q)

log(T )
T

)For  comparison,  we  also  introduce  the  average  regret

 of  Ref.  [1]  as  a  baseline that  considers
customer types rather than feature data.

p,q
T

p
q

In Fig.1,  we report all  results for different settings of ,
and  after  100  replications.  From Fig.1,  we  can  see  that
SFGD has a lower average regret than both OFGD and MLE,
which means that both low-rank and sparse structures reduce
the  regret  level.  Moreover,  with  the  growth  of  types  and
items , the consideration of both low-rank and sparse struc-
tures is closer to the baseline.

T

T

We found  that  the  SFGD method  stabilized  at  a  mean  re-
gret  level  that  was  much  lower  than  that  of  the  OFGD  and
MLE  methods.  Before  reaching  the  minimum  regret  level,
with an increase in the time horizon , the average regret will
decrease for SFGD, whereas for OFGD and MLE, the regret
will not decrease with a larger . Furthermore, in all settings,
the  OFGD  method  that  only  uses  the  low-rank  structure
achieves  a  better  performance  than  the  structure-ignorant
MLE.  Therefore,  our  results  confirm  the  necessity  of  sparse
recovery and the effectiveness of our proposed algorithm for
the dynamic-assessment personalization problem.

p ⩾ T

Θ

The structure-aware method,  which contains low-rank and
sparsity  structures,  is  of  great  significance  when  handling
large-scale  customer  feature  data,  especially  in  high-dimen-
sional  scenarios . We  also  observe  the  effective  vari-
able  selection  capability  of  the  grouped lasso-type  shrinkage
method  on , which  is  computed  iteratively  using  our  pro-
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T
posed SFGD method.  Furthermore,  with  the  growth  of  hori-
zon , SFGD always enjoys the lowest average regret among
different algorithms. 

5    Application  to  advertising  behavior
data

This  section analyzes  the advertising behavior  data  collected

on  seven  consecutive  days,  which  contain  the  features  of
users,  available  at  Kaggle ①.  Target  advertising[5,34] is  a  key
problem in  advertising  computation.  Increasing  the  accuracy
of personal advertising is crucial for improving the effective-
ness of  precision marketing.  We will  analyze the advertising
behavior dataset, which contains both the information of users
and  advertisements.  The  advertising  dataset  has  10000

 

r, p,q,TTable 1. Results in methods OFGD, SFGD, and MLE with different  settings, 100 replications (standard deviations are shown in parentheses).

r Method RMSE XΘEr( ) %FPR %FNR CPU time k
p = 50,q = 25; T = 400

OFGD 2.1656(0.2698) 1.6229(0.3595) 100(0) 0(0) 13.63(0.22) 139(9)

SFGD 0.6438(0.0288) 0.2938(0.0181) 3.42(1.24) 0(0) 15.70(1.17) 123(11)

MLE 6.1391(0.4325) 4.7971(0.3621) 100(0) 0(0) 43.82(3.35) 471(8)

p = 100,q = 100; T = 200

OFGD 1.9767(0.1276) 2.8220(0.4002) 100(0) 0(0) 12.18(0.22) 161(12)

2 SFGD 0.4858(0.0736) 0.5721(0.0542) 1.98(0.46) 0(0) 14.31(1.45) 155(10)

MLE 10.4705(0.5249) 13.8533(0.6313) 100(0) 0(0) 76.82(5.25) 509(11)

p = 300,q = 100; T = 200

OFGD 1.8704(0.0902) 4.6054(0.3512) 100(0) 0(0) 20.35(4.13) 228(10)

SFGD 0.3866(0.0873) 0.8175(0.0463) 2.17(0.31) 1.35(0.47) 44.78(7.48) 222(12)

MLE 13.2192(0.6139) 16.8519(0.8791) 100(0) 0(0) 133.37(9.21) 716(10)

p = 50,q = 25; T = 400

OFGD 2.5649(0.2405) 2.4220(0.2886) 100(0) 0(0) 18.73(0.64) 141(8)

SFGD 0.4418(0.0640) 0.2427(0.0571) 2.50(0.58) 0(0) 18.08(2.12) 131(12)

MLE 6.1815(0.4265) 4.7051(0.3445) 100(0) 0(0) 48.55(3.68) 496(11)

p = 100,q = 100; T = 200

OFGD 2.3732(0.4183) 3.4952(0.7210) 100(0) 0(0) 13.75(0.14) 150(13)

3 SFGD 0.6663(0.0275) 0.6322(0.0393) 2.58(0.64) 0(0) 14.35(1.35) 143(10)

MLE 10.3445(0.4535) 13.4604(0.6637) 100(0) 0(0) 72.76(5.44) 515(11)

p = 300,q = 100; T = 200

OFGD 2.2845(0.6149) 5.3920(0.6399) 100(0) 0(0) 23.30(4.09) 225(11)

SFGD 0.6154(0.0964) 0.9119(0.0742) 2.05(0.29) 1.34(0.48) 41.92(6.22) 219(8)

MLE 13.6123(0.6734) 16.9354(0.7346) 100(0) 0(0) 136.75(9.61) 724(9)

p = 50,q = 25; T = 400

OFGD 2.7600(0.0411) 2.0115(0.0933) 100(0) 0(0) 19.41(0.65) 164(12)

SFGD 0.9718(0.0607) 0.6560(0.0709) 1.02(0.32) 0(0) 21.96(4.62) 157(11)

MLE 6.1952(0.5854) 4.7553(0.3933) 100(0) 0(0) 49.01(3.59) 503(13)

p = 100,q = 100; T = 200

OFGD 2.5851(0.0226) 3.3536(0.0705) 100(0) 0(0) 20.24(0.34) 169(7)

5 SFGD 0.8363(0.0293) 0.9026(0.0688) 1.31(0.50) 0(0) 22.59(2.65) 161(11)

MLE 10.4693(0.5535) 14.0481(0.7380) 100(0) 0(0) 73.83(3.87) 511(9)

p = 300,q = 100; T = 200

OFGD 2.9147(0.1480) 6.3237(0.4272) 100(0) 0(0) 21.42(4.85) 237(12)

SFGD 0.7256(0.0941) 0.9880(0.0612) 2.13(0.35) 1.33(0.41) 48.75(8.43) 227(10)

MLE 13.8753(0.6278) 17.9641(0.9625) 100(0) 0(0) 141.64(8.54) 741(11)
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30

p = 501 q = 113
jt ∈ {1, · · · ,q}

records  of  advertisers'  information  offered,  attributes  of  the
advertisements,  attributes  of  the  users,  and  advertisements
clicked by users.  We consider  features of  users  that  have
interaction  effects  with  the  click  behavior  such  as  user  age;
city  rank:  level  of  the  resident  city  of  a  user;  device  name:
phone model  used  by  a  user;  career;  gender;  net  type:  net-
work  status  when  a  behavior  occurs;  residence:  resident
province of a user; App storage size; release time; app rating
score; device  price;  active  time by  mobile  phone;  and  mem-
bership  lifecycle.  To  facilitate  the  computation  of  discrete
variables in Euclidean space,  we introduce one-hot  encoding
and finally obtain  features. There are  advert-
isers' types of ads clicked by users, denoted by .

T ∈ {200,700,1700,3000,5000,7000}
T

λ r

r > 5 r̃ = 5
T

3000

We begin by splitting our data into a training set of 70% re-
cords and a test  set  of  30% records.  We fit  and evaluate our
model  100  times  over  each  setting  of  the  training  set  sizes

 using  the  following
steps.  First,  we  randomly  selected  users  from  the  training
pool  and  selected  the  tuning  parameters  and  using  our
GIC method. Noting that the value of the GIC function rarely
changes  when ,  we  set .  We  then  fit  the  model  to
this training set  of  size .  Finally,  we tested its  performance
on a fully held-out test set with a size of .

Θ
r1 =

r2 = · · · = rq

K = 10

According to  the  structure-aware dynamic assortment  per-
sonalization  procedure  in  Algorithm  3.2,  in  the  exploration
stage, we fit the model and provide a sparse reduced-rank rep-
resentation of .  Without additional knowledge, we treat the
rewards  of  all  the  items(ads)  equally  by  letting 

.  Then,  in the exploitation stage,  we assign a size
of  to every user in the test set by maximizing the ex-
pected  revenue.  To  evaluate  our  model,  we  use  precision,

jt S t

which is the percentage of users' click behavior of advertisers'
types  successfully covered by the predicted assortment .
We benchmark our SFGD method with OFGD and MLE as in
the simulations; the results are shown in Fig.2.

83.1% 87.7%
200 7000

83.1%
T = 200,

p = 501

From Fig.2,  we  observe  that  the  precision  of  assortment
personalization  by  SFGD increases  from  to  as
the  size  of  the  training  set  increases  from  to .  It  is
worth  mentioning  that  our  SFGD  approach  reaches 
precision  under  a  high-dimensional  scenario  when 

,  in  which  features  such  as  age,  city  rank,  career,
device price, and consumer purchase are selected in a block-
wise  manner.  Moreover,  the  advantages  of  the  structure-
aware  SFGD  method  will  become  increasingly  evident  with
increasing sample size. The performance differential seems to
grow  larger  when  comparing  SFGD  with  sparsity-ignorant
OFGD and structure-ignorant MLE. 

6    Discussion
This  study  focused  on  the  assortment  personalization

 

log

log

log

log

T
C = 0.12

Fig. 1. Comparison of average regret between our proposed methods OFGD, SFGD, and MLE. The time horizon  ranges from 1000 to 20000. The con-
stant of the baseline is chosen as .

 

Fig. 2. Model performance by dataset size.
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problem  using  a  data-driven  conditional  multinomial  logit
choice  model,  in  which  the  sparse  and  low-rank  settings  of
the  parameter  matrix  are  considered.  Then,  we  present  the
SFGD method  for  our  penalized  maximum  likelihood  prob-
lem (i.e., a negative likelihood loss function plus certain pen-
alties),  leading  to  computational  efficiency.  Moreover,  we
prove that the SFGD exhibits the local convergence property,
and the  simulations  show  that  SFGD  achieves  good  estima-
tion  accuracy  and  feature  selection  ability  with  massive  and
high-dimensional data.  A  real-world  application  of  advert-
ising behavior data is presented, in which we demonstrate the
excellent performance of our assortment personalization pro-
cedure.

One  interesting  direction  for  future  research  is  the  non-
asymptotic analysis of the multinomial logit penalized likeli-
hood in  a  high-dimensional  setting,  which  statistically  de-
scribes the estimation accuracy. Another research direction is
to  extend  the  SFGD  method  to  a  co-sparse  framework  that
considers both the row-wise and column-wise sparsity of the
parameter matrix. 
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Appendix A    Details  on  sparse  factored
gradient descent

el l l
et ∈ RT,e j ∈ Rq

First, we let  be the th unit vector with the th element 1 and
other zeros, and . Then we rewrite the loss

L(X;Θ) =
1
T

T∑
t=1

(
log

(
1+

∑
j∈S t

eeT
t XΘe j

)
− eT

t XΘe jt

)
(A1)

Θand this leads to the gradient and Hessian with respect to  as

∇L(X;Θ) =
1
T

T∑
t=1

XT
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eeT

t XΘe j eteT
j
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t XΘe j
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jt
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t Θe j xteT

j

1+
∑

j∈S t
exT

t Θe j
− xteT

jt

)
,

∇2L(X;Θ)=
1
T
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exT
t Θe j (xteT

j )
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)
(A2)

Z⊗2 = Z⊗ Z
∇L(X;Θ),∇2L(X;Θ) p×q

pq× pq

where  is  the  symmetric  linear  operator  on
matrices,  and  are  of  sizes  and

. Because we have the chain rule as

∇UL(X;UVT) = ∇UVTL(X;UVT)V，
∇VL(X;UVT) = ∇UVTL(X;UVT)TU，

then use the result above, we obtain

∇UL(X;UVT) =
1
T
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1
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U (A4)

which  clarifies  the  gradient  descent  direction  in  Algorithm
3.1. 

Appendix B    Proof of Theorem 3.1

X Q(Θ)

L(Θ) Q(X;Θ) L(X;Θ)

U V U V
U

V V

    Proof. For  simplicity,when  is  fixed,  we  use  and
 instead  of  and , respectively.  Accord-

ing to the overlap of  and , one of  and  updates with
the other fixed. We now divide the problem into -step and

-step, and start from the -step.
V ΘV = UV′T V

V
The -step. We let . In the  step, by the chain

rule, the updating of  satisfies

V′ = V−η∇VQ(Θ) = V−η[∇L(Θ)]TU.

ΘV = UV′T = U[V−ηU∇VL(Θ)]T = Θ−ηUUT∇L(Θ)

L(Θ)

Then .
From the smoothness of , we have

L(ΘV) ⩽L(Θ)+
⟨∇L(Θ),ΘV −Θ⟩+ M1

2
||ΘV −Θ||2F =

L(Θ)+Tr(∇L(Θ)(ΘV −Θ)T)+
M1

2
Tr((ΘV −Θ)T(ΘV −Θ)),

M1 > 0where  denotes a constant. By the property of a trace, it
entails the following:

Tr(∇L(Θ)(ΘV −Θ)T) =−ηTr(∇L(Θ)[∇L(Θ)]TUUT) =
−ηTr([∇L(Θ)]TUUT∇L(Θ)) =
−η||[∇L(Θ)]TU||2F .

Furthermore,  by  the  Von  Neumann's  trace  inequality[35],  we
have

Tr((ΘV −Θ)T(ΘV −Θ)) =η2Tr([∇L(Θ)]TUUTUUT∇L(Θ)) ⩽
η2||[∇L(Θ)]TU||2F ·σ1(UTU).

η ⩽
1

3M1(σ1(UTU)+σ1(VTV))
<

1
3M1σ1(UTU)

If  the  step  size  satisfies 

, then we derive

L(ΘV)⩽L(Θ)−η||[∇L(Θ)]TU||2F+
M1η

2

2
||[∇L(Θ)]TU||2Fσ1(UTU)⩽

L(Θ)−η||[∇L(Θ)]TU||2F +
η

6
||[∇L(Θ)]TU||2F ⩽

L(Θ)− 5
6
η||[∇L(Θ)]TU||2F

(B1)

U ΘU = U′VTThe -step. Let .  According  to  the  updating
rule, we have

U′ = U−η∇UQ(Θ) = U−η∇Q(Θ)VVT.

∇Q(Θ)

Q(Θ)

M2 > 0 η ⩽
1

3M2(σ1(UTU)+σ1(VTV))
<

1
3M2σ1(VTV)

Here  we  don't  need  the  explicit  expression  of ,  and
from  the  smoothness  of  function ,  there  is  a  constant

; if ,  then

we derive
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Q(ΘU) ⩽Q(Θ)+
⟨∇Q(Θ),ΘU −Θ⟩+ M2

2
||ΘU −Θ||2F =

Q(Θ)−ηTr(∇Q(Θ)VVT[∇Q(Θ)]T)+
M2η

2

2
Tr(VVT[∇Q(Θ)]T∇Q(Θ)VVT) ⩽

Q(Θ)−η||∇Q(Θ)V||2F +
M2η

2

2
||∇Q(Θ)V||2Fσ1(VTV) ⩽

Q(Θ)− 5
6
η||∇Q(Θ)V||2F

(B2)

where the second inequality is Von Neumann's.

M=max{M1,M2} η⩽
1

3M(σ1(UTU)+σ1(VTV))
Θ′ = U′V′T

V′

Let ; then, when 

is satisfied, (B1) and (B2) hold simultaneously. In ,
from the results above, we can treat  as the fixed part first;
by (B2), it yields

Q(Θ′) ⩽ Q(ΘV)− 5
6
η||∇Q(ΘV)V||2F .

U V
∇Q(Θ) = ∇L(Θ)
Q(ΘV) ⩽ Q(Θ)− 5

6
η||[∇L(Θ)]TU||2F

Next,  is  fixed  and  it  enters  the -step.  In  addition,
 holds  in  this  step;  thus,  by  (B1),  we  have

, then

Q(Θ′) ⩽Q(Θ)− 5
6
η||[∇L(Θ)]TU||2F −

5
6
η||∇Q(ΘV)V||2F ⩽

Q(Θ)− 5
6
η||[∇L(Θ)]TU||2F .

L(Θ)Because  is constructed by negative likelihood, it entails

Q(Θ) ≥ L(Θ) = − 1
T

T∑
t=1

log(PΘ(J = jt |I = xt;S t)) ⩾ −1,

PΘ(J = jt |I = xt;S t)
Q(Θ)

Q(Θ)
Θ̃ Q(Θ) Q(Θ̃)

where  denotes  the conditional  probability
defined in Eq. (4).  has a lower bound, and the value of

 descents  iteratively  through  SFGD,  which  shows  that
there is a local optimum  such that  converges to 
through simple analysis.

 

Shao et al.

5–11 DOI: 10.52396/JUSTC-2021-0214
JUSTC, 2022, 52(3): 5

https://doi.org/10.52396/JUSTC-2021-0214

	1 Introduction
	2 Model specification
	2.1 Data-driven conditionally multinomial logit choice model
	2.2 Penalized maximum likelihood approach

	3 Algorithm
	3.1 Sparse factored gradient descent method
	3.2 Local convergence of SFGD
	3.3 The structure-aware dynamic assortment personalization problem

	4 Simulation studies
	4.1 Estimation accuracy
	4.2 Regret for low-rank and sparse structure

	5 Application to advertising behavior data
	6 Discussion
	Acknowledgements
	Conflict of interest
	Appendix A Details on sparse factored gradient descent
	Appendix B Proof of Theorem 3.1

