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Public summary

m If the minimal degree condition is satisfied, then by perturbing the digraph with a random 1-regular graph, the resulting
digraph is a.a.s. pancyclic.

m Moreover, we give a polynomial algorithm to find cycles of all possible lengths in such perturbed digraph.
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Abstract: Dirac’s theorem states that if a graph G on n vertices has a minimum degree of at least E, then G contains a
Hamiltonian cycle. Bohman et al. introduced the random perturbed graph model and proved that for any constant & > 0 and

. - . . c
a graph H with a minimum degree of at least an, there exists a constant C depending on a such that for any p > —, HUG,,
n

is asymptotically almost surely (a.a.s.) Hamiltonian. In this study, the random perturbed digraph model is considered, and
1

logn\* . , . . .
we show that for all @ = w((ﬂ) ] and d € {1,2}, the union of a digraph on n vertices with a minimum degree of at least
n

an and a random d-regular digraph on n vertices is a.a.s. pancyclic. Moreover, a polynomial-time algorithm is proposed to

find cycles of any length in such a digraph.
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1 Introduction

In graph theory, Dirac’s famous theorem!" states that if a

graph G on n vertices has a minimum degree of at least g,
then G contains a Hamiltonian cycle. Moreover, if G is not a
completely balanced bipartite graph K, ,, then the result can
be strengthened such that G is pancyclic; i.e., G contains
cycles of all lengths from 3 to ».

The study of random structures is a thriving field in the
graph theory. This implies that we can generate a graph ac-
cording to a certain distribution, and the probability that the
graph satisfies some property is considered. A well-known
model is the Erdés-Rényi random graph G, ,, which is a
graph of n vertices whose edges appear individually inde-
pendent with probability p. It was shown in Ref. [2] that if p >

lo
A +s)%, then G,, is asymptotically almost surely (a.a.s.)

Hamiltonian.

In 2003, Bohman et al.’! introduced an random perturbed
graph model. This is a combination of extremal problems and
the study of random structures. In this model, we consider a
graph H, whose minimum degree is bounded by 6(H) > an,
and a random graph G according to a certain distribution. The
goal is to determine whether HUG a.a.s satisfies certain
properties. Bohman et all! examined the problem of
Hamiltonicity and proved that for any constant @ >0 and a
graph H with §(H) > an, there exists a constant C depending

C . I
on a such that for any p> —, HUG,, is a.a.s. Hamiltonian.
n

Krivelevich et al."! generalized Hamiltonicity to pancyclicity,
and Hahn-Klimroth et al.’’ showed that the constant o can be
a function that tends to 0, where » tends to infinity. Hamilton-
icity has also been studied in randomly perturbed digraphs®™ *,
hypergraphs™*"*, and subgraphs of the hypercube®. Many
other properties of this model have also been studied. For
example, the existence of powers of Hamiltonian cycles'" ',
F-factor!>", and general bounded degree spanning graphs!'.
In all these cases, the results significantly improved the
bounds provided by the traditional random graph model. Re-
cently, Espuny Diaz and Girao"" considered Hamiltonicity in
graphs perturbed by a random regular graph.

In this study, we consider a randomly perturbed digraph
model, i.e., the Hamiltonicity and pancyclicity of HuD,
where H is a digraph on n vertices with §(H) > an, and D is a
random d-regular digraph for some d € N. Cooper et al.'"!
proved that for all d >3, the random d-regular digraph is
a.a.s. Hamiltonian. Hence, we only consider the case when
d € {1,2}. Furthermore, the main result is as follows:

logn

;
Theorem 1.1. Let o = w{( ) } and d € {1,2} and let H
be a graph of n vertices with §(H) > an. Then, a.a.s. HUD is
pancyclic, where D is a random d-regular digraph on n
vertices.

The remainder of this paper is organized as follows. In Sec-
tion 2, some notation and lemmas are presented. Proof of
Theorem 1.1 is presented in Section 3. Finally, in Section 4,
we present an open problem.
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2 Preliminaries

2.1 Notation

For m,ne N, we denote [m,n]:={m,m+1,---,n} and [n] =
[1,n]. For the asymptotic notations, we use the standard O
notation and assume that the functions are nonnegative.

Throughout this paper, the term digraph denotes to a
simple directed graph. For any digraph D of n vertices, we
implicitly assume that V(D) = [n].

Given a digraph D = (V,E) and any vertex ve V, we let
N;(v):={weV|(v,w) € E} be the out-neighbor set of v, and
N,(v):={w eV |(w,v) € E} be the in-neighbor set of v. Addi-
tionally, we denote its out-degree in D by d;,(v) := |N;(v)| and
its in-degree by d,(v) := |[N,;(v)|. The maximum out-degree of
D is defined as A"(D):=max,,d;(v) and maximum in-
degree of D is defined as A" (D) := max,., d;,(v). Similarly, we
can define the minimum out-degree §*(D) and minimum in-
degree 6 (D). The maximum degree of D is A(D)=
max{A*(D),A (D)}, and similarly, we can define the minim-
um degree of a digraph D by 6(D) = min{d*(D),6 (D)}. We
can state that digraph D is d-regular if A(D) = 6(D) =d.

Given a digraph D = (V,E) and vertex subset V- C V, let
E(V*)={(x,y) € E|x,y € V'}. The induced subgraph of V" is
defined as D[V*] = (V*,E(V*)). We write D\ V"= D[V \ V*].
Given another digraph p, DUD = (V(D)UV(D’), E(D)U
E(D)) and D' c D if V(D')c V(D) and E(D') C E(D'). Let
E'Cc VXV be a set of edges, and let D\ E'=(V,E\ E’) and
DUE = (V,EUE)).

A directed path P=v,v,---v, is the digraph P=({v;|i¢€
[, {(vi,vis) | i € [€—1]}), where all vertices {v;|i€ [£]} are
distinct. Furthermore, degenerated cases can exist in which P
is an isolated vertex. We can state that P c D is the maximal
directed path if N,(v,),N;(v)) Cc V(P). A directed cycle
C=vv,---vv, is the digraph C=({v,|ie[{]},{(v,vi)|i€
[€— 11} U{(v,,v1)}), where all vertices {v; | i € [£]} are distinct.

2.2 Configuration model

The configuration model is the most useful tool to examine
random regular graphs or digraphs, and it was introduced by
Bollobas!"".The configuration model provides a process that
uniformly generates a random regular graph. We used the
model to generate a random 1-regular digraph. The process is
as follows. For any i € [n], we consider a set of two vertices,
x; and y;. Then, we select a uniformly random perfect match-
ing M covering set {x; | i € [n]} U{y; | i € [n]} using only (undir-
ected) edges of the form x,y; for some i, j € [n]. Now, we gen-
erate a l-regular digraph D = (V,E), where, for each edge
x;y; € M, a directed edge (i, j) is added to E.

Whenever we produce a random 1-regular digraph D fol-
lowing the process above, we use C,, to denote the distribu-
tion of D, and C;, to denote the distribution of the correspond-
ing perfect matching M. We state that perfect matching M that
generates D is a configuration. We observe that for any 1-
regular digraph D, exactly one configuration M exists that
generates D.

Suppose we have two configurations M, and M,. We state
M, ~ M, if there exist two edges x;y; and x,y, in M, such that

2-2

M, =M \{xy,xy})U{xy,xy;). The following lemma
bounds the probability that certain variable in the configura-
tions deviate from their expectation.

Lemma 2.1. Let ¢ >0 and let X be a random variable on
C., such that for every pair of configurations M, ~ M,, we al-
ways have |X(M,) — X(M,)| < c. Then, for all # € N, we have

2
P(X - E(X)| >z)<2exp{—4’ }
n

Proof. It should be noted that if we ignore the orientation,
the graph generated by configuration M € C;, is a 2-regular
undirected graph. Diaz and Girao!* > proved that

2
PIX-EX)|=0< 26Xp{—4t - },
nc?

under the same conditions provided in this lemma. The proof
is complete, and this lemma can be considered as a directed
version of Lemma 2.1 in Ref. [14].

When we sample a random 1-regular digraph following the
process above, we observed that the obtained digraph con-
tains loops. However, by conditioning the event that D is a 1-
regular digraph without a loop, this type of a graph is a uni-
formly random 1-regular simple digraph. The configuration
of a loopless 1-regular simple digraph can be viewed as a de-
rangement of [n]. Therefore, by considering the derangement
problem, we have

Lemma 2.2. Let D be a random 1-regular digraph of n ver-
tices generated by the process above. If n > 3, then P(D con-

tains no loops ) > = > 0.

Proof. There are n! potential configurations for generating
a l-regular graph on n vertices. A configuration can be
viewed as a permutation ¢ on [n], i.e., xy; € M & o(i) = j. In
this manner, D contains no loop, indicating that ¢ isa de-
(=1
!

rangement of [n]. Hence, we have n!Z

i=0

—— possible
l
choices for . Therefore, the probability

1
->0.

n -1 i
P(D contains no loop) = Z ¥ > 3
i!
i=0

2.3 Properties of random 1-regular digraph

Let D be a 1-regular digraph of n vertices. Thus, the underly-
ing graph G of D is 2-regular. It should be noted that the
strongly connected component of D is a directed cycle, which
is also a component of G. Diaz and Girdo showed that G has a
maximum of log’n components'* "™ '@ Thus, we have the
following property for D.

Lemma 2.3. Let D be a random 1-regular digraph on » ver-
tices generated according to the distribution C, , then a.a.s. D
has at most log” n strongly connected components.

The next property is a key lemma of the edge distribution,
which is frequently used during the proof. We use it to con-
nect different components of the digraph. Furthermore, it is a
directed version of Lemma 3.3 in Ref. [14], and their proofs
are analogous. We provide a proof for completeness.

Lemma 2.4. Let € >0 and k = k(n) < n’. For each i € [k],
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let @; = @;(n) and B; = B;(n) such that @8, = w(( )%), and
let U,,V; C [n] be two arbitrary sets of vertices with |U}| > a;n
and |V}| > Bin. Let D be a random 1-regular digraph on n ver-
tices generated according to the distribution C,,. Then, for
every i € [k], U, contains at least (1 —e€)a,8:n vertices v such
that N;(v)N'V, # 0.

Proof. Let P be the probability that the statement holds for
D. First, we set i €[k]. Let Z={ve U,|N;(v)NV,# 0}, and
X =1Z|. Using the configuration model, for each sufficiently
large v € U, and n, we have

[Vil-1
n—1

PhveEZ) > 2(1—%)/3,,

Hence, E(X) > (1 - E)aq-,&n.

We know that X can also be viewed as a random variable in
C; . Given any pair of configurations M, ~ M,, they differ in
two edges at four vertices; thus, |X(M,)—X(M,)|<4.
Hence, from Lemma 2.1, we have P(X <(l-e¢€)aBn)<
exp{—~Q(a2Bin)).

Finally, by the union bound, we have

P> 1= expl-2a;Bm)} = 1-o(1).

i€[k]

3 Proof of Theorem 1.1

It has been known that every d-regular digraph can be decom-
posed into the union of 1-regular digraphs'”. Therefore, to
prove Theorem 1.1, we should only consider the case where
d=1
We always assume that n is sufficiently large throughout
1 1
ogn)A) and H is a digraph of n
n
vertices with §(H) > an. Let D bea random 1-regular di-
graph with vertex set V(D) = V(H) = [n] generated according
to the distribution C,,. For a positive number f, by applying

the proof. Recall that @ = w((

1
Lemma 2.4 to the pair of sets X,Y € V(H) with €= 5 and

|X1,1Y| > Bn, we have the following claim:
Claim. For any X,Y € V(H) (not necessarily distinct) with
2

. n .
|X],1Y] > Bn, X contains at least - vertices z such that

Ni()NY #0.

We used the absorbing method to construct cycles of all
lengths. First we select an arbitrary vertex subset U C V(H)
with |U| sufficiently small when compared to n. Then, we
construct a path P to ‘absorb’ vertices in U. Next, we show
that there exists an almost spanning cycle C with P c C such
that C avoids U. Finally, we use C and U to determine cycles
of all lengths.

For each pair of vertex subsets (X,Y) (not necessarily dis-
tinct), we consider set Z(X,Y) :={(z,w) € E(D)|ze X,we Y}.
This is the set of all “available’ edges for (X,Y). Based on
Claim 1, for all pairs of vertex subsets (X, Y) with |X|,|Y| > Bn
for some 8 > 0, we have

2
Z(X,Y)| > ,B_n

. (M)

2-3

As we consider available edges from D, the digraph
Zyy = (V(H),Z(X,Y)) has a maximum degree of 1 as follows:

AZyy) =1 (2)

a’n

Consider an arbitrary set U C V(H) of size m = 10000 and

label it as U = {u,,--- ,u,,}. This is the set of vertices we want
to “absorb’. For each j e [m], we iteratively choose an edge
e;=(z2,,2)) € Z(N,(u)),N;;(u))), such that {z,,z;}N(UU{z,z] |
te[j—11}) = 0. Hence, we consider m vertex-disjoint edges
in D such that they all avoid the vertex set U. We note that
6(H) > an. Thus, the existence of such m edges is guaranteed
by (1) and (2). Let W={z,z |t€[m]}. We now choose
B=a/5. For each pair of vertex subsets (X,Y) with
IX1,1Y| > Bn, we update the set of available edges by letting

Z'(X,Y):={(z,w) € E(D) | ze X\(UUW),w e Y\ (UUW)}.

By (1) and (2), we can estimate the number of available
edges:

2 2 2
21> 3 s B 3)
2 5
Now, for each je[m—1], we iteratively choose

ei = (w;,w:) € Z'(N;(z;), N;(z;.1)) such that these edges are
vertex disjoint. Similarly, (3) and (2) guarantee the existence
of such edges. Therefore, we obtain a directed path p=
LLWIW 22, W Wi ZaZ,, 10 HU D, which is used to absorb
set U.

Let W' = V(P)\{z,,z.} and D, = (D\ (W' UU))UP, i.e., D,
is the union of the graph D\ (W’ U U) and path P. Thus, D, is
a subgraph of HuUD with A(D,) < 1. From Lemma 2.3, D,
contains at most log’n directed cycles. Given that we re-

2

2000

tex producezs at most one directed path, D, contains at most
an

(1+o(1))20OO
H to combine these directed cycles and paths into a directed
cycle C in (HUD)\U of length n—m with PcC. Let
V=V(H)\U. For each X, Y cV with |X|, |Y| > fBn, we up-
dated the set of available edges by setting

Zy(X,Y):={(z,w) e E(D) | ze X\ (V(P)UU),we Y\ (V(P)UU)}.

moved at most (1 +0(1))

vertices from D and every ver-

directed paths. We iteratively use the edges of

Using (1) and (2), we can estimate the number of available
edges.

pon
2

2B°n
5

In the iteration process, for any i € N, we assume that we
have already defined D, , in the ith step. The ith step adjusts
the graph by letting D, = (D, \ E,)UE,, where E, and E, are
sets of edges of HuU D with the property that A(D,) <1 for
every step i € N. Subsequently, we update the available edges
by setting Z(X,Y) :=Z._,(X,Y)\ E,. We assume the following
in each step for each X,Y c V with |X|,|Y| > Bn.

Bn
1Z(X,Y)| > T

|Z,(X, V)| > -5Sm>

“4)

(%)
We prove this later by showing that the number of steps
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performed and number of removed edges are small at each
step.

For the ith step, we have graph D, ,, and we consider the
following possible cases: We refer to the component iso-
morphic to a directed path (resp. a direct cycle) as a path
component (resp. a cycle component).

Case 1. At least two path components exist in D, ;. We se-
lect one of them, such as P =wv,---v,, and any edge
(u,v) € Zi (N, (v),Ny(v)). We  wet D =(D., \{(u,n)hu
{(u,v),v,,v)}. If (u,v)€ E(P’), then recall that p =
v, ---uv---v,. Therefore, P’ is decomposed into two directed
cycles v, ---uv, and v---v,v after the operation. If (u,v) be-
longs to another directed path component P~ or a directed
cycle component C’, then P’ and P~ (or C’) are combined into
a single directed path (or a longer directed cycle) in D;. The
operation deduces the number of path components by 1. The
operations of Case 1 stop after we obtain D, with exactly one
path component.

Case 2. There is exactly one path component in D, ,, i.e.,
P’ =vv,---v,. We adjust the graph to extend P’ into a longer
path while reducing the number of components if possible;
otherwise, we construct a graph that is a union of vertex-
disjoint cycles. We consider the following cases.

Subcase 2.1 (v,,v,) € E(H). Set D, =D, U{(v,,v,)}. This
operation converts the path component P’ into a directed
cycle.

Subcase 2.2 There exists a certain v € N;(v,) \ (U U V(P)U
V(P')). Then, we choose vertex v €N, (v) and let D;=
(D \{(v,v)))U{(v,v))}. This operation extends P’ into a
longer directed path in D, (P’ and the cycle containing (v,V) is
adjusted to a longer directed path) and reduces the number of
components by one. We can do similar operation if there
exists some v € N;(v,) \ (UUV(P)UV(P)).

Subcase 2.3. (N,(v\)UN; )\ (UUV(P))CV(P). We
first introduce some notations used here. For v, € V(P'), let
vi=v, forie[f—1]and v; =v,_, for i€ [2,{]. With respect to
UcVv(P), let Ur={v'|veU} and U ={v |ve U}. Given
two vertex subsets U,V Cc V(P), let U* ={i€[{]|v, € U} and
V- ={ie[f]|v,eV}. We can state that U<V if maxU* <
minV*. It should be noted that &(H)>58n and
|UUV(P)| < 5m < Sn. We can partition N, (v,)NV(P') into U,
and U, such that U, < U, with |U,| > 3Bn and |U,| > Bn. Simil-
arly, we can partition N;,(v,) N V(P’") into W, and W, such that
W, < W, with |W,| > Bn and |W,| > 38n.

If W, < U,, then |W/|,|U;| > Bn. Based on (5), there is an
edge (w,,uy))eZ_ (W;,U;). We wet D, = (D, \{(w;,w),
(up, u))) U{(wy, 1), (up,v)), (v;,w))}. This operation converts
P’ into a directed cycle.

Otherwise, we have max U; < minU; < max W; < min W},
ie., U <W, Let U, be the last Bn vertices of U, i.e.,
(UN\U,) <Uy, Clearly, |[U\Upyl228n. Let U,={ve
U\U,|N;(v)NnU;, #0}; It is claimed that |U,,| > Bn. If this
is not true, then U, \ (U,UU,))| > Bn. Given that |U;,| = Bn,

2
Claim 1 guarantees that at least BTH edges are available from

U \(U,uU,) to U;, However, this contradicts the defini-
tion of U,,. Thus, |U, | > Bn. Similarly, let W,, be the first Bn
vertices of W,, and let Wy, ={veW,\ W, | N,(v)n'W,, # 0}.

2-4

Hence, we can state |W,,| > Bn. Based on (5), there exists an
edge (wy,,u;)€Z_(W;,U;). Additionally, by definition,
u, € Uy, and w, € W, exist such that (u,,,u;,), (W;,,wy) €
E(D). Set

Ea = {(W;17W21)7 (W;p W22)7 (u]l7u]+1)7 (ullau;rz)h

E, = {(W;pun)’(umvl), Ve, way), (g, urz)s (W;17W22)}

and D, = (D, \ E,)UE,. This operation turns the path com-
ponent P’ into a directed cycle.

Case 3. All the components of D, , are directed cycles. If
D, is a single directed cycle, then our proof is completed.
Now, we assume that D, , contains at least two components.
In this iteration process, we reduce the number of compon-
ents by one while creating a path. Let C’ be the longest direc-
ted cycle in D,_,.

If [V(C)|2n-an or |V(C)| <an, then the other cycle
components exhibit lengths that are less than an. Given that
O6(H) > an, there must be an edge ¢’ = (u,v) € E(H) joining C’
and some other cycle component C” in both cases. Now as-
sume an < |V(C)|<n—an. Based on (5), there exists an
available edge ¢ = (u,v) € Z(V(C'),[n]\ V(C)), i.e., € joins
C’ and some other cycle component C”. Suppose that
(u, )€ E(C"), and (v,v)€ E(C’). Set D;=(D._, \{(u,w),
',v)})) U{(u,v)}. This operation converts C’ and C” into a dir-
ected path and reduces the number of components by one.

First, we claim that the aforementioned process stops after
finite steps. The operations in Case 1 are iterated #— 1 times,
a‘n
2000
D,. This is due to the fact that after the process of Case 1, the
number of path components of D, will never be more than one
again. Next, if we perform the operation of Subcases 2.1 or
2.3, the next process must be Case 3, and each iteration of
Case 3 decrease the number of components by one; other-
wise, Subcase 2.2 is performed, and the number of compon-
ents will also be reduced by one. Therefore, after finite itera-

where 1 < (1+o0(1))

is the number of path components in

tions (at most 4(¢— 1) +2log’n), we obtain a graph D, with
only one cycle component C. Given that we do not destroy
path P in each iteration, we have P C C. Thus, the total num-

2
ber of iterations is at most N < 5t+2log’n < (1 +o(1))%,

and in each iteration, we remove at most 4 edges such that at
2 2

most (1+o0(1)) ?0’(; =(1 +o(1))€Tn edges are removed, which

implies (5).

Remark 3.1. Specifically, for any subset U’ of size at most
m, we can use the above process to construct an almost
Hamiltonian cycle in # U D which misses U’

We now use the directed cycle C constructed above to con-
struct directed cycles C, of all possible lengths k € [3,n]. It
should be noted that C has a length of n—m. We consider the
following cases.

Case 1. n—m<k<n. We use P C C to absorb some ver-
tices of U to obtain a directed cycle of the desired length. We
choose an arbitrary subset I C [m] with |I[|=k+m—n. For
each i € I, replace the edge (z,,z;) with the directed path z,u,z],
and the resulting directed cycle has length k as desired.
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Case 2. 3<k<n-m. Fix a vertex u. It should be noted
that §(H) > an, and there must be an available edge (v,w) €
Z(N;,(u),N;,()). Thus, uvwu is a directed cycle of length 3 in
HuUD. Now, we assume that 4 <k<n-—m. We choose

2
U CN,u) and U*C Nj(u) with [U|=|U"| = % = 430'(1)0.
From Lemma 2.4, an available edge (v,w) € Z(U*,U") must
exist. Let W ={veV|N,(v)NU =0} and W ={peV|
N,(v)NnU" =0}. From Lemma 2.4, the size of W~ and W*

must be o(n). Therefore, we assume that |W~|, |W*| < % Let

U ={ufuU - VU UW-UW*. Then, |U’| < m. As stated in Re-
mark A, we can construct a directed cycle C’ of length n—m
in HU D, missing U’. Therefore, we can select a directed path
P =y,y,---y,.; of length k—4. According to the definitions of
W- and W*, aeU- and beU* must exist such that
Vi3, @), (b,y,) € E(H). Thus, P’ Uy,_sauby, is a directed cycle
of desired length.

This completes the proof of Theorem 1.1.

Remark 3.2. As this proof is constructive, by retracing the
proof, one can find cycles of any given length in HUD in
gradual steps. Given that each step can be performed in poly-
nomial time (at most O(n*) times) and there are O(an) steps at
most, the proof provides a polynomial-time algorithm.

4 Concluding remarks and discussions

In this study, we show that for a given digraph H on n ver-
tices with a minimum degree of at least an (where

1
logn\* . .
a=w||——] |[), we can a.a.s. obtain a pancyclic digraph by
n

perturbing it with a random d-regular digraph when d =1 or
2. However, there is no evidence that the lower bound of the
minimum degree of H is tight, and we believe that the bound
is far from optimal. It would be interesting to obtain an op-
timal lower bound of 6(H).

A natural question is to extend the pancyclicity to vertex-
pancyclicity, i.e., for any v € V(H) and k € [3,n], there exists
a directed cycle C of length k passing v, and we leave this as

an open problem.
1

l 4
Problem 4.1. Let o = w (ﬂ) and d € {1,2} and let H
n

be a graph of n vertices with 6(H) > 4an. Then, a.a.s. HUD
is vertex-pancyclic, where D is a random d-regular digraph on
n vertices.
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