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Public summary

m A more lightweight and representative scale-in-scale operator, namely SIS is proposed. The operator can be plugged in-
to any promising backbone to replace regular convolution operator.

m To be more efficient, an improved SIS series is proposed. The series maintains promising results within nearly half para-
meters.

m Extensive experiments demonstrate the superior performance of our SIS operator series compared with state-of-the-art
methods on image classification, object detection, key points estimation and semantic segmentation.
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Abstract: Visual features with high potential for generalization are critical for computer vision applications. In addition to
the computational overhead associated with layer-by-layer feature stacking to produce multi-scale feature maps, existing
approaches also incur high computational costs. To address this issue, we present a compact and efficient scale-in-scale
convolution operator called SIS by incorporating an efficient progressive multi-scale architecture into a standard convolu-
tion operator. More precisely, the suggested operator uses the channel transform-divide-and-conquer technique to optim-
ize conventional channel-wise computing, thereby lowering the computational cost while simultaneously expanding the re-
ceptive fields within a single convolution layer. Moreover, the proposed SIS operator incorporates weight-sharing with
split-and-interact and recur-and-fuse mechanisms for enhanced variant design. The suggested SIS series is easily plug-
gable into any promising convolutional backbone, such as the well-known ResNet and Res2Net. Furthermore, we incor-
porated the proposed SIS operator series into 29-layer, 50-layer, and 101-layer ResNet as well as Res2Net variants and
evaluated these modified models on the widely used CIFAR, PASCAL VOC, and COC0O2017 benchmark datasets, where
they consistently outperformed state-of-the-art models on a variety of major vision tasks, including image classification,
key point estimation, semantic segmentation, and object detection.

Keywords: multi-scale convolutional operator; image classification; key point estimation; semantic segmentation; object
detection
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1 Introduction citly achieve a multi-scale expression. However, compared
with a single receptive operator, multiple paths increase the

Multi-scale patterns are pervasive in natural scenes' ™. There- computational cost. Therefore, dense connections have
fore, it is well recognized that acquiring scale-invariant fea- bridged the feature flow of different scales, incurring addi-
ture representation is of critically imperative for various com- tional memory resource consumption and inference time. Re-
puter vision tasks, such as object detection', key point estim- cently, the Res2Net* block was proposed to address this is-

1 (61 1 1 1 3 1 1 [81 1 . . . . . .
ation', panoptic segmentation”’, image classification™, sali sue by constructing hierarchical residual-like connections on

ent object detection, depth estimation”, image restoration* ', a channel-splitting feature map. However, Res2Net achieves
and scene analysis. In recent years, considerable progress has multiscale representation with a single-layer block at the cost

been made in handcrafted scale-invariant feature operators of memory resources and inference time.
and architectures. For instance, scale-invariant feature trans- To this end, we propose a more lightweight and represent-
form(SIFT)"* is the most discriminative operator that con- ative scale-in-scale operator, namely SIS, by transforming a
structs a difference of Gaussian pyramid(DOG) and searches regular convolution operator into an efficient gradual multi-
for extreme points as feature representations. Following this, scale architecture. More specifically, the proposed operator
image pyramid and feature pyramid architecture series have exploits the channel transform in a divide-and-conquer fash-
also been proposed. Image pyramid and feature pyramid are ion to optimize the computing of the entire channel, which re-
implemented by rescaling the current images or feature maps lieves the computing burden and expands the range of recept-
to be stacked as a pyramid and then operating at each layer. ive fields within a single layer. Moreover, we improved the
Despite these promising achievements, these designs suffer proposed SIS operator by integrating the weight-sharing
from a redundant computing burden. mechanism and split-and-interaction mechanism to develop a
Instead of explicitly operating, deep learning has been in- more lightweight and efficient design. Furthermore, the pro-
troduced into multi-scale feature designs, and has advocated a posed SIS series can be plugged into any promising convolu-
series of promising works. The representative module, tion backbone, such as ResNet and Res2Net. We deployed the
namely the inception module"”, employs a multi-path mech- proposed SIS operator series into the 29-layer, 50-layer, and
anism to design multiple convolution operators of different 101-layer variants of both ResNet as well as Res2Net and
receptive fields, for example, 1x1, 3x3, and 5x5. Accord- evaluated the models on several major computer vision tasks,
ingly, the output of each sub-path is concatenated to impli- including image classification, key point estimation, semantic
7-1 DOI: 10.52396/JUSTC-2021-0188
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segmentation, and object detection. Extensive experimental
results confirm that the proposed SIS operator series can ef-
fectively enhance feature representation and achieve state-of-
the-art performance while reducing the number of parameters
by almost half. In summary, the major contributions of this
study are as follows:

(1) A lightweight and representative scale-in-scale operat-
or, namely the SIS, is proposed. The operator can be plugged
into any promising backbone to replace a regular convolution
operator.

(II') An improved SIS series was proposed that can achieve
high efficiency. The series maintained promising results for
nearly half of the parameters.

(IIT) Extensive experiments demonstrated the superior per-
formance of the proposed SIS operator series compared with
state-of-the-art methods in image classification, object detec-
tion, key point estimation, and semantic segmentation.

2 Related work

CNN backbone. At present, the backbone is an integral com-
ponent in a convolutional neural network. It fundamentally
confirms the effectiveness of extracting features for computer
vision tasks, such as object detection, segmentation, and clas-
sification. A basic convolutional neural networks(CNN) com-
prises three structures: convolution, activation, and pooling.
The output of the CNN was the specific feature space of each
image. When handling image classification tasks, we take the
feature space of the CNN output as the input of the fully con-
nected neural network(FCN) and use the FCN to complete the
mapping from the input image to the label set, that is, classi-
fication. Undoubtedly, the most significant aspect of the en-
tire process is how to iteratively adjust the network weight
through the training data, which is called the back-propaga-
tion algorithm. Currently, mainstream CNN, such as VGg and
RESNET, are adjusted and combined using a simple CNN.
Additionally, a more effective backbone can enhance the per-
formance of these tasks. AlexNet!'” is a pioneer in exploiting
CNN to a deep network, which achieves exemplary perform-
ance on classification, exceeding that of traditional methods.
VGG was designed to stack smaller convolution operations
to increase the network depth and reduce the number of net-
work parameters. As the depth of the network increased, net-
work degradation occurred, which led to worse experimental
results. To address this issue, Res-Net!'” promotes network
depth with a bottleneck module that can be simply applied to
improve the model performance. Furthermore, Res-Next!
utilizes group convolution to conjointly learn different repres-
entation subspaces. Similarly, DenseNet!” devises densely
connected layers to mutually connect all layers, making more
effective use of features and strengthens the feature transfer.
Several lightweight backbones have been proposed to reduce
the computational consumption of CNN while maintaining
accuracy, such as SqueezeNet"™, MobileNet”", and ShuffleN-
e,

Multi-scale operator. It is worth mentioning that multi-
scale features include a multitude of information, resulting in
increased accuracy. NINP used multilayer perceptron convo-
lution to improve the discriminability of feature abstractions

7-2

for local networks, rather than the traditionally used basic
convolution layer. Additionally, GoogleNet™! uses an incep-
tion module to extract multi-scale features. MSDNet" per-
formed budget prediction by integrating multi-scale feature
maps with dense connections. Although FishNet™ retains
multi-scale features at various depths, it also refines them to
boost feature variety via an up-sampling process that has been
demonstrated to be successful for detection. As the number of
network layers increases, DLAP builds an iterative deep ag-
gregation module for aggregating and refining different scales
and resolutions, thereby improving multiscale representation.
HRNet!! proposed the use of exchange units to connect dis-
parate sub-networks. These exchange units collect feature in-
formation from other subnetworks through parallel multi-
scale. LanczosNet™” implemented the Lanczos algorithm in a
multiscale graph convolution network, which enabled effect-
ive matrix power computation and, hence, facilitates the col-
lection of multi-scale data. Additionally, Res2Net!"! uses
multi-scale analysis to extract information and expand recept-
ive fields at a more granular level.

Computer vision. Computer vision refers to the study of
the vision capability of a computer, or the ability of a ma-
chine to visually analyze its environment and stimuli. Gener-
ally, machine vision is employed to evaluate images and
movies. Machine vision, as defined by the british machine
vision association(BMVA), is an “automated extraction, ana-
lysis, and comprehension of relevant information from a
single image or a series of images.” The primary tasks in
computer vision include picture classification and localiza-
tion, target recognition and tracking, semantic segmentation,
and instance segmentation. In terms of image classification,
determining whether an image contains an object and how to
describe its features have been the primary study topics. Gen-
erally, the object classification algorithm defines the entire
image using either hand-drawn features or feature learning
and then uses a classifier to determine whether a particular
type of object exists. Convolutional neural networks(CNNs)
are the most frequently used method for image categorization.
The CNN network structure is fundamentally built of three
layers: convolution, pooling, and full connection. Typically,
the input image is delivered to a CNN, and the network ex-
tracts features via a convolution layer. Subsequently, the de-
tails are filtered using a pooling layer(generally, maximum
pooling and average pooling). Ultimately, the feature is en-
larged in the entire connection layer, and the classification
results are transmitted to the relevant classifier. Specifically,
it depends on high-level abstract semantic information. Ob-
ject detection is the act of locating a target inside a scene(pic-
ture), which includes two processes: Detection(where) and re-
cognition(what). The complexity of a task involves extract-
ing and recognizing candidate locations for detection. Con-
sequently, the framework of the task is as follows: First, the
model for extracting candidate regions from the scene is built,
followed by the model for identifying candidate regions.
Thereafter, the parameters of the classification model and the
location of the effective candidate frames were refined. The
term ‘target detection and recognition’ refers to the process of
extracting candidate regions from photographs or videos. It is
a computer vision problem that entails distinguishing the tar-
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get from the uninterested component, determining whether
there is a target, and subsequently determining the location of
atarget if a target exists. Numerous scholars have concen-
trated their efforts on feature fusion using the FPN architec-
ture. Although it achieves some performance gains, it has a
high computational cost. Other computer vision tasks have
similar impacts.

3 Scale-in-scale operator series

In this section, we present the proposed SIS operator series,
which is a lightweight and representative scale-in-scale oper-
ator. The complete technical pipeline is illustrated in Fig.1.
The operator series can be divided into three types: D Basic
SIS with a channel transform-and-merge mechanism; @ In-
teractive SIS with inter-path and cross-path interactions; 3
Recurrent SIS with inter-layer and cross-layer fusing. All
parts are illustrated in the following subsections.

3.1 Basic SIS

The basic SIS module is illustrated in Fig.1c. Compared with
a conventional convolution operating on the entire channel,
the basic SIS module employs a channel transform-and-merge
mechanism to reduce the computational burden. Referred by
Res2Net, the Res2Net module constructs residual-like multi-
path operations to obtain multi-scale features while achieving
promising performance and almost increasing computing
load. It can be attributed to the feature channel splitting tech-
nique used to relieve the multi-path operation. However, each
subpath of Res2Net still requires a regular convolution opera-
tion. It is explicitly necessary to continue the optimization.
Therefore, we propose a scale-in-scale mechanism to replace
regular multi-path convolution with a basic SIS. As shown in
Figs. 1b and 1h, the channel-splitting-guided multiscale in-
formation passes through the channel transform-and-merge
multi-scale module. Therefore, we refer to the pipeline as a
scale-in-scale mechanism. Formally, the regular convolution
operator is defined as

Zhou et al.

Cn
vi=koX =) ke ()

j=1
Here, X =[ xi,...,xc, ] € R "represents the input feature,
Y=[y,--»Yc.] € R Vrepresents the output feature,
K =1[k,...,kc,] € RE*®* denotes the convolution filters,

and each K, € R“** transforms the input feature with all
channels by summation to a single dimension of the output
feature. Finally, all outputs of each filter were merged as the
output feature. Instead of operating all the channels, we pro-
pose a basic SIS module, which is elaborated below:

Y=[Y.Y.Y, 1= [ K, K, K]*[ X.Y,.,V, ] ()

where T symbolizes the matrix transpose operation and the
remainder is described as follows:

Cin

Y =KX= K+X, 3)
j=1
Cin/2

Y,=K,xY, = Y KixY] (4)
j=1
Cin /4

Y,=K+Y,= Y KixY] 5)

Jj=1

Here, X is denoted as above, and Y =[ Y,,Y,,Y; | € RE¥W
represents the output feature, where the K, € RCw2 < HxW fj].
ter transforms the input feature X e RGw#<W to Y, € RCow2xVW
by 1/2 channel reduction and K, € R “w>¥W gperates the
intermediate result Y, € RCw> W ag Y, € RCows®W by 1/4 ori-
ginal channel, K, € RO+ CwsW goperates the intermediate
result Y, € RCow <V gg Y, € REws™W by 1/4 original channel.
In this study, we only consider the input channel C;,identical
to the output channel number C,,, that is, C = C,, = C,,. Ob-
serving the above equation to analyze the computing com-
plexity, the calculation is as

Pgs  1/4x3X[CXC/2XkXk+C[2XC[4xkxk+C[4xC[4xkxk] ﬁ ©6)
Pregular a CXCXka - 64
Pgs  1/AX3X[CXC/2xkxk+C/2XC[/4Xkxk+C[/4XC[A4xkxk] 11 )

Preoet

Here, P, .. and Py describe the number of parameters of the
regular convolution and the proposed basic scale-in-scale
convolution operator, respectively.

3.2 Interactive SIS

To achieve higher efficiency, the basic SIS operator was im-
proved using the channel splitting and cross-path interaction
techniques. The corresponding details are demonstrated in
Figs. 1d and le. Comparing the basic SIS and interactive SIS
modules, the transformation from 1/2 to 1/4 of the original
channel is replaced with a channel divide(1/2 of the original
channel is split into 1/4 and 1/4 of the original channel). The
uniformly split feature is passed through a two-path convolu-
tion operation, each of which shares a weight.

Specifically, the K, € REw>®W filter transforms the in-
put feature X e RC»#*¥ to Y, € RV and assuming that

1/4x3X[CxCxkxk]

“ 16

the input feature Y, € RY>*V is uniformly split into
Y, € R™™W and Y,, € R“**™V the two-path convolution op-
erator is denoted as K, € RE/*C/*HW and K, € RO/PCIHHW - re.
spectively. Considering Figs. 1d and le, the interlayer inter-
active workflow is described as follows:

Yin= K +Y, (®)
Yo = K%Y, )
Yip= Ko# (Y +Y0) =K. # K5 Y + K Ky Y, (10)
Yim= K*(Y+Y) =K« K« Y, + K+ K, % Y, (1)
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Fig. 1. Comparison between bottleneck modules(a), Res2Net module(b) and SIS module series(c, d, e, f, g) and illustration of scale-in-scale mechanism

(h).

Y =[Y,,Y,, Y] = [KI|K; % (K, + K;3), K; * (K, + K5) ]+
[Y1, Y1, Yio] = [K||K, ( 2 3) 3 ( 2 2)] Y,, = Kz*(Y111+Y12):Kz*Kz*Y11+Kz*Y12 (13)

(XY, Y] 12)
Meanwhile, the cross-layer interactive workflow is de-
. Yio= K*x(Y), + Y1) =K« K+ Y, + K3 Y, (14)
scribed as follows:
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Y =[Y,Y5, Y] = [K K, * (K, + 1), K+ (1 + K;) ] %

[XIYy, Yol 15)

When comparing the two interactives, the cross-layer inter-
action retains the original data, while the inter-layer interac-
tion further modifies the feature. However, regardless of the

Pgs 1/4X3X[CXC/2Xkxk+C/4XCl4xkxk+C[4xC/4xkxk] 15

type, it makes full use of this information.

In terms of the weight-sharing approach, interactive SIS
parameters are lighter than those of basic SIS, Res2Net, and
regular convolution. The equations above can be used to de-
termine the difficulty of the computation, the calculation is as
follows:

Here, P, qiurs Preonet> ad Pgs describe the number of paramet-
ers of regular convolution, Res2Net, and the proposed basic
scale-in-scale convolution operator, respectively. Therefore,

== 16
P regitar CxXCxkxk 32 (16)
Prgs 1/4x3X[CXC/2xkxk+Cl4XCladxkxk+C/4xC[4xkxk] B § a7)
Preover 1/4x3%xCxCxkxk °3
Meanwhile, the latter workflow is described as
Y :[YH Yl]z + Ym’ Y]zz + le]] = [KllKZ * (Kz +2)|K3*
2+ K)]*[X|Yy, |Y12]T (24)

the improved interactive SIS block significantly exploits the
channel transform-divide-inter or cross-layer-and-interactive-
merge for a more lightweight and efficient design. The work-
flow is described as

Y =[Y,,Y,+ Y11, Yi + Vi ] = [K K, % (K, + 2)| K%

(2+K3)]*[X|Y11|Y12]T (18)

Here, | represents partial block matrix computing. The differ-
ence between both recurrent variants is that the latter com-
bines the output features of different recurrent time steps as a
multi-scale output. Recurrent SIS can make features more
representative. The complexity is almost consistent with inter-
active SIS.

3.3 Recurrent SIS

The interactive analyses solely analyzed the cross-path con-
nections of information flow. However, the self-interaction
paths with several layer generation processes also benefit the
multi-scale feature map. Inspired by the recurrent FPN and
backbone™, we consider the recurring characteristic to en-
hance the reusability benefit. To this end, we propose an en-
hanced alternative, recurrent SIS. This process is depicted in
Figs. 1fand lg.

The recurrent technique may be classified into two types:
those that simply output the final result and those that output
the intermediate and final results as a multi-scale output. The
former corresponds to the transform-divide-recurrent-merge
pipeline depicted in Fig.1f, whereas the latter corresponds to
the transform-divide-recurrent-fusion-merge flowchart depic-
ted in Fig.1g. The interactive SIS definitions are identical. In
formal terms, the first description is as follows.

Y= K *Y, (19)

Y= K%Y, (20)

Yin= K*(Y,+Y) =K« Y+ K, « K, Yy, (21)

Yin = Ky# (Yo + Vi) = Ky# Yy + Ky % Ky % Y (22)
Y =[Y,Y 1, Yin] =[K|K, * (K, + 1)|K;* (1 + K;)]*

[XIYulY,]" (23)
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Here, | represents partial block matrix computing. Comparing
both recurrences, the difference is that the latter combines the
different recurrent steps as a multiscale output. The recurrent
SIS makes the features more representative. This complexity
is almost consistent with interactive SIS.

3.4 Scale-in-scale pipeline

Res2Net divides the input feature equally into several com-
ponents and creates many subpaths to process each compon-
ent. Therefore, rather than using a standard convolution, the
multi-scale output is aggregated into a single block. Accord-
ingly, we integrated the SIS series into a multi-path of
Res2Net to further reduce the parameters and expand the re-
ceptive field. The divided multi-scale feature flows through a
multi-scale  channel  transform-divide-recur/interactive-
merge(SIS) algorithm. Thus, the flowchart of the nested
multiscale pattern is referred to in this paper as a scale-in-
scale pipeline, as illustrated in Fig.1h.

4 Experiments

To demonstrate the efficiency of the proposed SIS operator
series, all experiments in this section were conducted using
the freely available Pytorch framework. Moreover, the SIS
operator was adapted to replace widely used 3x3 kernels in a
variety of vision applications, including image classification,
object detection, keypoint estimation, and image segmenta-
tion, using ResNet and Res2Net. Additionally, we re-imple-
mented the original baselines in the same manner as de-
scribed in the original study, except that the baseline and SIS-
operator-equipped models were trained from the start without
loading pre-trained processes. As a comparison, the 29-layer,
50-layer, and 101-layer equipped versions of ResNet and
Res2Net were enhanced.

4.1 Results on classification

Following the same setting as reported in Res2Net, the Res-
Next-29, 8cx64w variant was employed as the classification
baseline for the CIFAR-100 dataset. As described in the ori-
ginal work, the ResNeXt-29 basic block was replaced with
the Res2Net module, while the remaining configurations re-
mained unaltered. Moreover, the partial Res2Net module was
upgraded by replacing them with basic SIS to demonstrate the
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efficacy of our proposed SIS operator series, while the input
channel was divided by four without a remainder or with a re-
current and interactive variant, while the width factor in
Res2Net was divided exactly. In addition, all experiments
were trained from the beginning, with no pre-trained proced-
ures. Unless otherwise specified, the re-implemented baseline
model and its SIS series-equipped variation were trained on
four NVIDIA Titian GPUs using the default data augmenta-
tion and training method. Additionally, as illustrated in Table 1
and Fig.1, the recurrent or interactive versions were separ-
ated into variants I and II. The top-1 test errors and model ca-
pacities of the CIFAR-100 dataset are listed in Table 1. The
Top-1 error is the predicted label. The largest value in the last
probability vector is considered as the prediction result. If the
classification of the one with the largest probability in the pre-
diction result is correct, the prediction is correct. Else, the
prediction is incorrect. Moreover, Top-5 error represent the
top five with the largest probability vector in the last place. If
there is a correct probability, the prediction is correct. Other-
wise, the prediction is incorrect. Our experimental results
demonstrate that the proposed SIS series-enhanced method
outperforms the baseline method and other methods that use
fewer parameters. This increase in performance demonstrates
the efficacy of the proposed SIS operator series. The effect of
the time steps of the recurrent SIS is reported in Table-1-1.
We inserted the recurrent SIS variants at different time steps
into ResNet-29 and ResNext-29 for evaluation. It can be ob-
served that increasing the time steps 7T yields improvements,
but it increases the computational burden. Considering this
trade-off, we set 7= 2.

4.2 Results on object detection

To evaluate the generalizability of our proposed SIS operator
series, an SIS-equipped backbone was deployed for the ob-
ject detection task on the commonly used MS COCO and
PASCAL VOC benchmarks. It is well known that multi-scale
visual features are beneficial for improving detection results,
primarily because the object in the detection dataset exhibits
sharp scale variation. The object of the MS COCO dataset
was divided into small, medium, and large scales. Further-
more, the PASCAL VOC is the same as above with a relat-
ively weaker scale variation. Therefore, the upgraded back-
bone with a common convolution operator replaced with the

Table 1. Comparison results of ResNet, Res2Net and SIS-equipped vari-
ants on CIFAR-100 dataset.

Models Params flops Top-1 error
ResNet-29 36.5M 42G 20.50
ResNext-29 34.4M 4.2G 17.90
Res2NeXt-29 33.8M 4.2G 16.93
Interactive SIS-I variant 26.3M 4.36G 16.82
Interactive SIS-II variant 26.5M 436G 16.79
Recurrent SIS-I variant 25.7M 4.52G 16.87
Recurrent SIS-II variant 25.9M 4.52G 16.85
Basic SIS variant 28.3M 4.2G 16.74
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Table 1-1. Comparison results of ResNet, Res2Net of recurrent SIS on
CIFAR-100 dataset.

Models =2 =3 =4
ResNet-29 20.50 20.45 20.38
ResNext-29 17.90 17.74 17.68

SIS operator can obtain a larger receptive field and more dis-
criminative feature representation. In this work, we selected a
promising Faster R-CNN architecture as the baseline. All our
experiments were implemented on the mmdection using de-
fault settings. Moreover, the re-implemented baseline and SIS-
equipped versions were trained from scratch without loading
pre-trained weights on ResNet and Res2Net of 50 and 101
versions, respectively.

With regard to the COCO dataset, we conducted training
on a union of 80 k COCO training images and 35 k valida-
tion images (trainval 35 k), and then evaluated the remaining
5 k validation photos (minival) as testing results. We present
our findings using the typical COCO metrics, which include
average mean, average precision, and recall over different
IoU thresholds.

AP is defined as

TP(?)
AP0 = T+ PP ()
where ¢ denotes the threshold, and AP.5, AP.75, and the
threshold (¢) are 0.5, 0.75 respectively. While adhering to the
same implementation details as the COCO benchmark for the
PASCAL VOC dataset, we evaluated the results solely using
the AP metric. The results of the comparison of the two ob-
ject detection benchmarks are listed in Table 2. It can be ob-
served that SIS-equipped variations outperform the ResNet
and Res2Net baselines. More precisely, when AP is applied to
the COCO dataset, the basic SIS produces the greatest results,
outperforming ResNet and Res2Net by 2.6 and 1.2 points, re-
spectively, as well as outperforming AP by 3.0 and 1.3
points.5. For the PASCAL VOC dataset, the basic SIS outper-
forms ResNet and Res2Net by 2.6 and 0.8 points, respect-
ively. The results indicate that a backbone equipped with SIS
may acquire more representative features for object detection,
confirming the generalizability of the SIS series.

4.3 Results on semantic segmentation

In terms of semantic segmentation, we start with DeepLab
v3+1 and evaluate it on the PASCAL VOC dataset. Table 3
presents a comparison of the different configurations of SIS
operators for semantic segmentation. For evaluation purposes,
the mean IoU was employed. The mean IoU aims to calculate
the ratio of the intersection and union of two sets of ground
truth and predicted values, where the IOU of each class is cal-
culated, accumulated, and averaged over all classes. More
specifically, the re-implemented and SIS-equipped tech-
niques were trained in the same manner as Res2Net. The find-
ings demonstrate that our proposed SIS operator is capable of
enhancing semantic segmentation performance and generat-
ing more representative features. In addition, the basic SIS
produces superior results to those of other SIS-equipped ap-
proaches.
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4.4 Results on key points estimation

In this study, we demonstrate that the proposed SIS operator
series multi-scale representation capability on a keypoint es-
timation problem. The simple baseline™ was adapted in a
similar fashion to Res2Net"", except that the backbone was
replaced with the proposed SIS series. The COCO keypoint
detection dataset and validation set were used to train and test
the model, respectively. The solution utilizes both the 50-lay-
er and 101-layer SIS-equipped variants of Res2Net and Res-
Net. The performance of the keypoint estimation on the
COCO validation set with various configurations is presented
in Table 4. In particular, our methods beat their counterparts

0.75 respectively, while AR(M) and AR(L) represent the re-

by a considerable margin, demonstrating the capability of
multi-scale representation, where AR is the average recall ra-
tio. Specifically, AR.5, AR.75 denote the thresholds as 0.5,

Faster RCNN Res2Net

Faster RCNN.

AP(1) =

TP (z)

TP(1)+FP(r)’

where ¢ denotes the threshold, and AP.5, AP.75 denote the
threshold (¢) at 0.5, 0.75, respectively. Additionally, FP de-
notes a false positive, that is, a prediction error (the algorithm
predicts a non-existent object). TP denotes a true positive,
which means that the prediction is correct (the algorithm pre-
Fig. 2. Visual comparisons between Faster RCNN and SIS equipped dicts the object within the specified range). Furthermore,
AP(M) and AP(L) represent the recall ratios of medium and

call ratio of medium and large objects in the detection data-
sets. Similarly, AP is defined as

large objects in the detection datasets, respectively.

Table 2. Comparison between the different configurations of the SIS operator on object detection.

Interactive SIS Recurrent SIS COCO VOCO07
Backboneversion Basic SIS
I I I I AP AP.5 AP
ResNet-50 29.8 49.7 71.5
Res2Net-50 31.2 51.4 73.3
v 31.2 51.4 73.3
v 31.2 51.4 73.4
SIS-50 variant v 314 51.6 73.6
v 31.5 51.7 73.7
v 324 52.7 74.1
Table 3. Comparison between the different configurations of SIS operator on semantic segmentation.
Interactive SIS Recurrent SIS Mean IoU
Backboneversion Basic SIS
I I I II 50 variant 101 variant

ResNet 0.751 0.770

Res2Net 0.767 0.781

v 0.769 0.773

v 0.770 0.775

SIS variant v 0.772 0.785

v 0.773 0.786

v 0.775 0.791
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Table 4. Comparison between the different configurations of SIS operator on key points estimation on MS COCO dataset by average precision and recall

measurement.
Interactive SIS~ Recurrent SIS
Backboneversion Basic SIS . I . I AR5 AR.75 ARM) AR(L) AR APM) AP(L) AP5 AP.75 AP
ResNet-50 0.711 0915 0.784 0.685 0.753 0.743 0923 0.806 0.711 0.792
Res2Net-50 0.721 0916 0.802 0.696 0.761 0.752 0929 0.821 0.723 0.797
v 0.723 0916 0.803 0.697 0.765 0.754 0.929 0.823 0.725 0.800
(4 0.724 0917 0.804 0.698 0.767 0.756 0.929 0.824 0.726 0.801
SIS-50 variant v 0.726 0916 0.805 0.701 0.767 0.757 0.929 0.827 0.727 0.803
v 0.727 0925 0.804 0.700 0.767 0.758 0.931 0.825 0.726 0.805
v 0.731 0925 0.814 0.706 0.772 0.761 0.932 0.831 0.731 0.808
Res2Net-101 0.722 0919 0.794 0.700 0.754 0.760 0.931 0.828 0.733 0.803
v 0.733 0923 0.815 0.709 0.776 0.764 0932 0.834 0.735 0.811
v 0.735 0924 0.817 0.715 0.779 0.767 0.933 0.836 0.736 0.813
SIS-101variant v 0.737 0924 0.818 0.715 0.785 0.769 0.934 0.838 0.738 0.815
v 0.738 0.925 0.819 0.715 0.785 0.770 0.935 0.840 0.739 0.816
v 0.742 0925 0.825 0.715 0.785 0.773 0935 0.843 0.743 0.819

5 Conclusions

In this work, we propose a compact and representative scale-
in-scale convolution operator, referred to as SIS, by incorpor-
ating an efficient progressive multi-scale design into a tradi-
tional convolution operator to maximize entire-channel com-
putation. Moreover, the improved variants are weight shared
and incorporate split-and-interaction and recurrent-fuse mech-
anisms. The suggested SIS series is easily pluggable into any
promising convolutional backbone, such as the well-known
ResNet and Res2Net. Furthermore, we implemented the pro-
posed SIS operator series in 29-layer, 50-layer, and 101-layer
ResNet and Res2Net architecture variations. In conclusion,
the experimental results reveal that the proposed SIS operator
series is more effective and generalizable than existing state-
of-the-art approaches with fewer parameters for numerous
computer vision tasks.
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