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Abstract; A joint mean-correlation regression model framework was proposed for a family of
generic discrete responses either balanced or unbalanced, and a Cholesky decomposition method
was used for statistically meaningful reparameterization of correlation structures. To overcome
computational intractability in maximizing the full likelihood function of the model, a
computationally efficient Monte Carlo expectation maximization ( MCEM ) approach was
proposed. Theoretical properties were also established for the resulting estimators. Simulation
studies and a real data analysis show that the proposed approach yields highly efficient estimators
for the parameters.
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0 Introduction

Longitudinal data, with repeated
measurements collected from the same subject, are
frequently encountered. Various models and
methods for dealing with longitudinal data analysis
are proposed in literature; see, among others,
Refs. [ 1-2 ] for overviews of the methods in this
area. It is well recognized that properly accounting
for the correlation between these repeated
measurements is important, not only for correct
statistical inference, but also for efficiency in
estimation. Recently, regression analysis of the
covariance structure has attracted increasing
attention. See Refs. [ 3-7] for related discussion.
For discrete longitudinal data, however, there is
no unified framework for the joint distribution of
discrete longitudinal variables. Hence, modeling
the within subject correlations/covariances are
essentially case by case; see, for example, the
Markov chain approach™ for binary data, and

Lol for  Poisson,

other marginal approaches
multinomial, and other types of variables. The
GEE approaches™ and their variations have also
been employed for studying discrete longitudinal
data. For modeling a generic class of discrete and
mixed types of variables in longitudinal data, Song
al, 11 based

approach to integrate separate one-dimensional

et proposed a Gaussian copula

generalized linear models into a joint regression

analysis of continuous, discrete, and mixed

correlated outcomes. Most recently,

[13]

Tang et

al. proposed to model the discrete longitudinal

responses with the Gaussian copula whose

correlation matrix is modeled with the regression

approach by using the hyperspherical
parametrization-™.

We propose a copula-based joint mean-
correlation modeling approach for discrete

longitudinal data. The correlation structures for a

family of generic discrete responses are
decomposed by a moving average Cholesky
decomposition. Unlike the hyperspherical

parametrization in Ref. [13], the moving average

Cholesky decomposition has a more direct
interpretation of the statistical meaning and is
particularly appealing because of the natural
ordering of the variable in longitudinal data. Since

the likelihood

intractable in general, we develop a type of Monte

inference is computationally
Carlo expectation maximization ( MCEM) based
method for estimation.

The article is organized as follows. Section 1
introduces the joint mean-correlation model and
the moving average Cholesky decomposition for
Section 2 provides the

correlation matrix.

estimation procedure for our model. Section 3
presents extensive numerical simulations and a real

data analysis. Conclusions are found in Section 4.

1 Models

1.1 Gaussian copula for discrete data

We denote by y;, = (y;, *s Yim, )T the m;

longitudinal measurements from the 7th subject
(i=1,+, n), where the discrete response y; of
interests is observed at time 7;;. Let t; = (z;, .,
Lin, )" and x; €R? be the explanatory variable
associated with the jth measurement of subject 7.
Here t; and m; can be subject specific so that the
handling unbalanced

model is capable of

longitudinal data sets observed at irregularly
spaced time points.

With multiple subjects, we denote the
observations as {y;;» x;;» t;;} G=1, =+, n; j=1,
==, m,;). For categorical responses, we assume
that y,; follows an exponential {amily distribution
so that the generalized linear models (GLMs) can
be used for the discrete responses marginally™*’.
That is, the probability mass function of y,; takes
the form f(y)=c(ys;@)exp{y0—¢ (@ ]/¢} with
the canonical parameter ¢ and scale parameter .

For parsimoniously modeling the mean of y; »
¢ =FE (y;), the traditional strategy of GLM is
applied to incorporate the available explanatory
variable x; :

g Q) =xip (D
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with the known transformation g ( « ) and
unknown model parameter f.

To fill the

distributions and the joint

gap between the marginal
distributions, we
consider the copula model. A function C (u,, -,
u,) is called a copula function if it is a distribution
function with each of its margins uniformly
distributed on [0, 1]. That is,
Cu)=PWU, <uys > U; <uy),
where each U; (j = 1, *»-, d) is uniformly
distributed on [0,1] and u = Cuy, s *** suy). The
Sklar’ s theorem ensures the existence of such
multivariate function. In the context of
longitudinal data, the joint distribution function of
y,; and a copula C(u;; ,-+- sUi, ) are connected via
F,)=PXy<yn, Y, <y.)=
PF, (Y)) < F, (yiu)s =,
Fo Yy, ) <<F, (yi, )=
FFA i)y ooy Fop (ug, D)) =

Cluis = s uy, ) (2)
where u; =F,; (y;), j=1,,m,; and F;; ( + ) is
the marginal cumulative distribution function of
vy . In this paper, we use the Gaussian copula as it
has the additional advantage of allowing a flexible
parametric dependence structure. Then the joint
distribution of y; in (2) is

F, ()=, (z;,, 2, ;R)=0, (z,5R;)
3

where @, (+++3R;) is the probability distribution
function (PDF) of the m; dimensional normal
distribution with zero mean and correlation matrix
R, and z;, =@ " {F,; (y;)} for j =1,
with @ ( » ) being the PDF of the univariate

standard normal distribution.

S M,

It should also be noticed that the entries of R;
are not directly the coefficients of correlation
between the discrete observations, but they
determine the dependence of the longitudinal
observations via Eq. (3). Song'® discussed the
connection between the correlation coefficients in
R. and those of the observed variables explicitly.
1.2 Moving average Cholesky decomposition

Modeling ( and

correlation covariance )

matrices can be challenging due to the positive-
definiteness constraint. This problem can be
removed by infusing regression-based ideas into
Cholesky decomposition™*,

The standard Cholesky decomposition of an
m; Xm; positive definite covariance matrix is of the
following form:

X =C;C} 4
where C; =(c;,) is a lower triangular matrix with
positive diagonal elements and its entries are
difficult to interpret. Pre-multiplying C; by the

inverse of D; =diag(c;i1sCisos. v sCimn. ) leads to

an alternative Cholesky decomposition (ACD)M™,

and keeps D; outside, and we have

X, =D, (D]'CH(C!D;HD, =D,LLTD, (5
where L, = D;'C, is obtained from a slightly
different standardised C; . dividing each row by its
corresponding diagonal entry.

For statistical interpretation of the below-
diagonal entries of L, , it is clear that D; ' (z,—z,)

has L,LT as the standard Cholesky decomposition
of its covariance matrix and
g, =MDL) " (z, —z,),

its vector of innovations, has Cov (e;) =1,, .
Denote L, = (L) and D; = (o6;), we obtain
variable-order, moving average representation for

) (z;—=z;)
the standardized —— as

G
(Z,' *g,) =
T e D N (6)
0ij k=1

Then we can prove, for any 1<{j, k <<m,, the
correlation coefficient between =z, and =z, is

given by
J Nk

D LuLa

s=1

R, =corr(z; ,24) =

This property is a great motivation for modeling a
correlation matrix.

In our approach, we parameterize the moving
average parameters {L };~, to overcome the over-

parametrization problem. We propose to model
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these unconstrained parameters collectively via a
regression model

L :W/ij/«y &
where w,;, €R 7 is the explanatory variable and ¥ is
the ¢ X 1 unknown parameters, we need to
examine the covariates of the ith subject at the
corresponding observations. We follow the
convention of longitudinal data analysis by taking
W, as some function of the time lag [¢; — ¢, |
between observations, which effectively ensures
the correlation to be stationary. Other time-
dependent covariates may also be meaningfully
exploited. Thus our regression approach for the
correlations can incorporate a broad class of
covariates available for explaining the covariations

between longitudinal measurements.

2 Estimation

We use the GLLM for the responses marginally
characterized by marginal parameters n=(f, ¢),
the copula model 3 for the joint distribution, and
the Cholesky model for the correlation R; with the
parameters ¥ in (8). By combining all unknown
parameters in this modeling framework, we write
collectively the parameter vector of interest as =
(B, ¢, v). Then we are ready to develop the
maximum likelihood estimators with the discrete
longitudinal responses:

L =][PY)=yiY =y, )=

i=1

[Py, —1<y, <

i=1

Yirs s YVim, — 1< Yim’ < Yim, ) =

HJL ¢ (iR du (9

i=1 ;s

where 2, = (2, =y 2, )" and z; = (2,0,
Zim, )T with

2, =0 H{F,;(y; )}, 2; =0 {F,;(y;, — D},
and z; =—©° when y,; takes the smallest possible
value on its support.

likelihood (9 )

involves the probability distribution functions of

However, evaluating the

the m;-dimensional normal distribution, whose

analytical form is not available and numerical
approximation is required. The computational cost
of numerical approximation is high and may not
scale easily to even a moderate number of repeat
measurements. In fact, directly calculating the
distribution function of each subject ¢ specified by
(2) requires 2" summations of lower dimensional
distribution functions as in the approach of Ref.
[ 12 ], and the

exponentially with m ;.

computational cost grows

Inspired by Ref. [18], we implement a type of
Monte Carlo expectation maximization ( MCEM)
algorithm™® to estimate this integral. The
expectation maximization (EM) algorithm™" is a
method to maximize the likelihood function in the
presence of missing data z. This is done
iteratively. In the E-step one calculates the Q

function, viz.
Qy, v™) :Jf(z | y;)lf\(””)lnf(z;}')dz

(10)
which is the expectation of the log likelihood with
respect to the conditional predictive distribution
fzly ;R(Y")) , under the current value of the
model parameters ¥ at the mth iteration. The Q
function is then maximized in the M-step to find
the new value of the model parameters, viz.

,y(m+l) :argmaXQ(Y, ;};(1/1)> (ll)
v
These

steps are repeated iteratively until
convergence. When the Q function is not available
in closed form, a Monte Carlo estimate of the
required expectation can be used instead. This is

the MCEM algorithm. The Q
replaced by

function is

-~ 1 & -~
QY. v :EZ Inf(z,;R(Y™)) (12)

k=1

in the E-step, where z,, ***, zx are drawn from

flysy™).

The Dunn-Smyth residuals® are a uselul
diagnostic tool for generalized linear modeling,
which are used here as a device for numerical
approximation of the integrand in Eq. (9). Let u;

be independent draws from a standard uniform
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random variable U (0, 1).
Fi,(yi) + wify Cyys
distributed on the (0, 1) interval, if y, has the
marginal distribution function F;;. A Dunn-Smyth
residual is then defined by §; =& ' (u; ). The

distribution of these residuals, conditional on the

We first define u,; =

which are uniformly

data and marginal distributions, is a truncated
multivariate normal with an identity covariance
matrix. We can write the distribution of the vector

of Dunn-Smyth residuals as

d
1T
gl =" (13)

H S Cyy)
i=1

This distribution has positive probability only in
the region of integration of the likelihood defined in
Eq. (9), making it a candidate for importance
sampling to estimate this integral.

Theorem 2, 1  The likelihood of the discrete
copula can be

Gaussian approximated by

importance sampling with K sets of Dunn-
Smyth residuals

L(ﬁvsﬁyo | yly"'vy,,) -

n

HJ. s R (1)) dz =
i=1Y % SRS
$a (L85 R (YD)
HHfu(yl/) sz—y
i=1 j=1 i=1 k=1
s
j=1

where f; is the marginal density of variable j and
observation i, and ¢, are Dunn-Smyth residuals
distributed by g.

Proof We can approximate the likelihood by
importance sampling with K sets of Dunn-

Smyth residuals

Il,'(ﬁvsﬁa‘y ‘y,):J ) ¢L/I(Z;R,‘(’y))dz:

z. <z
i i

1,11
H f,, (yi./ )

j oy (s R (Y
- Il ¢z
i=1

$a (3 R(Y))

ez
=1

g(z)dz =

g(z)dz

dl
Mroo |
i=1

7. <z<z
i i

QEY)

which can be approximated using K samples from
g ViZ.

ba (g, i R, (7))
LBy |y) = Hf,xyu)E —

k=1 H(]S(C

(15

The parameters (B, ¢, ¥) are estimated via

the algorithm in two steps. First, the marginal
parameters (B, ¢) are estimated by assuming
independence, as with independence estimating
Second. these estimates (f, g;) are
sV
(14). The resulting plug-in

equations.
plugged into the likelihood L (B, ¢+ ¥y, s
defined in Eq.
likelihood L (Y [B. ¢+ y, .+

correlation parameters Y. Such algorithms have

,¥,) is maximized for

good asymptotic properties, including asymptotic
efficiency relative to maximum likelihood"*,

We note that the observations y,~ f(y,n, v)
fori: € {1,-,n}.

properties, we assume the following regularity

To establish the theoretical

conditions hold.
Condition Cl1 The

contains an open set of which the true parameter

parameter space 6

6, is an interior point.
Condition C2

® € O containing 1), and an integrable function

There exists an open subset of

M, (y), such that for every € w and yE y,
| o°Inf (y.m.v)/3%y, [<< M, (y)
for r&€{1,-+,dim(n)}, where E,,U {M, (y)}<<oo,
Condition C3 For r € {1,++-,dim(n)} there
are bounded functions V, (y) such that in the
neighborhood of 7, for any fixed 7,
{olnf(y.n,v) /091" <V, (y)
with E, {V,(y)}<Too,
Theorem 2.2 Under the conditions C1~C3,
the estimators (I}\, 5;, 7\) are consistent and
asymptotically normally distributed.

The technical proof is given in Appendix.

3 Numerical studies

3.1 Simulations
In this section, we conduct simulation studies

to investigate the finite performances of the
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proposed method. In each of the studies, we
generated 500 data sets and took sample sizes n =
50, 100 and 200, and the Monte Carlo sample size
K =200. We also compared our method to the GEE
method™®’ and the generalized linear mixed-effects
models(GLMM) for estimating the parameters
in the mean model and the dispersion. In GEE
method, we assume unstructured correlations, and
in GLMM, we consider time as random effects.
All simulations were conducted in R.

Study 3.1

marginal distributions F;; (j = 1,...

In this study we consider that the
,m;) for n
subjects as the negative binomial distribution y,; ~

NegBin(§, ;) with mean p;; and variance p,; +

ph/¢0, where ¢ > 0 is the over-dispersion
parameter and the numbers of repeated
measurements m; for each subject satisfies

m;— 1~ Binomial (5, 0. 8). The mean was then
parameterized as p; exp (x}f) to allow
dependence on explanatory variables, and the
variance exceeds its mean (i. e. over-dispersion).
The explanatory variables x,, and x,, were

bivariate normal with correlation 0.5. The
parameters in the correlation matrix was set as
Li=7¢twin” t+wi7. for the moving-average
={1,t; —

tis(t; —ty)" )7 and the measurement times ¢, s

(MA) structure as in Eq. (6) with w;

were uniformly distributed. The true parameters
were taken as p=(8,,p,,8:)=(1,—0.3,0.5),
0=4and Y=(7¢,71» 7:)=0(0.5,—0.3,0. 3).
Tab. 1 shows the accuracy of the estimated
parameters in terms of their mean biases (MB) and
standard deviations (SD) in three methods. For
the GLMM method, the dispersion parameter is
fixed, because the estimation of it is always
unstable. We can see the biases and the standard
deviations decrease as the sample size increases,
and all the biases are small especially when n is
large. Compared to the GEE and GLMM estimates
for the parameters in the mean model, our method
have very competitive performances. In terms of
dispersion parameter, the bias of our method is
about one-halfl of the GEE, and of course GLMM.
For the biases of other mean parameters, our
method performs much better than GLMM,
probably because we need to correctly model the
random effect additionally in GLMM. And the SD
of our method are slightly smaller than GLMM.
Additionally, we can see that the biases are close
but always smaller than GEE, and the SD of our
method are much smaller than the SD of GEE. It
shows that our method is more stable than GEE.
All above

method.

show the advantage of proposed

Tab.1 Simulation results for Study 3. 1. Mean bias (MB) and standard deviation (SD) of mean parameters

our method GEE GLMM

50 100 200 50 100 200 50 100 200
MB,, 0.010 0. 000 0.001 0. 007 0. 002 0. 001 0.116 0.112 0.115
SDy, 0. 085 0. 060 0. 041 0.128 0.129 0.137 0. 096 0. 067 0. 047
MB,, 0. 002 0.003 0. 002 0. 002 0. 001 0. 005 0. 005 0. 005 0. 000
SDy, 0. 052 0.038 0.023 0. 096 0. 089 0.109 0.053 0. 040 0.025
MB;, 0. 000 0.002 0.002 0.003 0.009 0.003 0.005 0.006 0.002
SDg, 0. 055 0.038 0.026 0.119 0.158 0.093 0.057 0. 040 0.028
MB, 0.767 0. 359 0. 166 1. 464 0.913 0. 381 — — —
SD, 1.817 1.075 0. 660 2.395 1.916 1. 401 — — —
MB,, 0. 001 0. 006 0. 004 - - - - - -
SDy, 0.151 0.103 0.073 - - - - - -
MB, 0.072 0.003 0. 001 — — — — — —
SD,, 0.917 0.613 0.438 - - - - - -
MB, 0.081 0.010 0.008 — — — — — —
SDy, 1.151 0. 764 0.532 — — — — — —
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Study 3.2 The data sets were generated from
the model
v, ~ Bernoulli(p,;),
logit(p ;) =B + 2181 + 242082 5
Ly =Y+ w7 +wip?s
i=1,ns j =1y ym,,

7' s were

where again the measurement times 7
uniform and m; — 1 ~ Binomial (5, 0. 8). The
covariate x,; = (x,»x;2)" was generated from a
standard bivariate normal distribution with zero

correlation. We took the covariates for the

—t; 9(1‘,']'71’,';‘,)2}1-. The

parameters were set as = (B,,8,,8:) = (1.0,

correlations as w;, = {1,

—0.3,0.5) and
Y={os71:72) =(0.5,—0.3,0.3).

Tab. 2 shows that the results are qualitatively
similar to those in Study 3. 1. When n =50 and
100, the mean biases of GEE are slightly smaller
than our method, but the standard deviations are
lager than our method. And when n = 200, our
method has the best performance. Overall, our
method performs promisingly and indicates the
potential benefit for estimating the mean model
incorporating the correlations in the longitudinal

data by using a parsimonious correlation model.

Tab. 2 Simulation results for Study 3.2. Mean bias (MB) and standard deviation (SD) of mean parameters

our method GEE GLMM

50 100 200 50 100 200 50 100 200
MB;, 0.027 0. 026 0.017 0.051 0.031 0.018 0.141 0. 044 0.015
SDy, 0.225 0.149 0.105 0.235 0.153 0.106 1.092 0.501 0.106
MB;, 0.018 0.012 0. 004 0.011 0.008 0.008 0.020 0.012 0.006
SDy, 0.169 0.116 0. 089 0.174 0.128 0. 090 0.197 0.122 0. 094
MB,, 0.018 0.016 0.001 0.011 0.010 0. 004 0.025 0.017 0.003
SDg, 0.186 0.119 0. 090 0.193 0.123 0. 090 0.198 0.132 0. 096
MB,, 0. 063 0. 057 0.016 — — — — — —
SDh,, 0.299 0.207 0.128 — — — — — —
MB,, 0.139 0.113 0.076 — — — — — —
SD,, 1. 904 1.219 0.771 - - - - - -
MB,, 0.238 0.076 0.029 — — — — - —
SDy, 2. 385 1. 460 1. 460 - - - - - -

3.2 Online shopping data

E-commerce application has become one of the
most commonly used Internet applications all over
the world. Research on behavior of shopping
users, especially its impact on purchasing, is of
great significance to deeply understand wuser’s
online purchase behavior, discover high potential
users, and promote consumption.

In this section, we consider an application of
our methods using online shopping logs data
accumulated by Tmall. com. We analyze a

randomly selected sample of n =1 000 visits to

Tmall. com from May to October in 2015. The
response variable is the number of times a user
make purchases. Users on average made 4. 23
visits with a standard deviation 1. 92, resulting in a
highly unbalanced repeated measurement data set.
We also consider a set of covariates that could
explain the variation in wusers’ consumption
behavior, including users’ personal information
and shopping logs. Tab. 3 describes these
explanatory variables in detail. In the application,
the nonlinear effect of age is assumed including

age’ among the covariates.
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The model described in Section 1 is fitted on
this dataset. To account for the over-dispersion,
we used a parametric negative binomial regression
model for the mean,

action;; ~ NegBin(g,u; ),

In(p ;) = In(time; ) + B + B click,; +
B.favor, + Bsage; + B,age! + f3;gender; ,
where ¢ is the over-dispersion parameter, time; is
the month of time from the start day. The
In(time; ) is needed to account for different

observation periods.

Tab.3 Variable descriptions

variable description

action number of times a user make purchases

1 for <<18; 2 for [18,24]; 3 for [25.29]
age 4 for [30,34]; 5 for [35,39]; 6 for [40,49]]

7 for =50
age’ square of age
gender 0 for female, 1 for male
merchant number of merchants clicked
click number of items clicked
favor number of items added to favourite

Tab. 4 reports the estimates of the regression
parameters. And also as a comparison, a GLMM
approach with visit-time as random effect was
implemented. From the results, we notice that all
variables  are

the explanatory statistically

significant. The variable click is a positively
significant variable, indicating that users who click
more will have more chance to make purchases,
given other explanatory variables. The times users
make purchases is negatively related to favor and
gender. Since gender takes 1 for a man and 0 for a
woman, it is obvious that a man tends to make less
purchases. And the fact that favor is negatively
correlated to purchase suggests users who add an
item to favorites may be less likely to buy it at the
same time. As for nonlinear relations, the
quadratic effects of age is negatively significant,
which means that middle-aged people will make
The over-dispersion parameter

more purchases.

5=0.682 is significant, suggesting that the counts

are over-dispersed.

Tab. 4 Estimates of the parameters

our method GLMM

Est.  SE p-value Est. SE p-value

(intercept) —3.693 0.514 <C0.01 —3.688 0.482 <C0.01
click 0.045 0.004 <C0.01 0.034 0.004 <<0.01
favor —0.244 0.051 <<C0.01 —0.189 0.043 <C0.01

age 1.133 0.219 <C0.01 1.195 0.204 <<0.01
age’ —0.098 0.023 <C0.01 —0.109 0.021 <<0.01
gender —0.1130.049 0.021 —0.1200.047  0.01

@ 0.682 0.028 <C0.01 0.832 — —

For the parameters in the correlation, we
obtained 7, = 1. 055, 7, =0. 142, 7, = —0. 037.
We summarize the fitting with some plots.
Fig. 1(a) shows the plots of the fitted M. A.
coefficient versus the time lag, suggesting that a
polynomial model for correlations is reasonable.
The curved pattern between the correlation and
time in Fig. 1(b) is interesting, which may be due
to the fact that purchases made within a short
period of time are more correlated to each other
but such an effect becomes weaker in a relative

longer term.

o1

¢
(=]
o
|
correlation

T T T T T T
01 2 3 4 5
lag lag
(a) plot of fitted M.A. coefficient  (b) plot of fitted correlations
versus time lag versus time lag

Fig.1 The online shopping data

4 Conclusion

With discrete longitudinal data, we propose a
mean-correlation model based on moving average
Cholesky decomposition. For this class of models,
computing the full likelihood is often infeasible.
Therefore, we propose a computationally efficient

MCEM approach for model estimation. Our
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method can deal with any set of marginal
distributions in Gaussian copula model, and is
simple and flexible to implement. We assess the
performance by a series of simulation studies which
show that our approach has very competitive
performances. Overall, the proposed framework is
revealing some informative features from the
statistical modeling for generic data with temporal
dependence. It is benefits to discover interesting
dependence properties of the covariance structures.
Topics for future research include the feature
selection for the mean-correlation model and the
assessing model

model diagnostic tools for

adequacy.
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Appendix

Our method is a two-step estimation procedure, where we estimate B and ¢ from a marginal likelihood
and then maximize the conditional likelihood given these estimates. By treating p and ¢ as nuisance
parameters, we can get consistent estimators of parameters Y.

Proof of Theorem 2. 2

Let 6,=(n,, 7,) be the true parameters, and n be the estimated coefficients where nj is found by
maximizing the jth marginal likelihood,

ﬁ]:argmaxlnLi(yj, 1,) (AD
"J

Because maximizing Eq. (A1) is equivalent to using independence estimating equations in the GEE

(23] which is consistent under Condition C1 and Condition C2, we now state a result, without

framework
proof, concerning the consistency of the marginal parameters.
Lemma A.1 Under some regular conditions C1~C3, ﬁ»no in probability as n—>c<,
Analogously to the proof of standard maximum likelihood estimation in Ref, [25], we define
IRSNR SR AC TR T 2N B S PP AC ISR T
n Lly; n, 7y noa— o f(yis n.Yo)

However, we cannot use the law of large numbers directly to show this converges to its expectation

(A2)

under 0, as each summand of z (y) is a function of all the data, through 11 Instead, we develop the
following result.

Lemma A.2 let/,(0) =1[,(n,7y) =InL(y;n,7) = Zlnf(y(; n,Y) ., we have [, (1/1} Y)/n—

i=1
Ey Inf(y.n,.7) in probability as n—>co,
Proof Under Conditions Cl ~ C3 one has that, for any fixed 7., the Taylor expansion of the

standardized likelihood around n, is

1 ~ 1 1 -~ o
— L,V ==101 ) +——n)" —L.(n, V) |3 (A3)
n n n on
where 1 is between 1] and 1,. By the Cauchy-Schwarz inequality, the last term is
1 - e 1 o
—(n — — , << — — —1,(n, X A4
| —(n—n) anln(n v 15 < In—mn, | x| anl (. v |5 | (AD
By Lemma A. 1, we know || 7—1, | =o0,(1). We then look at the square of the last term, viz.
a dim(n) n a
— 1 ’ 0 = Inyf Y/ K N1t = : A5
| o o0 1 | ;{;am nf(yosma1) 1312 =0, (A5)
which follows from the regularity conditions. Hence
o
I a—nl,,(n, Y ly Il =0,060 (A6)
So the remainder term in Eq. (A3) is given by
1 - o 1
| —(q—n)" —L. (0.7 |5 [ <—0,(1DO,n) =0,(1) (AT
n on n
This in turn implies
1 ~ 1
;Z,z(n,}')=;l,,(no,7)+o,,(1) (A8)

Therefore for any ¥, [, (ﬁ, Y)/n—>E, Inf(y.,n,,7) in probability. The proof is completed.

Now we can return to the standard proof, it can be easily shown that
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1Sy, fo (Y107
MPSEEES ST AC AR, R ARG ONYIHE A KL [ 2N S SO I (A9
n - f(y,'; n,y()) f(y ’7](>9Y<J)
unless f(y,0)=/f (y; 0,), and 00, in probability and hence y—>7, in probability. Then through the

standard process, we can easily obtain the asymptotic normality.
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