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0 Chromium element geochemistry

0.1 Chemical properties of chromium

Chromium (Cr) is a transition metal element
of the sixth subgroup (VIB) of the fourth period in
the periodic table. Its atomic number is 24, with
the average atomic mass of 51. 9961 and the outer

L Chromium has

electron configuration as 3d°4s
a density of 7. 14, a high melting point of 1900 °C,
and a stable cubic crystalline structuret. The
name “chromium” is sourced from the Greek word
of “chroma”, which represents “color” referring to
colour materials with chromium components™,
Chromium is a redox-sensitive element, which
could be stable in +6, +3, +2 and 0 valences on
the earth in relation to different oxygen fugacities.
Generally, Cr*" and Cr’" are the predominant Cr
species in Earth’s near-surface environments
according to the prevailing redox potential (Eh)
and PH condition®™. In  Earth’s surface
environments, trivalent Cr is often bound with
0O* or OH
are both immobile and insoluble. By contrast,

Cr®" as CrO? (chromate), HCrO, and Cr,O% ,

are mobile and soluble in aqueous fluids. In crust

to form oxides or hydroxides, which

and mantle rocks, Cr could occur as Cr’" and
Cr'". The Cr*"/Cr*" ratios in the rock-forming
minerals have been documented to be dominated by

[4-14] s and

the mineral structure and redox condition
will be discussed in detail in the following section.
In Earth’s core, Cr is present as Cr-metal, or Fe-
rich intermetallic crystals (e. g., Fe;Cr), or
sulfide crystals (e. g. , CrS, FeCr, S,

0.2 Chromium distribution in primary terrestrial

reservoirs

)i

4.
o34

TE M

The distribution of Cr in terrestrial reservoirs

is  mainly controlled by the core-mantle

differentiation, partial melting, and various

crystallization mineral phases during magma
evolutions. The carbonaceous chondrite CI(one of
eight major groups of carbonaceous chondrites) , is
typically used as reference materials for the
average composition of planets!®'®. The Cr
content in the carbonaceous chondrite CI is
approximately 2 623 ppm (or pg/g). while the
average Cr content of the bulk planet earth and the
mantle is approximately 4 400 ppm and 2 500
ppm, respectively, based on the Mg/Cr ratio

[17-20]

correction According to the mass balance

calculation, the content of Cr in the core was
estimated to be ~9 000 ppm!'7 2,

The Cr content in mantle peridotite ranges
from more than 1 000 ppm to 10 000 ppm, and is

L1s-21-22] " 1 the mantle

about 2 500 ppm as a whole
peridotite, the main Cr-bearing minerals are
clinopyroxene, orthopyroxene, garnet and spinel

and other (23241

aluminum-containing minerals
Compared with the mantle, the Cr content of the
crust is significantly lower. The Cr content of the
upper continental crust is usually dozens of ppm,
with an average value of about 92 ppm™ . The
middle continental crust has a similar Cr content to
that of the upper continental crust, with an

L26-3153] © The lower

average value of about 76 ppm
continental crust is slightly higher in Cr content,
with an average value of ~ 215 ppm, due to the
fact that the lower continental crust displays more
enrichments of mafic rocks than middle and upper
ridge
basalts (MORB) contain ~ 300 ppm Cr"**', while

the Cr content of oceanic island basalt (OIB) varies

continental crustst®*J,  The mid-ocean
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from a few ppm to thousands of ppm, most of
which are below 500 ppm™ ™,

The distribution of Cr in various reservoirs on
the surface is extremely heterogeneous. The
content of Cr in marine sediments is generally low,
generally ranging from 1 to 500 ppmM**!, The
sandstone has generally 10 to 100 ppm Cr, while
Cr contents are 85 to 400 ppm in the shale, and 1

155 Cr exists in the form

to 3350 ppm in the soi
of both Cr*" and Cr'" in modern oceans, in which
Cr®" is predominant, with an average content of
0.05~1 ppbH&+d,

In summary, the mantle and the core host
almost all of Cr in the bulk earth, while the
relative proportion of the mantle to the core
remains controversial. In contrast, Cr contents in
the crust and surface reservoirs are relatively low,
and contribute very limited Cr to the bulk earth.
0.3 Partition behaviors of Cr during high temperature

processes

The silicate earth is significantly depleted in
Cr relative to the carbonaceous chondrite CI, based
on the observation that the Cr/Mg ratio (0. 0115)
of the mantle is only 0. 42 of that (0. 0275) of the
carbonaceous chondrite CI''* 21 A previous study
suggested that this may be due to the fact that Cr
tends to enter the core in a reduced form during the
core-mantle differentiation process:**™’, reflecting
that most of Cr (above 60%) in the ecarth may
According to balance

enter the core. mass

calculations, the distribution coefficient Dy,
between the core and the silicate earth is proposed
to be 2.5 to 3.5 to fit the current Cr content in the

mantleLN., 20, 47, 48] .

According to the conditions for
satisfying this equilibrium partition coefficient, the
dynamics of the initial accretion of the earth
accretion, the core-mantle differentiation process
and the physical and chemical conditions have been

[1s.46.4856]  Current experimental studies

restricted
have shown that the distribution coefficient of Cr
between metal and silicate is mainly controlled by

(T), the

elements in the metal phase (C, S, Si, and so on)

temperature composition of light

and oxygen fugacity ( fO, ). The siderophile

affinity of Cr becomes stronger, at lower
temperatures, and with higher contents of C, S,
and Sit* 5157

the high partition coefficients of Cr and other

In early studies, in order to satisfy

redox-sensitive elements between metals and
silicates, the initial materials of earth accretion
were considered to be reducing materials, such as
enstatite chondrites. During the later accretion
process, the FEarth’s magma ocean became more
oxidized due to late-arriving planetesimals with
higher FeO/Fe ratio or the

proCeSS“gv 54, 58*6()—\. An

self-oxidation
alternative opinion
accounting for the Cr partition into the core is that
Cr can also have strong siderophile affinity under

and high

This speculation is consistent with the

high oxygen fugacity

conditions™®,

temperature

fact that the solubility of O in metals increases with
the increase of temperature and pressure, implying
that both Earth and Mars may have grown from

0521 Based on the seismic wave

oxidizing chondrites
velocity studies on the core with different contents
of light elements, Badro et al. " % proposed that

oxygen is an essential light element in the Earth’s

core, reflecting that the oxygen fugacity
environment during core-mantle differentiation
might be higher than previously thought.

Although it is still debatable regarding the initial
materials and the accretion models of the Earth,
the Cr partition behavior between metals and
silicates displays a remarkable potential in solving
this issue.

The partition coefficients between rock-
forming minerals and silicate melts have been well
constrained in previous studies. Early studies
mainly focused on the partition behaviors of total
Cr (both Cr*" and Cr*" ) in the mineral-melt

system. Generally, except for olivine, Cr is

compatible in other major mantle minerals,

including clinopyroxene, orthopyroxene, spinel

t%"2) As mentioned earlier, Cr mainly

and garne
exists in + 2 and + 3 valence forms in silicate

minerals and melts, and the oxygen fugacity was

)
¥
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proposed to be capable of controlling the partition
coefficients of Cr between mineral and melt. Li et
al. ®1 conducted an experimental study that Cr’"
preferentially enters into pyroxene and olivine
lattices relative to co-existing spinel under high
temperature and reducing conditions (at the Cr-
CrO buffer)
Mallmann and O’ Neill™
partition coefficients of Cr*" between minerals and
melts are 0. 853 0. 31 for olivine, 0. 8440. 05 for
orthopyroxene, 0. 58 = 0. 11 or 0. 65 £ 0. 08 for

in Fe-free systems. However,

obtained that the

clinopyroxene, respectively, while D+ are 0. 854
0. 31 for olivine, 3. 52=+0. 17 for orthopyroxene,
12.6 £0. 67 or 8. 72 £ 0. 38 for clinopyroxene,
respectively. The differences might also reflect
that the preferential substitutes of Cr*" and Cr’"
are distinct in different mineral structures. Spinel,
often containing several to tens of percent of Cr in
weight, is generally considered to incorporate Cr
as + 3 valence. Cr species in spinels are always
proposed to be in + 3 valence over a large oxygen
fugacity range™. This speculation is consistent
with the XANES analyses of Cr*" /2 Cr ratios (=
1) of spinel separates from both the earth mantle

peridotites at f O, near the FMQ oxygen fugacity
buffer’”, and the lunar basalts at fO, of 4~6 log

unit below the FMQ buffer*?,

Chromium partition behaviors between these
minerals and melts might account for the Cr
content variation in the mantle peridotites.
Previous studies obtained that the Cr contents are
relatively constant from refractory to fertile
peridotites, independent of the degrees of melt
extraction, in other words the whole Cr partition
coefficient between the partial melt and the residue
is close to approximately 1 (e. g., Fig. 1) 21,
According to the non-modal melting model"" , this
might be attributed to consumption of Cr-rich
pyroxenes and part of spinels to the melts and
generations of Cr-depleted olivines in the residues
during partial melting of the mantle peridotite. To
balance the no net-change of Cr, residual spinels
would incorporate more Cr, leading to Cr # in
spinels (the molar ratio of Cr/(Cr—+ Al)) increasing
via the enhanced degree of the partial melting"™,

During mafic magmatic evolutions, fractional
crystallization minerals control Cr content
variations. There are two main stages involved,
fractional crystallizations of minerals during the
upwelling of the initial mantle melt and subsequent
magmatic emplacement or eruption. Fractional

crystallizations of minerals during the latter

process has been well constrained based on
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Data are from GEOROC (http://georoc. mpch-mainz. gwdg. de/georoc/, accessed on March 10, 2020).

Fig. 1 Whole-rock Cr contents versus Mg# values diagram of global peridotites

reflects Cr partition behaviors during partial melting
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widespread lavas and intrusions in the Earth’s

surface. Generally, olivine fractional
crystallization could slightly raise Cr contents in
melts, while fractional crystallizations of spinels
(e. g., chromites) and clinopyroxenes remarkably
reduced Cr contents in melts. Sometimes, due to
the fact that olivine and spinel are both early
crystallization minerals, cumulate minerals and
single content drop

residual melts display a

accompanying decreased Mg(O contents and Mg
number (mole ratio of Mg/(Mg—+Fe)) % It is
worth noting that there seems to be a Cr content
gap between the initial magma of the investigated
mafic rocks and the direct partial melts from the
mantle peridotite, the former having Cr contents
almost one order of magnitude lower than the

[21, 22, 34-37]

latter This discrepancy could be linked
to the fractional crystallization of spinel/chromite
during the mantle melt upwelling. Roeder and
Reynolds'™ have conducted experiments focusing
on Cr solubility and chromite crystallization in
basaltic melts at temperatures of 1200~ 1400 C,
over a range of oxygen fugacity and pressure of 1
atm and 10 kbar. The highly

dependent on the temperature, considering that

solubility is

the basaltic melt tends to incorporate much less Cr
at the lower temperature under the same redox
conditions, e. g. » Cr,O; contents of silicate glass
are 0.573 wt. % at 1400 C, 0. 162~0. 168 wt. %
at 1300 C, and ~ 0.046 wt. % at 1200 C,
respectively, under the oxidized condition ( /O, of
~—7.6). On the other hand, the oxygen fugacity
also controls Cr solubility in melts, e. g. » Cr;O;
contents of chromite-saturated melts varies from
0.05 wt. % at fO, of —3 to 1.4 wt. % at fO, of
—12. 8 under the pressure-temperature condition
of 1300 °C and 1 atm, respectively. This
observation could explain why mafic rocks formed
under the reduced conditions (such as the Moon,
Vesta) have higher Cr contents (several thousand
ppm) than the terrestrial mafic rocks (several

hundred ppm).

In summary, Cr plays an important role in

Earth’s

differentiation process and in

constraining the core-mantle
tracing partial
melting and magmatic evolution processes, but
there remain some problems. The Cr isotope
system in the corresponding processes may provide

new ideas for solving these problems.

1 Chromium isotope geochemistry

Chromium consists of four stable isotopes
**Cr,””Cr,”Cr, and *'Cr ) with
abundances of 4. 35%, 83. 79%, 9. 50%, and
2.36%,

isotopes, part of *Cr is a decay product of the

natural

respectively®™®?.  Within these four

extinct nuclide *Mn, with a half-life of 3. 7
Myttt

produced in supernovae before the formation of the

Because these short-lived nuclides were

solar system. “Mn-"*Cr dating system is capable

of investigating early evolutions of the solar

[82-86]

system The neutron-rich isotope **Cr has a

mass close to Fe, and is produced in Type Ia and

[87-88]

Type Il supernovae Combined with other

iron peak element isotopes, such as **Ca,” Ti,* Ni,
and **Ni, these isotope anomalies have been used
meteorolite  sources and

to  trace mixing

(3. 8590 " Tn this paper, we will focus on

processes
the stable Cr isotope system. Stable chromium
isotope compositions are typically expressed as the

S Cr/Cr

National Institute of Standards and Technology

permil-difference in relative to the

( NIST ) Standard Reference Material 979
(SRM979) , following the delta notation:
(cc)
6 Cr = | smie 3 11000 (D
(=)
“Cr SRM979

Apart from the mass-independent fractionation of
Cr isotopes, in recent two decades, researches on
mass-dependent fractionations of Cr isotopes also
have achieved great development, especially in
low-temperature environments. Similar to other
multi-valence element isotopes (e. g., Fe, Cu),
the redox-related process is currently known as the
fractionation of Cr

main factor causing the

)
¥
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isotopes. Schauble et al.™ calculated that the
equilibrium fractionation factor A*Cr between
CrO%" and Cr (H,0){" at room temperature (25
C) is 6. 6%, and the fractionation value can reach
7.6% at 0 ‘C. The equilibrium fractionation factor
of Cr(H,0)¥" — Cr,0; at 25 °C is only 0.4%.
Ellis et al. "' also obtained that during reductions

" by three different reducing

from Cr*" to Cr
agents (intertidal silt, freshwater clay silt and
magnetite) , the obvious fractionation (3%,~4%;)
would occur. Heavy Cr isotopes were partially
enriched in residual Cr®", due to the smaller ionic
radius of Cr’" relative to Cr®".

of the

temperatures, the fractionation of Cr isotopes up

Accompanying

changes redox environment at low
to parts per mil level occurred. Furthermore,
remarkably different mobilities and solubilities of
Cr'" and Cr*", as well as highly toxic of Cr®'F
make Cr isotope an index to trace Cr pollution
sources and the degree of reduction after
treatments. Thus, the stable Cr isotope system is
very useful for tracing the attenuation of Cr
contamination in

groundwater systems, and

reconstructing the ancient atmospheric oxygen

evolution under the low temperature
COndl‘[lOn[m’ 41, 44, 95*123].
Unlike the low-temperature process, Cr

isotope fractionations during high temperature
geological processes are considered to be limited
due the equilibrium fractionation value being
theoretically proportional to 1/T%", Along with
the improvement of mass spectrometry technology
and the wide application of double-spike methods
using both multi-collector thermal ionization mass
( TIMS )t
inductively coupled plasma mass spectrometry
(MC-ICP-MS) #7127
been improved obviously (e. g., > + 0. 5%,
28Dy £ 0. 2% £ 0. 06%0, 28D,

making it possible to identify small

spectrometry and multi-collector

the analytical precision has

isotope
differences. In the recent decade, more and more
works have focused on Cr isotope behaviors in high

temperature processes.

In this following, we will focus on advances
that have been made in a stable Cr isotope system
in high-temperature processes. Mass-independent
Mn-Cr isotope dating and °'Cr anomalies. as well
as Cr isotope system in low-temperature
processes, have been discussed in detail in Refs.
[3,128]. Readers who are interested in these fields
are referred to these two reviews.

1.1 The earth mantle and partial melting process
1.1.1

As the earth mantle hosts over 99% Cr of the

(BSE), the Cr

composition of the mantle could represent the

The earth mantle and the bulk silicate earth

bulk silicate earth isotope
isotope composition of the BSE. Schoenberg et
al. "% first studied the Cr isotope compositions of
a variety of mantle-derived rocks, including mantle
xenoliths, ultramafic rocks, cumulates, and
oceanic and continental basalts. The Cr isotope
composition (8Cr) of the investigated samples
displays a range of —0.21%, to —0. 02%, with an
average value of — 0. 12 4+ 0.10%, (2SD).
Subsequently, Schoenberg et al."*’ conducted
repeated analyses on the same samples, and the
obtained 8 Cr values of peridotites are positively
correlated with MgO/(MgO + FeO) values. They
speculated that partial melting might fractionate Cr
isotope, with lighter Cr isotope incorporating into

melts, leaving heavier Cr isotope in residues. Xia

et al. '*%) systematically analyzed forty-five mantle
xenoliths including spinel and garnet facies
peridotites, pyroxenite veins, metasomatized

xenoliths from central Mongolia, North China,
Siberia and Southern Africa. The 8 Cr values of
these mantle xenoliths range from —0.51+0. 04 %,
(2SD) to +0.75£0.05% (2SD), which might be
melting, kinetic

influenced by partial

fractionation, and secondary alteration. Having
eliminated effects of the partial melting and the
metasomatism, we obtained the pristine, fertile
upper mantle with a Cr isotope composition
(8Cr) of —0.14£0.12%, (2SD) (Fig. 2). Sossi

1 [131]

et a reported that twenty terrestrial ultra-

mafic samples display the §°Cr value ranging from
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—0.177£0.06% (2SD) to —0.0740.04%, (2SD),
with an average of —0. 11+0. 05%, (Fig. 2). A

1. 1% presented

most recent work by Jerram et a
that Cr isotope compositions of a series of the
komatiites formed from 2. 7 billion years(Ga) to 89
million years (Ma) are relatively constant, and
have a limited range of —0.16=+0.02%, (2SD) to
—0.0140.02%, (2SD). These komatiites have an
average value of — 0. 12 £ 0. 04%,, which is
(Fig. 2). In

summary, the average Cr isotope composition of

consistent with previous studies

the earth mantle and the bulk silicate earth are
most likely in a range of —0. 14%, to —0. 11%.
1.1.2 Partial melting process

In the studies by Schoenberg et al. '*! and Xia

[130]
b

et al. refractory peridotites tend to be

enriched in heavier Cr isotope compositions than

could be

fractionated during the partial melting process. Xia

fertile ones, indicating Cr isotope

1. 1% speculated that the isotope fractionation

et a
might be in relation to the isotopically heavier
residual mineral (e. g. , spinel) relative to melts.
This speculation was based on the previous two
works. First, Farkas et al. "% conducted stable Cr
isotope analyses of globally distributed 30 mantle-
derived chromites, which display a slightly heavier

Cr isotope composition (with an average 8”Cr

value of —0. 084+0. 13%,) than the average value
of the BSE. Subsequently, Shen et al. " also
obtained that chromite-bearing peridotites have
heavier Cr isotope compositions than adjacent
chromite-free ones. However, the partial melting
process of mantle peridotites involved consumption
of some mantle minerals and generations of melts
and many mantle minerals.

To fully

fractionation behavior and mechanism, Shen et

understand the Cr isotope

[75]

al. focused on mantle minerals ( olivine,

pyroxene and spinel) from mantle peridotite
xenoliths (including lherzolites, clinopyroxene-rich
lherzolites, and wehrlites) in the Cenozoic basalts
from the North China Craton. Two methods have
been used to approach the equilibrium inter-
mineral Cr isotope fractionation factor, as well as
influences from mineral structures and redox
conditions. Firstly, Shen et al. "™ conducted the
synchrotron radiation X-ray near-edge absorption
spectroscopy (XANES) analyses to quantitatively
Cr*" /Cr*"  in
pyroxenes and spinels, and obtained approximately

20% Cr*"

clinopyroxene-rich lherzolites,

determine ratios of olivines,
in the olivine from lherzolites and
while the Cr in
olivines from wehrlites is basically + 3, implying

incorporations of the subducted oxidizing material

M4
2
Y e *

0.5
A mantle xenoliths!"*"
@ mantle xenoliths and komatiites!*"
0.3k © komatiites"*”
Nl
e\\g 0
2 O
b O
T oo8e
03
05 o
0 20

40 60

MgO/(wt.%)

Data from Refs. [130-132]. Data of samples, that were proposed to have suffered significantly from metasomatism, have been excluded.

The compilation indicates the partial melting process could lead to Cr isotope fractionation, generating isotopically lighter melts.

Fig.2 Compilation of Cr isotope compositions of mantle xenoliths and komatiites

)
¥
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(e. g. ,» sedimentary carbonate) in the Pacific slab
oxidized Cr*" to Cr'". Cr*" is not found in
orthopyroxene, clinopyroxene and spinel in all

samples, which is in line with previous

experimental data and observation results of lunar

+

basalt pyroxene, indicating that Cr’" in pyroxene
py g py

was oxidized by Fe’" and Ti'" during the cooling
process'’.  Combining the mineral crystal
structure model and the basic theory of isotope,
the equilibrium fractionation coefficient between
the mineral phases, generally follows the order of

Spl > Cpx, Opx > Ol

results of individual minerals from the lherzolites

Secondly, the analysis

show that these minerals have reached the
equilibrium of Cr isotope fractionation, and the

fractionation factors are consistent with the

calculation results of the model™ . Using inter-
mineral equilibrium fractionation factors, the
isotope composition feature of part of reported
mantle xenoliths could be interpreted by the
isotope fractionation during partial melting"™.
Recently, Bonnand et al. "™ conducted dissolution
and crystallization experiments of chromites from
basaltic magmas and obtained that, in both cases,
melts were isotopically lighter than equalized
chromites, consistent with the result from Ref.
[75].
1.2 The earth core and chondrites

Metal-silicate segregation is one of the most
important differentiation events in the early solar
system"". For terrestrial planets and
differentiated asteroids, a metallic inner core and a
silicate outer mantle formed after this event. The
mantle were

chemical signatures of the

dramatically changed from the chondritic
compositions, especially for siderophile elements.
Considering the different bonding environments
and valence states of siderophile elements between
metal and silicate, isotopic signatures of these
siderophile elements in the mantles or cores may
also be changed from the bulk planets. The
magnitude of fractionation is dependent on the core

formation conditions.

For the Earth, the

asteroids, mantles are depleted in Cr, which is

Moon, and some

[20, 135]

likely to result from core formation

Chromium is increasingly siderophile under higher
temperature, more reduced conditions, or with
elevated S and C contents in the metal™,
Compared with the Cr element system, Cr isotope
could help to provide further constraints on the
core formation conditions, and to shed light on the
nature of Cr depletion in the terrestrial and lunar
mantle. A series of Cr isotope studies on different

[15. 129-132, 137, 138]

planetary reservoirs , as well as the

Cr isotope fractionation factor determination

between metal and silicate in high temperature-

pressure metal-silicate experiments'™’ ) have
been conducted.

High temperature-pressure experiments
conducted showed no significant Cr isotope

fractionation between molten metal and silicate
melt at 1. 5 GPa and 1923 K, but their experiments
suffered from the loss of Cr to the capsules,
indicating the system was not in equilibrium*™,
Subsequent systematic high temperature-pressure
experiments overcame the problem of Bonnand et
al. "™ and showed that the heavier Cr isotopes
were preferentially enriched in the metal phases
relative to the coexisting silicate phases, with
A Crpeiat steae 0f 0. 08 0. 01%, at 1873 K, 1 GPa
and 6 wt. % Ni content in the metal'***!.

[5) reported a lighter Cr isotope

Moynier et al.
composition for all subgroups of chondrites with
8*Cr values of — 0. 2%, to — 0. 4%, which is
0.1%0 to 0. 2% lighter than the bulk silicate Earth
(BSE). The heavier Cr isotope composition of the
BSE was suggested to have resulted from light Cr
isotope entering the metal phase preferentially
during core formation, and a relatively low core

and  highly

conditions were needed to induce such a large

formation temperature oxidizing

isotope variation between chondrites and the
BSE!M

measurements on chondrites showed no resolvable

However, subsequent Cr isotope

which 1is consistent

: 129, 131, 132, 137, 13
differencet 3. 132, 137, 138] |
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with the high temperature condition (=>3000 K) of

terrestrial core formations and experimental

[139]

results The 8*Cr values of the lunar mantle

and the Vesta’ s mantle were constrained to be

—0.21 £ 0. 06% and — 0. 22 £ 0.03%:,
respectively™ ! BT M 0 which is ~ 0. 1%, lower

than the chondritic value. The core formation
temperature of these small planets is relatively
low, so the core formation effect on Cr isotopic
compositions of mantles is larger for the Moon and
Vesta. If core formation occurred under a
relatively reduced condition or elevated S and C
contents in the core, the core formation process
could totally or partially account for the lighter-
than-chondrites Cr isotope compositions of mantles
of the Moon and Vesta. Iron meteorites have
extremely heavy Cr isotopic composition (8% Cr
value up to 2. 85%), and this signature cannot be
the result of asteroidal core formation and possibly
reflect the effect of fractional crystallization™*!-,
1.3 The igneous crust and fractional crystallization
processes
Having  resolved isotope fractionation
behaviors during partial melting processes, mafic
magmatic evolution is also proposed to be capable
of causing Cr isotope fractionations. Bonnand et
al. "% first systematically investigated lunar mare
basalts represented by mafic rocks from the Apollo
mission. They obtained that the 8*Cr values for
lunar mare basalts were positively correlated with
indices of magmatic differentiation, such as Mg #
and Cr contents, reflecting Cr isotopes were
fractionated during the lunar mafic magmatic
differentiation. They speculated that spinel and
pyroxene were the main phases controlling the Cr
isotope composition during fractional crystallization,
due to @ equilibrium fractionation where heavy
isotopes are preferentially incorporated into the
spinel lattice, or @ a difference in isotope
composition between Cr’" and Cr®" in the melt.
This was subsequently documented by Shen et
al. ™. Additionally, Shen et al. " also speculated

that the low oxygen fugacity environment tends to

induce larger isotope fractionation during the

fractional crystallization and partial melting.

Thus,
(~FMQ) are often more oxidized than the lunar
basalts (IW to IW-2), the question of whether

isotope fractionations could or not occur during

considering  that  terrestrial  basalts

fractional crystallizations of terrestrial basalts
remains unconstrained.

Both Shen et al. ! and Bonnand et al. [
have conducted Cr isotope composition analyses of
oceanic island basalts (OIB) from Hawaii and
Fangataufa Island, respectively. The consistent
observation displayed that via the progressive
fractional crystallization, residual melts became
isotopically lighter, while accumulates had heavier
isotope

Cr isotope compositions., The Cr

fractionation during the fractional crystallization

was attributed to spinel/chromite and
clinopyroxene  fractional  crystallization  and
accumulation (Fig. 3)M* ) Combined with the

equilibrium fractionation factor determined by
Shen et al. and the oxygen fugacity of the
Hawaiian OIB, Shen et al [

fractional crystallization model, which fits the

presented a

Hawaii OIB data well. Both works gave estimation
of Cr isotope compositions of initial OIB magma,
ranging from —0.15%, to —0.18%, (Fig. 3). This

value was slightly lighter than the isotope

composition of the pristine mantle xenoliths,
supporting that partial melting of the mantle
isotopically heavier

peridotites generated

refractory, releasing melts with lighter isotope
compositions than the mantlel® .

So far,

interpretations of the Cr isotope compositions for

there remains a debate for

the lunar and the Vesta mantle. Sossi et al. [*!
analyzed additional lunar igneous rocks based on
the lunar marine basalts from Bonnand et al. ",
and obtained similarly lighter than the BSE isotope
They

speculated that the lunar mantle might have a

composition for the lunar samples.
lighter Cr isotope composition than the Earth’s

mantle, and proposed a volatile loss model during

)
¥
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The stars in different colors are the estimated compositions of initial basaltic melts for Earth, Moon and Vesta. The dotted lines
represent fractionation curves for residual melts after fractional crystallization of different mineral assemblages, while the numbers in
parentheses are the volumetric proportions of crystallized mineral assemblages, e. g. ,» 99:1 represents factional crystallization of 99 %
olivine + 1% spinel by volume, and 90:9:1 represents fractional crystallization of 90% olivine + 9% clinopyroxene + 1% spinel by
volume. The solid red and grey lines represent the mixing curves between initial melts and crystallized mineral assemblages (99 % olivine
+ 1% spinel by volume) for terrestrial and lunar cumulates, and the green solid line is calculated by mixing the estimated initial melt for
five eucrites and the average composition of two diogenites. The gray area represents the estimated average value of the BSEL25: 129-132]
Data from Refs. [131,140-143].
Fig.3 Compilation of Cr isotope compositions in different terrestrial and extraterrestrial mafic rocks.

The modelling curves for fractional crystallizations and accumulations follow Ref, [ 143 ]

cooling and accretion of the Moon. A similar fractional crystallization under different oxygen

speculation has been made by Zhu et al. *, who fugacity environments**. Combined with the

also found the HED meteorolites from Vesta with

a lighter Cr isotope composition than the BSE.

However, volatile components of metals as Cr’"

were theoretically enriched in light Cr isotopes,
which were inconsistent with the isotopically
lighter lunar basalts. Both Sossi et al. '*" and Zhu

[140

et al. " proposed that the volatile Cr was in CrO,

species. A subsequent experiment by Sossi et
al. "1 documented Cr volatilizations might lead to
Cr isotope fractionation generating lighter
isotopically melts. The other argument is that the
Vesta mantle have

lunar mantle and the

indistinguishable Cr isotope compositions from the

YT 2] - We speculated that

earth mantle (Fig. 3
the obtained isotope composition differences among
the earth terrestrial basalts, and lunar and Vesta

basalts might be a result of partial melting and

previous published data, we present a quantitative
model that relates the Cr isotope compositions of
basalts from the Earth, the Moon and Vesta to the
crystallization assemblage, the degree of fractional
crystallization and the Cr*" /3 Cr ratios of minerals
and melts, which are related to the different
oxygen fugacity environments for different
planets. The initial lunar mantle is estimated to be
relatively homogeneous, with a BSE-like Cr isotope
composition (—0. 16%, to —0.09%,, Fig. 3). Further
work is needed in the future to test the detailed effects
of these two processes on Cr isotope systems for
planetary formation and evolution.
1.4 Serpentinization and high temperature-pressure

metamorphism

Serpentinization is the middle-low temperature

(<500 C) hydrothermal alteration of mafic and
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ultra-mafic rocks in the surface and near-surface
environments, mainly occurring in the ocean floor,

[146]

mid-ocean ridges, and subduction zones

Farkas et al. [

first found that along with
increased degree of serpentinizations, Cr isotope
compositions of serpentinites tend to incorporate
heavier Cr isotopes (up to + 1. 22%,, Fig. 4).
They have interpreted it as a result of a large
amount of Cr®" being reduced from isotopically
heavy Cr®" components in the hydrothermal fluid
by Fe?" or H,, which were produced during the
serpentinization process. This explanation requires
that the hydrothermal fluid have high Cr contents
and heavy Cr isotope compositions. However,
with respect to common hydrothermal fluids, such

fluids

(seawater), the Cr content is much lower than

as low-temperature hydrothermal
peridotite (about 0. 05~1 ppb), and the Cr isotope
composition is about +0. 41%, to + 1. 51%,M" .
Although the Cr content in magma hydrothermal
fluids is relatively high (such as ultramafic and
mafic magmas, up to thousands and hundreds of
ppm, respectively), Cr mainly exists in the form
of +3, and the Cr isotope composition is close to
the BSE.

hydrothermal fluids cannot explain the observed

Obviously, seawater and magmatic

conducted systematic comprehensive analyses of
the three holes of the Global Ocean Deep Sea
Drilling Program (ODP) 897C, 897D, and 1070A,
the ophiolites from Northern Apennines in Italy,
and the serpentinites in the Syros subduction zone
complex. These serpentinites also display a large
isotope variation range (—0. 2%, ~ +0. 6%, Fig.

4). Compared with the work by Farkas et al. ©**1,

[47] also observed a roughly negative

Wang et al.
correlation between &7Cr and Cr contents in
serpentinites, and proposed two  possible
explanations: (D During serpentinization, partial
Cr®t was oxidized to Cr’", which is enriched in
lighter Cr isotope compositions due to kinetic
fractionations; @ A multi-stage alteration process
was proposed. including the oxidation of Cr®" in
the peridotite in the early serpentinization process,
forming a Cr"-bearing fluid with the BSE-like
isotope composition. Via the long-term water-rock
interaction, the Cr’" in serpentinites and the Cr®"
reach  the fractionation

in fluids isotope

equilibrium, which causes serpentinites to be
enriched with light Cr isotopes, while the fluid is
enriched with heavy Cr isotopes. Finally, part of
the Cr®" with heavy Cr isotopes in fluids re-enters
the serpentinites by sulfide reduction. For the first

possibility, there is currently a lack of relevant

serpentinite data. Subsequently, Wang et al. "
2
A serpentinites!*’)
i < serpentinites!'*”
15

I A

. serpentinites (Shen et al.(unpublished data))

£ A A

U -

% & A

s | @
1 P& g5
-0.5 1 ] 1 ] 1 1 1 i 1
0 2000 4000 6000 8000 10000
Cr content/ppm
Data from Farkas et al. (%3], Wang et al. [1¥7), and Shen et al. (unpublished data).

Fig. 4 Whole-rock Cr contents versus Cr isotope composition diagram in serpentinites from different areas

)
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experimental evidence. The latter possibility is
more complicated. Although its feasibility cannot
be judged, it also needs to face the problem of
mass balance, that is, how much Cr®" in the
reducing fluid is efficient to change Cr isotope
compositions of ultramafic rocks. Recently, we
have conducted Cr isotope composition analyses of
serpentinites in different tectonic settings from
Tonga, Xigatse, western Tianshan, and Cyprus

(Shen et al.,
unpublised data®. Our data displayed that Cr

under review®; Shen et al.,

isotope fractionation behaviors during

serpentinizations were complex, which was

dependent on mineral-water interactions and
unique tectonic setting environments. Therefore,
there is still a lot of controversy over the
mechanism of Cr isotope behaviors during
serpentinization, and further research is required.
Recent experimental and natural observations
have highlighted a significant enhancement of Cr
mobility with increased Cl contents and reduced
environments in fluids under lower crust and upper

Abundant Cl
during serpentinite dehydrations (0. 3 wt. % to 2. 56

(1481547 released

mantle P-T conditions
wt. % in fluids)™* should have the capacity to
transfer Cr’" from serpentinites into subduction
fluids, which might modify the subduction zone
complex and overlying mantle wedge, as well as
potential arc lavas. So far, no direct observations
on Cr isotope fractionation during serpentinite
dehydrations have been reported, and more work is
expected in future,

Schoenberg et al. "% tested some metamorphic
minerals (including fuchsite and uvarovite) , which
have heavier Cr isotopic composition of —0, 05%,~
0.05%, but there is no clear explanation. Farkas
et al. '** also evaluated the behavior of Cr isotopes
in many metamorphic processes ( such as
hydration, carbonatization, low-high temperature
metamorphism, and so on). The analyzed

minerals were crocoite, fuchsite, stichtite,

serpentine, chrome pyrope, chrome chalcedony,

chrome diopside and chrome tremolite. All these

minerals have heavier Cr isotope composition than
the BSE and the

implying that metamorphisms might cause the

mantle-derived chromites,

become  isotopically  heavier.

1 [134]

minerals  to

147]

Subsequently, Shen et a and Wang et al. ©
have analyzed whole-rock Cr isotope compositions
of the metamorphic mafic rocks with varying
metamorphic degrees from Dabie-Sulu orogen,
eastern China, to investigate the Cr isotope
behavior during the continental crust subduction.
The greenschists, amphibolites and eclogites
BSE-like Cr

Lack of resolvable isotope variability

display the isotope composition
features.
among the metamorphic rocks from different
metamorphic zones might indicate that no
systematic Cr isotope fractionation was associated
with the degree of metamorphism (Fig. 5).
Furthermore, Cr isotope was also fractionated
limitedly during retrograde metamorphisms based
on the eclogite-amphibolite  lenses  from
Shuanghe"*!, One possible explanation might be a
lack of fluid or a Cr-poor fluid from subducted
sediments during the continental crust subduction,
which hinders Cr mobility and thus limits Cr

[134]

isotopic fractionation Compared with the

continental crust subduction settings, the
subduction of the oceanic crust, which contains
amounts of hydrous Cr-rich reservoirs (especially
serpentinites, alteration oceanic mafic rocks),
might provide diverse constraints on the Cr isotope
system in the subduction zone (Fig. 5). For
example, Shen et al. (under review) has obtained
that the eclogites and blueschists from western
Tianshan recorded dehydrations of serpentinites in
the oceanic subduction channel (Fig. 5). This

work might give rise to more attention on using Cr

@ SHEN J, WANG S ], QIN L P, et al. Tracing serpentinite
dehydration in a subduction channel: Chromium isotope evidence
from subducted oceanic crust. Geochim Cosmochim Acta, under
review.

@ SHEN ], QIN L P, CHEN Y X, et al. Chromium isotope
systems of serpentinites, implication for Cr recycling in the Earth

surface. Unpublished data.
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0.2
B subducted oceanic crust (Shen et al., under view)
I subducted oceanic crust (Dabie orogen)!**!

0.1 @ subducted oceanic crust (Qinling orogen)"*”!

Pitosta L 0
-0.2 [:] ‘
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_04 2 . ¥ 2 |l

8
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Data from Shen et al. 3], Wang et al. [1*7), and Shen et al. (under view).

Fig.5 Whole-rock LOI versus Cr isotope composition diagram of metamorphic mafic rocks from subducted oceanic crust

(Southwestern Tianshan) and continental crust (Dabie orogen and Qinling orogen)

isotopes as a potential index for serpentinite-
derived fluids in subduction zones.

As previously discussed, since the mantle
hosts most Cr and has high Cr contents, the
effects of mantle metasomatisms on Cr isotope
compositions were generally considered to be
limited. At the mineral-scale, Shen et al. 7 found
that metasomatisms could influence Cr isotope
from Beiyan

( Cpx-) rich

lherzolites and wehrlites by means of mineral-melt

compositions of minerals

metasomatized  clinopyroxene-
interaction and/or kinetic diffusion, leading to

disequilibrium inter-mineral Cr isotope
fractionation. Especially, during metasomatisms,
Cr isotope compositions of spinels were relatively

while Cr

pyroxenes were more variablel™, Chen et al.

constant, isotopes of olivine and

[156]
also obtained that olivine and pyroxenes were Cr
isotopically heavier than co-existing chromites in
Kizildag ophiolites, attributing to metasomatism
and partial melting or fractional crystallization. At
the whole rock-scale, Xia et al.""* obtained two
pyroxenite veins from Shavaryn displaying very
light Cr isotope compositions of — 1. 36 +0. 04%,
and — 0. 77 =+ 0.04%,

isotopically heavier lherzolites, which has been

with complementary

interpreted as a result of kinetic diffusions during

the melt infiltration and  metasomatism.
Therefore, the high temperature metamorphism
and metasomatism in the mantle are capable of
modifying the Cr isotope composition of the mantle
xenoliths by interactions between rock (mineral)
and melt or kinetic diffusions.

1. 197 combined the

A recent work by Bai et a
Cr elemental zoning and Cr isotope compositions in
mineral separates, and highlighted a new potential
implication of the Cr isotope system for assessing
time scales of magma cooling, based on the well
constrained Cr diffusion behavior in spinel, olivine

Although this method is

original, further tests are required to verify this

and orthopyroxene "¥'%/,

hypothesis.

2 Conclusion

In the last decade, the chromium isotope
system in high-temperature settings has achieved
plenty of remarkable results. This paper has
reviewed most of the works recently reported in
this area to evaluate current Cr isotope research
status, as well as the remaining problems. In the
following, we will list and highlight the potential
research directions and hot points in the future:

( I )Chromium isotope compositions of upper

crust remain unconstrained, which is an important
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reservoir of the crust.

(I ) Mechanisms and controlling factors for
Cr isotope fractionations during serpentinizations
should be constrained. Cr isotope behaviors during
subduction

weathering of serpentinites and

dehydration of serpentinites also need
assessments, which influence reconstructions of
the ancient oxygen level and crust-mantle Cr
isotope recycling, respectively.

(>  More high

experiments on Cr isotope fractionations for core-

temperature-pressure

mantle differentiation are needed to further
constrain physical and chemical conditions for
planetary evolutions.

(IV) More work is also expected focusing on
Cr valences and Cr isotope fractionations of rocks
from different planetary bodies to assess
attributions from volatilizations and inter-planetary

differentiations to their Cr isotope compositions.
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