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Abstract: A novel method for anisotropic surface meshing was proposed. Different from the previous
methods using globally conformal embeddings or high-dimensional isometric embeddings, our algorithm
is based on the idea of locally isometric embedding. In order to achieve isometric embeddings, the input
surface was partitioned into a set of cone patches that are remeshed one by one. First, a patch was
parameterized bijectively into a plane, then an anisotropic mesh was generated in the parameterized
domain, and finally, the remeshed patch was mapped back to the input surface. To deal with the
stitching problem between different patches, the cone patch was made containing the previously
unprocessed boundary. Therefore, the triangles near the boundary could be remeshed. The robustness of
our method was demonstrated on various complex meshes. Compared to the existing methods, our
method is more robust, and contains a smaller approximation error to the input mesh.
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1　 Introduction
Anisotropic remeshing is an important problem in
computer graphics[1], scientific computing[2], fluid
simulation[3], etc. It has extensive and important
applications in many fields, such as geometric
processing, mechanical manufacturing, and physical
simulation. Namely, anisotropic remeshing requires that
the shapes, sizes, and orientations of mesh elements
conform to the input Riemannian metrics in advance.

Compared to isotropic remeshing, anisotropic
remeshing has more advantages. For example, in fields
of interpolation error control and finite element
analysis[2,4], the anisotropic remeshing requires fewer
mesh elements than the isotropic remeshing to achieve
the same level of accuracy.

Anisotropic remeshing should satisfy the following
requirements:

(Ⅰ) The sizes and orientations of mesh elements
should conform to the given Riemannian metric, that is,
the image of each element under the inverse
transformat.

(Ⅱ) The minimum angles of the images of mesh
elements under the inverse transformation is as large as
possible; otherwise, numerical problems will occur in

subsequent applications (such as finite element analysis).
(Ⅲ) The approximation error of the anisotropic

mesh to the input mesh should be as small as possible.
Furthermore, it should retain the features of input
meshes (see Fig. 1) .

Fig. 1 　 ( a) The result of the LCT algorithm[5] . ( b) our
result. It can be seen that the LCT algorithm misses the
geometric features at the ear of the model, and the
approximation error is large. Our result retains the features, and
approximates to the input mesh better.

The above requirements involve many complex and
coupled nonlinear constraints. Thus, it is very
challenging to generate an anisotropic mesh that satisfies
all of the requirements. One possible idea is based on



the embedding[6-10] . First, it embeds the input mesh
into a target space where performing the remeshing is
relatively easier, and then performes the remeshing in
the target space, and finally transforms the mesh back to
the original space using the inverse map of embedding.
However, existing embedding algorithms have
unavoidable defects. Zhong et al. [6] conformally
embeds the mesh into a parametric 2D domain. But this
embedding method could not guarantee bijection, so
that it is difficult to get the inverse of embedding.
Besides, it is complex to process the high-genus
meshes, thereby affecting the robustness of the
algorithm. In Ref. [7], the input mesh is embedded
into a high-dimensional Euclidean space for anisotropic
remeshing. According to the Nash embedding
theorem[11], which states that every Riemannian
manifold can be isometrically embedded into some high-
dimensional Euclidean space, such embedding always
exists. However, if the input metrics have sudden
discontinuities, computing a practical embedding may
be challenging.

Our algorithm is also based on the idea of
embedding. Unlike previous works, our method adopts
the idea of locally isometric embedding. The basis of
this idea is that the input mesh can always be segmented
into a set of single connected patches, each of which
can be isometrically parameterized into the plane. As
long as the parameterized patches are remeshed
anisotropically conforming to the given Riemannian
tensor fields, we map the remeshed patches back to the
input mesh to achieve the resulting anisotropic meshes.
The advantages and contributions of our method
include:

(Ⅰ) Our algorithm only needs to deal with the
patches homeomorphic to the disc, so that all the
surfaces of arbitrary genus can be remeshed using a
unified process. It guarantees the robustness of the
algorithm.

(Ⅱ)Since each patch is embedded one-to-one into
the plane with low distortion, it theoretically guaranteed
that the embedding is bijective.

(Ⅲ)The generated anisotropic meshes approximate
the input surfaces with small errors, and we retain sharp
features of the input surface.

A large number of experiments have shown the
robustness of our method (see Fig. 2(b)) . Compared
to state-of-the-art methods, our anisotropic meshes
approximate the input mesh better ( see Fig. 1) and
retain the features of the input mesh ( see Fig. 1 and
Fig. 2(a)) .

2　 Related work
2. 1　 Anisotropic mesh generation
An isotropic mesh can be generated by inserting Steiner
points in poor-quality elements and recalculating the

Fig. 2　 There are many self-intersections on model (a) . Our
algorithm successfully generates ideal results. The model (b) is
a high-genus mesh with multiple “holes”, and our method also
remeshes it correctly.

corresponding Delaunay triangulation. By modifying the
criteria and methods of the point insertion, this method
has also been successfully applied to anisotropic
remeshing[2,12] . Another classic method for anisotropic
remeshing is based on centroidal Voronoi diagram
(anisotropic centroidal Voronoi tessellation,
ACVT) [13-16] . This method uniformly samples points on
the mesh to generate the corresponding anisotropic
Voronoi diagram (AVD), and moves the points to the
center of gravity of the Voronoi diagrams. It iterates the
process until convergence. However, computing
anisotropic Voronoi diagram is very expensive, thereby
seriously affecting the efficiency and robustness.

The particle-based mesh generation methods[17-19]
regard the mesh vertices as particles. They first define
the repulsive or elastic forces between the particles, and
then update the particles until the static equilibrium is
achieved. According to the different energy definitions,
the final mesh with different properties are generated.
However, these methods strongly depend on the
selection of parameters, and the results of different
parameters may vary widely.

The quality of the anisotropic mesh can be
measured by the difference between the solution u of the
corresponding partial differential equation and the
piecewise linear interpolation function u︿ [20] . Previous
work proposed the optimal Delaunay triangulation
( ODT ), which generates the anistropic mesh by
minimizing the error function ‖u -u︿ ‖Lp(Ω)

[21] . This
idea is also applied to anisotropic remeshing works. A
representative one is the mesh generation algorithm
using local convex functions[5] . It defines a convex
function locally in each simplex and does not require u
to be a global convex function. However, the algorithm
includes a non-smooth projection operation in 3D space,
which may cause a large approximation error between
the resulting mesh and the input mesh.

Embedding the input mesh into another space for
mesh generation[6-10] is another popular way. The input
mesh is conformally embedded into the plane based on
the uniformization theorem[6] . Then a weighted
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centroidal Voronoi tessellation ( WAVT ) and its
Delaunay triangulation are computed on the plane.
Finally, the 2D mesh is mapped back to the original
space to generate the anisotropic mesh. However, it is
not robust to remesh the high-genus models. An
intersection-free high-dim embedding of the input mesh
is computed[7] such that the pullback metric of the
embedding matches the Riemannian metric. However,
the solution of this embedding depends on a non-global
optimization problem, which may fall into the local
minimum. Besides, if the Riemannian metric is not
smooth enough, computing such a non-intersecting
embedding is challenging.
2. 2　 Parameterizations-based mesh generation
Computing parameterizations is a highly researched
topic[22,23] . With the help of parameterization, the
remesh can be carried out in the parameterized domain.
The centroidal Voronoi diagram algorithm[24-26] on the
2D parameter domain is used to generate the mesh, but
the calculation of Voronoi diagram is time-consuming,
thus affecting the performance and efficiency of the
solution. Similar to the locally embedding idea of our
work. Ref. [26] adopts a local parameterization method
to generate a high genus isotropic mesh. The remeshing
method based on local parameterization has two
difficulties: ① parameterizations distortion greatly
affects the quality of remeshing; ② the remeshing
quality near the patch boundary is poor. Our locally
embedding algorithm resolves these two difficulties.

3　 Method
3. 1　 Overview
Inputs　 Given a triangle mesh M∈RR3, with V, T, E
denoting the set of vertices, faces, edges, respectively,
we define the Riemannian metric M on the input mesh.
Specifically, the Riemannian metric of a point p is
defined as a 3 × 3 symmetric positive definite (SPD)
matrix Mp . Let UΣUT indicate the Singular Value
Decomposition of Mp, where U is an orthogonal matrix
and Σ is a diagonal matrix. The Q=UΣ

1
2 UT implies the

inverse transformation, which transforms anisotropic
space to isotropic space. On the other hand, a target
edge length Ltar is specified. After mapping the
generated anisotropic mesh into the isotropic space, the
edge length should be as close as possible to Ltar . Since
the metric needs to be updated in the remeshing
algorithm (Section 4. 1), a reference mesh Mref ∈RR3 is
also required. Usually we set Mref =M.

Outputs　 The output is a triangle mesh M︿ , with
the shape, size, and distribution of whose triangle face

t􀮨∈T􀮨 conforming to the metric M defined on the input

mesh M. More precisely, the mapped triangle t︿ = Q t􀮨

under the transformation Q should be a regular triangle.
Embedding methods 　 The existing embedding

algorithms, such as the globally conformal
embedding[6], have to take the genus of the complex
surfaces into consideration, and have no guarantee of
the bijectivity. Thus, we propose an algorithm based on
locally isometric embedding ( see the Algorithm 1 and
Fig. 3) . Here, the locality means that the surface will
be segmented into a set of simply connected patches and
each patch will be remeshed subsequently. The isometry
requires that length of any curve on the surface remains
the same as much as possible before and after
embedding in the Euclidian space.

Algorithm 1　 Anisotropic mesh generation algorithm based
on locally isometric embedding

Input: Triangle mesh M∈RR3, Riemannian metric field M
Output: Triangle mesh M︿ ∈RR3, anisotropy is consistent with

M
1: while There are still unprocessed triangles in M t∈T do
2:　 ∥Cone patch generation (Section 3. 2)
3:　 a. Create a cone patch P with t as the center
4:　 ∥Anisotropic Mesh Generation (Section 3. 3)
5:　 b. Parameterize P to the 2D plane and get the mesh M︿

6:　 c. Transfer metric M to 2D parameter domain
7:　 d. Anisotropic mesh generation, making M︿ consistent

with metric M
8:　 e. Map M︿ back to the original space using the inverse

map, replace P, and update the mesh M
9: end while
10: ∥minimum angle increase (Section 3. 4)
11: while There are triangles of poor quality t in M do
12:　 Post-processing the surface patches near t to improve

the quality of the elements
13: end while
Challenges 　 However, there are two major

difficulties in our algorithm with locally isometric
embedding:

(Ⅰ)Bofore the embedding, the input mesh needs to
be segmented into a collection of simply connected
patches. It is a challenging to make sure that each patch
can be embedded into the target space with very low
isometric distortion.

(Ⅱ)The patches after remeshing should be stitched
together. The inter-compatibility of the connectivity
between different patches is another issue to be
addressed.

Key ideas
(Ⅰ)To embed each patch into the target space with

low distortion, we require that the patch approximates
the cone surface.

(Ⅱ)To optimize the boundary region of each patch
effectively, we process the patches in sequence. The
remeshed patch Pprev will be mapped back to the source
surface M to update the corresponding part of the input
mesh. Then we select the next patch Pcur, which has an
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Fig. 3　 Algorithm pipeline. The dark blue ellipse is the visualization of the Riemannian tensor field; the yellow part is the currently
processed patch. The figure shows the results after the first, third, and seventh iterations, respectively. The remeshing process is done
piece by piece, and there are intersections between the current cone patch and the processed area, which ensures that the elements near
the boundary could be remeshed correctly.

Fig. 4　 Boundary treatment. Pprev =Ωgreen∪Ωblue, Pcur =Ωyellow

∪Ωblue, There is a common part between the two surfaces
Ωblue =Pprev∩Pcur, The unprocessed triangle patches in Ωbluewill
be processed in Pcur .

intersection with the interior of Pprev . This ensures that
the unprocessed boundary region of Pprev in the previous
step is optimized in current step ( see Fig. 4) . Here,
Pprev, Pcur represents the processed, and to be processed
patch, respectively.
3. 2　 Cone surface generation
Cone surface is a kind of developable surface[27-29],
whose Gaussian curvature is zero everywhere. The cone
surface has two basic components: the central axis and
the angle between the surface normal and the axis,
which are denoted by nP, αP, respectively. We define
the following cost term:

E(P, t) = (〈nP, nt〉 - cosαP)2 (1)
For a given surface P and any triangle t with unit normal
nt, the cost term E ( P, t ) measures compatibility
between them. If the cost is small, the triangle is
consistent with the developability of the surface P.

The generation process of a cone patch is as
follows: First, nP, αP are needed for generating a
patch. A vertex is randomly selected on the input mesh,
and the 1-ring faces of the vertex Ωf are used to
calculate nP, αP . Specifically, the corresponding nP and
αP are obtained by solving an optimization problem with
nonlinear constraints as follows:

min
nP,αP

1
AΩf

∑
t∈Ωf

At E(Ωf,t), s. t. ‖nP‖2 = 1 (2)

where AΩf
denotes the patch area. Then traverse every

triangle face t in Ωf and finally P is initialized with the
triangle with the smallest cost E(Ωf, t) . We also call
the triangle t the seed of the cone patch.

To expand P, new triangles need to be added to P.
Thus, the following metrics are defined:

C(P, t) = E(P,t) D(sP, t)2β

AP
(3)

where sP represents the seed triangle of P, D( sP, t)
represents the shortest path inside the patch between the
two triangles, and β is set 0. 7 by default.

P is expanded according to the following rule:
Insert the adjacent triangles of the seed into a priority
queue Q. Q is sorted by C(P,t) in ascent order. As
long as Q is not empty, the top triangle with minimal
cost can be popped. If its cost is less than a threshold
Cmax, add it to the cone patch and push its adjacent
triangles into Q. Otherwise, the patch expansion
finishes. The threshold Cmax controls the approximating
quality to the developability. It is set 0. 1 by default.
Note: It is critical to prevent generating the loop
structure when adding triangles so that the final patch is
simply connected. Specifically, we store the edges and
vertices of P in set EP, VP . Before element t is added
in, we check whether all the three vertices and only one
edge of t are already in VP, EP, if not, there is no loop
structure and t can be added into P.
3. 3　 Planar anisotropy mesh generation
Embedded algorithm 　 Theoretically, a cone surface
can be embedded in a plane without distortion. In this
paper, the bijective parameterization method based on
the obstacle function of the triangle inequality[30] is
used.

Riemannian metric transfer 　 To generate the
anisotropic mesh in 2D space, the Riemannian metric
defined on the vertices of the 3D mesh is transfered to
the 2D parameter domain with as low distortion as
possible. This is ensured by our algorithm: the simply
connected surface we generated is highly developable so
the result has very low distortion, which makes the
transfer of the metric from 3D to 2D with almost no
distortion.
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For a vertex v = (vx, vy, vz) of the 3D mesh M,
the corresponding metric and the parameter coordinate
are defined as M and v︿ = (v︿ x, v︿ y, 0) . We solve the
metric M︿ on v︿ . The metric M is decided by three
principal directions d1, d2, d3 and three eigenvalues k1,
k2, k3 . Since the z-coordinate in the 2D parameter
domain is 0, there are only two principal directions d︿ 1,
d︿ 2 of M︿ that need to be solved. Consider unit
orthogonal frames O = (d1, d2, d1 ×d2) and Q︿ = (d︿ 1,
d︿ 2, d︿ 1×d

︿
2) on vertices v and v︿ . For any vertex vi in the

1-ring of v, we define the vector vvi
△
􀪅 vi -v. Then,

project it to the plane of d1, d2 and find the unit
coordinates of the projected vector under the frame O,
also recorded as vvi . Repeat this step for 1-ring of v︿ to
get the unit vector v︿v︿ i . Finally traverse all the vectors in
1-ring Ωv, and minimize the following error function:

∑
i∈Ωv

‖vvi - v︿v︿ i ‖2 (4)

using the least squares method to solve for the principal
directions d︿ 1, d︿ 2 . Let D = (d︿ 1, d︿ 2, d︿ 1 ×d

︿
2 ) and K =

diag(k1, k2, k3), then the metric M︿ =DKDT .

Fig. 5　 One iteration process. The figure shows the process of
selecting a cone surface patch and remeshing it. The yellow part
represents the currently processed patch.

Anisotropic mesh generation using local convex
functions　 For the parametrized mesh M︿ , we use the
anisotropic mesh generation algorithm[5] based on local
convex functions for remeshing. The algorithm has three
steps: updating the connectivity, optimizing the vertex
positions and adjusting the edge lengths. The results can
be seen in Fig. 5(c) .

Mapping back to the source 　 The positions and
the connectivity on the boundary remain unchanged, so
we just record the positions of vertices on the boundary
before parameterization, and map them back directly.
For the internal vertex vin, we project it onto the initial
2D mesh before optimization. Without loss of
generality, let vin be projected on a triangle of tin, and
calculate its coordinate of the center of gravity bin =(b0,
b1, b2), then the positions of vin in the original space is

pin = b0p0,in + b1p1,in + b2p2,in,
where p0,in, p1,in, p2,in are the coordinates of the vertices
of tin in 3D space.
3. 4　 Minimum angle improvement
The anisotropic meshes generated by the above steps

may have triangles with large deviations from the given
Riemannian metric, such that the triangles often have
small angles, which can greatly affect the stability of the
solver of finite element method and error analysis. In
this paper, the quality of these triangles is improved by
optimizing the vertex positions and connectivity. See
Algorithm 2 for the procedure.
Algorithm 2　 Minimum angle improvement

Input: Triangle mesh M∈RR3, Riemannian metric field M
Output: Triangle mesh M∗ ∈ RR3, which has the larger

minimum angle
1: while q(t) of t∈T is below a threshold and the number

of iterations does not reach the upper bound do
2:　 a. Generate a cone surface patch P over a number of

neighbors centered on t
3:　 b. Parameterize P to the 2D domain and get the mesh

M︿

4:　 c. Transfer the metric M to the 2D parameter domain
5: 　 d. Update the connectivity and optimize the vertex

positions on M︿ , see later
6:　 e. Map M︿ into the original space using parametric

inversion, and update P and M
7: end while
Quality evaluation　 For any triangle facet t∈T, it

is mapped into a facet t􀮨 in isotropic space using the
inverse transformation induced by the Riemannian
metric. Define the quality

q(t) = q􀮨(t􀮨)
△

􀪅􀪅 2 3 a
ph

∈ (0, 1],

where a, p and h are the area of t􀮨, half the perimeter of

t􀮨, the longest length of t􀮨, respectively. The closer t􀮨 is to
an equilateral triangle, the greater q(t) . And q(t)= 1 if

and only if t􀮨 is an equilateral triangle. θ indicates the

angles of t􀮨, and obviously, the closer θ is to 60°, the
higher the quality of t.

Vertex position update 　 For t∈T, M1, M2,
M3 are the Riemannian metrics of its vertices, then the
metric of t is Mt =(M1 + M2 +M3) / 3. Let the SVD
of Mt is Mt = UΣVT, Λ = Σ

1
2 , the inverse

transformation Q t =UΛVT induced by Mt, which can

map t in anisotropic space to t􀮨 in isotropic space.

Ideally, t􀮨 should be an equilateral triangle. Let p denote
the current optimized vertex, we define the following
energy:

Qt = ew(‖J‖2F+‖J -1‖2F) (5)
Qp = ∑

t∈Ωp

Qt (6)

where J is the Jacobi matrix between t􀮨 and a standard
equilateral triangle with edge length Ltar . Using the
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gradient descent pnew =p-α∇pQp, if the energy
descends and the triangle is not flipped, we update the
position of p.

Connectivity update 　 The topological operation
we apply in this process only contains edge-flipping.
The above energy Qt can be used to determine whether
the edge is flipped, and the principle of maximizing the
minimum angle can be used as well. Repeat the
algorithm until the mass Qt of all triangles or the number
of iterations reaches the specified values. The number of
small angles will be reduced by the minimum angle
improvement (see Fig. 6) .

Discuss　 The idea of minimal angle improvement
is proposed in an isotropic remeshing method: EBFR
method[31] . As mentioned in many papers, minimal
angle improvement is essential for many simulation
applications[2,4,31] . Although there are only a few small
angles, it deteriorates the stability of the solver in FEM
and the error bound in the interpolation problem.
However, EBFR method fails for some models because
it may run into infinite loop when greedily improving
the minimal angle[32] .

4　 Experiments
Our algorithm is implemented based on C++, and the
experiments are all completed in a desktop with
Windows 10 operating system, 3. 20 GHz Intel Core i7-
8700 CPU, 16 GB RAM. A large number of
experiments are carried out in this paper, and we discuss
and compare our method with LCT algorithm[5],
conformal embedding algorithm[6], partical-based
algorithm[19], Lp CVT algorithm[15] and obtuse angles
removing alrotithm[34] .
4. 1　 Metric computation and evaluation
Riemannian metric generation 　 The Riemannian
metric on each vertex during the remeshing process is
obtained by linearly interpolating the Riemannian metric
of the reference mesh Mref . Assuming the current vertex
v∈V, projecting v onto the nearest facet t on Mref, the
corresponding barycentric coordinates are b0, b1, b2 .
Then, we denote the Riemannian metrics of vertices of t
as M0,M1,M2, and the Riemannian metric of v,
Mv, can be formulated by barycenter interpolation:
Mv =b0M0+b1M1+b2M2 .

The Riemannian metric of Mref is obtained by
curvature. We denote k1 and k2 as principal curvatures
and d1, d2 as corresponding principle directions, then
the corresponding Riemannian metric
M = (d1, d2, d1 × d2)diag(max(| k1 | , 10-4),

max(| k2 | , 10-4), 0) (d1,d2,d1 × d2)T,
where 10-4 is used to prevent the long edge length
caused by too small curvature.

Quality evaluation criterion 　 In addition, in

Fig. 6 　 The minimum angle improvement. Magenta
represents the triangle faces with the minimum angle less than
20°. ( a) There are 10 magenta triangle faces without the
minimum angle improvement. (b) After the improvement, the
number of such faces is 0.

order to evaluate the quality of the mesh, the relevant
indicators need to be quantified. For facet t ∈T and the

corresponding facet t􀮨 in the isotropic space, we use the
following metrics to evaluate the quality of t:

① The quality of facet

q(t) = q􀮨(t􀮨)
△

􀪅􀪅 2 3 a
ph

∈ (0, 1],

where a is the area of t􀮨, p is the semi-perimeter of t􀮨,

and h is the length of the longest edge of t􀮨. The closer t􀮨
is to a regular triangle, the larger the value of q( t),

and q(t)= 1 if and only if t􀮨 is a equilateral triangle.
② The minimum angle

θ(t)
△

􀪅􀪅 min(degt􀮨0, degt􀮨1, degt􀮨2),

where {degt􀮨i }
2
i=0 correspond to three angles of t􀮨. The

closer θ ( t) is to 60°, the better the quality of the
triangular face t.

③ We uses all angles θ (not only the minimum
angle) and frequency histograms hist( θ),hist(q) for
visual analysis.

As stated in Sec. 3. 1, q ( t), θ ( t ) are both
calculated via the inverse transformation induced by the
input Riemannian metric, so that the better the value of
quality q(t), θ( t), the smaller the difference between
output and the input metric. In fact, our post-processing
is enlightend by AMIPS method[33], which can
effectively penalize the maximal distortion between the
source and the target.
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Fig. 7　 Results of different target edge lengths. (a) Input mesh. The target edge length of (b), (c), (d) is 1. 5 times, 3. 0 times,
6. 0 times Lavg, respectively. Here, Lavg represents the average edge length of the mesh ( image under inverse transformation) and Ltar

indicates the target edge length.

4. 2　 Algorithm analysis
Target edge length 　 An advantage of anisotropic
meshes compared to isotropic meshes is that they can
use fewer numbers of faces to achieve the same level of
accuracy. We get different results for different target
edge lengths (See Fig. 7) . The leftmost side is the
input mesh, and the target edge length Ltar of the results
on the right hand side is 1. 5, 3 and 6 times of the
average edge length Lavg, respectively. It can be seen in
the figure that the result of 1. 5 times is almost the same
as the input visually, some details (such as tentacles) in
the result of 3 times blur, and some details (such as the
torso) of 6 times are lost.

Quality of input mesh 　 We use several input
meshes of different qualities for testing, while these
meshes represent the same model. As shown in Fig. 8,
the first row contains inputs with four different qualities,
and the second row are the corresponding outputs. It can
be seen that whether the input is isotropic of high
quality or with high noise, we always get acceptable
results. It demonstrates our algorithm is robust. In this
experiment, the target edge length is set to 0. 1.

Expansion of cone patches 　 In order to ensure
that there is a common intersection between different
cone patches, our method selects a center point on the
boundary of the surface patch that has been processed,
and generates a new cone patch with this center point.
The advantage of this procedure is that there it does not
need to explicitly detect the collision of the boundaries.
However, sometimes it can not guarantee well-processed
triangle facets in the boundary. If the region near the
center point has poor developability and high distortion,
the generation of cone surface patches may be
obstructed, which may affect the coverage between
patches. For this reason, after the cone patch
generation, we exapnd 1 - 2 neighborhoods in the
boundary which increases the area of the intersection
region with the processed surface, so that the boundary
area can be processed better. Fig. 9 shows the effect of
subsequent expansion on the results. Fig. 9 (a) does
not perform subsequent expansion, so it can be seen that
in some areas with poor developability, the mesh quality
is poor. The red triangles in the green box are near
degeneration, and the minimum of the metrics θ, q are
less than 0. 05, 2°, respectively, which is not conducive

Fig. 8　 The results of the same surface with different tessellations.

Fig. 9　 The effect of whether the subsequent expansion of the
surface patch is performed. ( a ) shows the result of no
expansion, and the triangle facets in some region ( see the
green frame) is close to degeneration. This is because of the
bad developability of the patch nearby, so that the boundary
part is not fully processed. (b) is the result of the expansion
of 1-ring. It can be seen that the pacth has been fully
processed, and the quality of the triangular faces reaches a high
level.
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Fig. 10　 More results.

Fig. 11 　 ( a) The result of the LCT algorithm. ( b) Our
result. Neither performs the minimum angle improvement. The
minimum angle of the red triangular facet is θ<25°. The right
hand side is the histogram of all angles θ and quality q. It can
be seen that θ is more concentrated around 60°, and the quality
q is all above 0. 4 and more close to 1 in our algorithm.

to the subsequent processing and application of the
model. Fig. 9 (b) is the result of 1-ring expansion,
where the quality of triangle facet is higher, and the
minimum of θ, q is not less than 0. 25, 15°,
respectively. But this does not mean that the larger the
cone patch, the better, because a lager patch may have

Fig. 12　 (a) The result of the LCT algorithm. (b) Our result.
In this comparison, neither performs the minimum angle
improvement. The LCT algorithm fails to retain the sharp
features of the input model, which further deteriorates the
quality of triangular facets in the nearby area (see the area in the
green frame) . Our method not only has smaller approximation
errors to the input model, but also maintain the quality of
triangular facets at a high level.

a poor developability. Experiments verify that it is
generally sufficient to expand about 1-2 neighborhoods
of the patch.

More models　 As shown in Fig. 10, the results of
our method are highly consistent with the Riemannian
metric. The metric θs are concentrated about 60°, and
qs are mostly above 0. 2, concentrated about 1.
Statistics of a series of remeshing quality metrics and the
timings for all the demonstrated examples are reported in
Table 1. Fig. 11 shows a comparison between our
method and the LCT method[5] . For a fair comparison,
we use the same input mesh, and the target edge lengths
are both set to 0.692757 (1.5Lavg). Our method generates
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triangle factes which are more uniformly distributed in
anisotropic regions, and the shapes and sizes of which in
different areas vary more smoothly and naturally. As
shown in the histogram, the results of our method are
more consistent with the given Riemannian metric.
4. 3　 Comparison
Fig. 12 shows another comparison between our method
and the LCT algorithm. For a fair comparison, we use

the same input mesh and the target edge lengths are both
set to 0. 0832209 (1. 5Lavg ) . The mesh shape is a
screwdriver, whose front is thin and sharp. The
approximation error of the LCT result to the input mesh
is very large in these areas. For example, a “ gap”
appears in the front of the model, but the result of our
method can approximate the input mesh well.

Tab. 1　 Statistics. The table records the number of vertices and faces of the input / output mesh, the target edge length (Ltar), other
related measures and the running time in seconds for all the models. qmin,qmax,qavg denotes the minimum, maximum, and average of the
triangular quality measure, respectively. θmin, and θmax denote the minimum, maximum angle of the triangle after the inverse
transformation, respectively. θavg represents the average of the minimum angles among all the triangles. Note that the experiments don’t
perform minimum angle improvement by default, except for those specified separately.

Model #Vinput #Finput #Voutput #Foutput Ltar qmin / qmax / qavg θmin / θmax / θavg time(s)

Cat Fig. 1 27894 55712 10841 21606 1. 5Lavg 0. 032 / 0. 999 / 0. 848 1. 89° / 175. 65° / 47. 70° 56. 246

Focal octa Fig. 2(a) 13000 25996 10926 21848 1. 1Lavg 0. 018 / 0. 998 / 0. 755 1. 06° / 175. 43° / 41. 66° 36. 831

Heptoroid Fig. 2(b) 49958 100000 5393 10870 3. 0Lavg 0. 113 / 0. 997 / 0. 825 7. 08° / 164. 91° / 46. 03° 63. 534

Fig. 3 (e) 2309 4614 1554 3104 1. 35Lavg 0. 130 / 0. 998 / 0. 828 7. 94° / 162. 69° / 46. 25° 3. 598

Holes3 Fig. 11(a) 5884 11776 4463 8934 1. 1Lavg 0. 261 / 0. 999 / 0. 835 17. 01° / 145. 70° / 48. 04° 3. 363

Holes3 Fig. 11(b) 5884 11776 4425 8858 1. 1Lavg 0. 422 / 0. 998 / 0. 893 26. 64° / 125. 14° / 50. 97° 9. 666

Elk Fig. 6(a) 5194 10388 4285 8570 1. 1Lavg 0. 157 / 0. 998 / 0. 864 9. 92° / 159. 14° / 48. 82° 13. 377

Elk Fig. 6(b) 5194 10388 4285 8570 1. 1Lavg 0. 383 / 0. 998 / 0. 864 20. 84° / 129. 96° / 48. 79° 13. 377

Ant Fig. 7(b) 13000 25996 5582 11160 1. 5Lavg 0. 254 / 0. 998 / 0. 873 10. 45° / 145. 86° / 49. 46° 19. 375

Ant Fig. 7(c) 13000 25996 1256 2508 3. 0Lavg 0. 184 / 0. 998 / 0. 834 9. 10° / 154. 71° / 46. 76° 10. 429

Ant Fig. 7(d) 13000 25996 302 600 6. 0Lavg 0. 174 / 0. 997 / 0. 757 6. 63° / 152. 63° / 41. 36° 9. 658

Oni1 Fig. 8-1 1435 2866 2390 5856 0. 1 0. 061 / 0. 998 / 0. 850 3. 90° / 171. 87° / 47. 76° 6. 564

Oni2 Fig. 8-2 4435 8866 3237 6470 0. 1 0. 215 / 0. 998 / 0. 848 13. 27° / 151. 49° / 47. 69° 9. 542

Oni3 Fig. 8-3 28930 57856 3032 6060 0. 1 0. 059 / 0. 998 / 0. 769 3. 17° / 171. 63° / 42. 26° 29. 376

Oni4 Fig. 8-4 13000 25996 3262 6520 0. 1 0. 059 / 0. 997 / 0. 842 3. 34° / 172. 05° / 47. 17° 12. 967

Sumoroti Fig. 9(a) 13000 25996 5714 11424 1. 5Lavg 0. 037 / 0. 999 / 0. 853 1. 91° / 175. 03° / 48. 03° 20. 224

Sumoroti Fig. 9(b) 13000 25996 5619 11234 1. 5Lavg 0. 275 / 0. 999 / 0. 858 15. 79° / 143. 00° / 48. 35° 17. 836
Screwdriver Fig. 12(a) 13000 25996 7834 15664 1. 5Lavg 0. 015 / 0. 999 / 0. 863 0. 88° / 177. 92° / 48. 88° 9. 496
Screwdriver Fig. 12(b) 13000 25996 4185 8366 1. 5Lavg 0. 254 / 0. 998 / 0. 860 13. 07° / 146. 57° / 48. 45° 13. 685

Rabbit Fig. 10(a) 13000 25996 5656 11308 1. 5Lavg 0. 359 / 0. 998 / 0. 865 19. 55° / 133. 04° / 48. 84° 17. 487
Kitten Fig. 10(b) 50000 100000 20350 40700 1. 5Lavg 0. 253 / 0. 999 / 0. 865 15. 65° / 146. 60° / 48. 85° 76. 478
Woman Fig. 10(c) 13000 25996 5149 10294 1. 5Lavg 0. 346 / 0. 998 / 0. 864 17. 39° / 134. 13° / 48. 86° 16. 171
Torus Fig. 10(e) 16815 33630 7578 15156 1. 5Lavg 0. 236 / 0. 999 / 0. 865 15. 32° / 148. 85° / 48. 92° 26. 774

Memento Fig. 10(f) 49968 99932 19319 38634 1. 5Lavg 0. 203 / 0. 999 / 0. 869 10. 45° / 153. 21° / 50. 46° 85. 176
Cyclide Fig. 13(a) 21600 43200 1000 2000 - 0. 192 / 0. 997 / 0. 877 9. 38° / 151. 12° / 50. 24° 63. 15
Cyclide Fig. 13(b) 21600 43200 928 1856 3. 0Lavg 0. 215 / 0. 998 / 0. 878 11. 90° / 150. 57° / 49. 97° 16. 453
Fertility Fig. 14(a) 13971 27954 12095 24202 1. 0Lavg 0. 347 / 0. 999 / 0. 881 20. 26° / 134. 65° / 50. 07° 25. 178
Gargoyle Fig. 10(d) 50002 100000 20467 40930 1. 5Lavg 0. 169 / 0. 999 / 0. 847 9. 15° / 156. 41° / 47. 52° 128. 538

Gargoyle(LCT) 50002 100000 18865 37726 1. 5Lavg 0. 008 / 0. 999 / 0. 838 0. 52° / 178. 90° / 47. 13° 70. 303
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Fig. 13　 (a) is the result of conformal embedding method,
(b) is the result of ours. The two methods are comparable,
however, our method is more concise and time-saving since
CVT in conformal embedding method is more time-
consuming.

Fig. 14　 (a) is the result of ours, (b) is the result
of particle-based method.

Fig. 15　 (a) is the input model, (b) is the result
of removing obtuse angles.

　 　 Fig. 13 shows the comparison of our method and
conformal embedding method[6] . Our result is
comparable with their method. However, our method is

more concise since we need only deal with disk-
topology patch. And our method is more time-saving
than theirs since CVT in conformal embedding method
is more time-consuming. Since we don’ t have the
source code of conformal embedding method, we take
the time data in their paper for reference. As shown in
Tab. 1, the total time of our result is even less than that
of conformal parameterization (24 s in paper), to say
nothing of the CVT time (39. 15 s in paper) .

Similarly, Lp Centroidal Voronoi Tessellation
method ( Lp CVT) [15] is also a CVT based method.
Centroidal Voronoi tessellation (CVT) is a technique
that has been applied to isotropic / anisotropic
remeshing. However, Lp CVT method needs to
calcaulate Voronoi diagram iteratively during the
optimization, which is expensive and time-consuming,
especially in anisotropic remeshing.

Fig. 14 compares our method and particle-based
method[19], which applies a 6D metric in terms of
vertex normals. The results indicate that the Riemannian
metric of our mesh is closer to the input metric, which
can be seen clearly from the figure. Our result yeilds
more regular elements and the anisotropy coincides with
curvature direction well.

Generally speaking, the closer an mesh element to
an equilateral triangle under the inverse transformation,
the better the quality. Hence some works investigate
how to suppress large and small angles on isotropic
meshes and further on anisotropic meshes. Xu et al. [34]

propose a method to remove all the obtuse angles,
which can be used as a post-processing step for
anisotropic meshes generated from existing algorithms.
Inspired by the mesh structrue from hexagon Minkowski
metric, they propose to detect problematic metric
hexagons called p-Hex, and based on which, they
locally adjust the connectivity of the mesh while
avoiding expensive Lloyd-type iterations. Although their
method removes all the obtuse angles, the anisotropy
may be destroyed. As shown in Fig. 15, the anisotropy
of their result is not consistent with that of input, which
is not suitable for applications which have higher
requirements for the anisotropy quality. On the
contrary, our angle improvement post-processing is
premised on not destroying anisotropy, which maintains
the anisotropy well.

5　 Conclusions
We proposes an anisotropic mesh generation algorithm
based on locally isometric embedding. Our algorithm is
robust to remesh high-genus meshes and generates small
approximation errors to the input mesh. As a
consequence, our method retains the key geometric
features of the input mesh. Moreover, our method can
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be regarded as a framework, in which we can try other
geometry processing algorithms, but not limited to LCT
method or even remeshing.

Our work also has some limitations. First, the
process of selecting cone pathes is random. The results
are different when the seed points are different. The
second is that our method is not dominant in time. Since
our method is serial, we have to deal with each patch
using the same process, where we use LCT remeshing
method, so that on average, our method is more costly
than LCT method. We list time data for every model we
used, as shown in Tab. 1, in which our method uses
more time than LCT mothod on average, especially
when the model is complex (model “Gargoyle” in Tab.
1), while more time-saving than CVT based method,
such as conformal embedding method. Intuitively, the
more patches and the more complex of model, the more
time we consume. In order to overcome this limitation,
it is worthwhile to study how to use parallel techniques
to reduce the running time. In the future, we will
generalize our geometry processing framework so that it
can be used to solve more problems in computer
graphics.
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基于局部等距嵌入的各向异性曲面网格生成

李慧聪,傅孝明∗

中国科学技术大学数学科学学院,安徽合肥 230026

摘要: 提出了一种新颖的各向异性曲面网格生成方法. 不同于之前依赖于全局共形嵌入或高维等距嵌入的方法,
该算法以局部等距嵌入的思想为基础. 为了实现等距嵌入的目标,我们将原始曲面分割成圆锥曲面集,对曲面片

逐一进行处理. 首先,利用双射参数化将圆锥曲面嵌入到平面,然后,在参数域进行各向异性网格生成,最后,将圆

锥曲面映回原始曲面. 为了处理不同圆锥曲面之间的缝合问题,我们使当前圆锥曲面包含之前未处理的边界,使
得边界附近的三角面片可以在当前迭代中处理. 大量实验验证了本文算法的鲁棒性. 相较于之前的各向异性网格

生成算法,本文的算法能够更加鲁棒地处理高亏格网格,且能够得到与输入网格逼近误差更小的结果.
关键词: 黎曼度量; 圆锥曲面; 局部等距嵌入; 各向异性网格生成; 双射参数化
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