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Abstract: A Bayesian proportional hazards (PH) model is proposed for analyzing current status data based on

Expectation-Maximization Variable Selection (EMVS) method. This model can estimate parameters and select

variables simultaneously, which efficiently improves model interpretability and predictive ability. To identify risk

factors, appropriate priors are assigned on the indicator variables that denote the existence of covariates. The

baseline cumulative hazard function is approximated via monotone splines. A novel Expectation-Maximization (EM)

algorithm is developed for model fitting by using a two-stage data augmentation procedure involving latent Poisson

variables. Finally, the performance of proposed method is investigated by simulations and a real data analysis.
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0 Introduction

Current status data naturally arise in cross-
sectional studies across a range of disciplines from
epidemiological to clinical and social science, where
the failure time of interest is not directly observed,
but instead is known whether or not it exceeds the
as part of a

observation time. For example,

community-wide study examining time trends
associated with risk factors of patients hospitalized
with acute myocardial infarction (MI) in the
Worcester, Massachusetts metropolitan area, the
survival state of patients were followed up once after
hospital discharge. In Worcester Heart Attack
Study (WHAS), the survival days of a patient after
hospital discharge was not determined accurately
but was known to be earlier or later than the date of
the last follow-up, leading to either left-censored or
right-censored observations.

The goal of analyzing current status data
mainly focuses on the estimation of the covariates
effect and survival functions. For example, millions
of people suffer from MI that has been a major cause
of morbidity and mortality'. And the survival rate
of patients with MI has been found to be highly
involved with the patients’ age and the congestive
heart complications'*®*!. Thus, a key objective of

WHAS is to identify the risk factors that threaten
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the lives of patients. The proportional hazards

(PH) model™ is one of the most popular
frameworks for the regression analysis of time-to-
event data. The majority of available methods for
PH model have focused on the estimation in the
presence of right-censored data. However, due to
the more complex structure of current status data,
the partial likelihood™ allowing one to estimate the
parameters without specifying the baseline hazard
function no longer exists, and counting process and

martingale techniques designed for right-censored
data fail to work'™. Therefore, a number of studies
have been developed to analyze current status data
under PH assumption and its numerous variants.
This topic was first studied by Finkelsteint” who
proposed a Newton-Raphson based algorithm to
estimate the baseline function and the parameters
simultaneously. Huang et al'® established a profile
likelihood and proved the large sample properties of
the nonparametric maximum likelihood estimation.

Lo datal'™

augmentation scheme to transfer the interval-

Pan adopted Tanner and Wong’ s

censored data to right-censored data. As the baseline

cumulative hazard function is unspecified, serval

[11]

authors utilized monotone splines in order to
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reduce the dimension. Cai et al''® discussed the
regression analysis for current status data using

monotone splines in Bayesian framework. McMahan

et all'®
(EM)

specification.

developed an expectation-maximization
type algorithm under the same model
Zeng et al™ extended McMahan
et al’s work™*! to accommodate a broad class of
semi-parametric transformation models. Lu et al®
made use of monotone B-spline to model the
baseline hazard function.

WHAS

hospitalized patients. Keeping all covariates may

recorded a dozen covariates of
result in overfitting, which poses a problem in
estimation accuracy and model interpretability. A
number of statistical methods were proposed for
variable selection, such as penalization procedures
LASSOM®, SCAD"™ and adaptive LASSOM®, In
addition,

Bayesian methods have also gained

0221 - PDespite the extensive literature on

popularity
the regression analysis for current status data, little
attention has yet been paid to variable selection in
Bayesian framework. The latest work concentrated
on variable selection for such outcomes are mainly
developed via  frequentist-based  penalization
methods'® 21, which may be highly challenging
when model or data structures are complicated.
Expectation  maximization  variable selection
(EMVS)1 inspired by stochastic search variable
selection (SSVS) approach™ has been shown to be
a deterministic Bayesian variable selection method as
its efficiency at identifying associated covariates and
the capability of accommodating multifarious data

[28-30]

structures Since this method selects all

covariates simultaneously, it avoids the issue of
multiple model comparisons that the main challenge
faced by the traditional pairwise comparison method
using Bayesian model comparison statistics.
Compared with SSVS, where the posterior inference
is drawn using Markov Chain Monte Carlo
(MCMO) algorithm, EMVS utilizes EM algorithm
to derive estimates with

posterior enormous

computational savings.

In this paper, we make use of EMVS’s validity
in selecting covariates, by developing it for PH
model to identify the relationship between risk
factors and survival time with current status data.
To reduce the model dimension, monotone I-splines
are utilized to approximate the baseline cumulative
hazard function. We develop an efficient EM
algorithm that achieves parameters estimation
through a two-stage data augmentation procedure
involving latent Poisson variables and variable
latent  index  variables

selection  through

simultaneously. Furthermore, additional
constrained optimization procedures are avoided
since the constraints of monotonicity of baseline
cumulative hazard function are satisfied directly
during their closed-form updates.

The rest of the paper is organized as follows. In
Section 1, we specify the PH model with current
status data and develop the EMVS method for the
covariates selection, Section 2 reports the results of
simulated studies. A real data analysis is presented
in Section 3 to illustrate the performance of the
proposed method. Section 4 concludes with a

summary discussion.

1 The model framework

1.1 Model setup
For the event time T , the cumulative hazard

function of an additive Cox model takes the form
At | 2)=A,@expx™B) @D

where A, (¢) is unknown baseline cumulative hazard
function, x is p X 1 covariates vector, 3 is the vector
of regression coefficient. Given z , the conditional
cumulative distribution function (CDF) of event

time T is written as
FGlz)=1—exp{—A;@Dexpx™@ } (2)

To hold the conditions of a proper CDF, it is
required that A, (+) is a non-negative and monotone
function with A,(0) =0.

In the setting of current status data, the event

time T cannot be observed directly. Letz;,i =1,°,
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n, denote the event time for n subjects, and c;,i =

1,**yn, the observation time. The censoring
indicator is defined as 8; =1(zt; < c¢;), i =1, ,n.

Then the likelihood function of all observed data 9 =
{Ccis0:isx)T, i=1,+,n} is given by

L :HF(Ci | 2% [1—F(c; | D17 (3
i=1

which is under the assumption that the failure time

and censoring time are independent given
covariates.

In the above likelihood, the baseline cumulative
hazard function A,(+) is totally unspecified with
infinite dimension of parameters. Spline is a feasible
technique to reduce the dimension while maintaining
model flexibility as it makes no assumption with the
shape of fitted curve. In this article, A,(+) is
approximated via I-splinest', that is,

K
Ao() = Da I (9 )

=1
where {I,(C«)}K, are

function, each of which is nondecreasing from 0 to

integrated spline basis
1, and spline coefficients {a;}%_, are taken to be
non-negative to guarantee the monotonicity. To
construct the basis functions, the number and
location of interior knots need to be specified to
determine the shape, and the degree controls the
smoothness of the model. The number of all basis
functions K is the summation of the number of
interior knots and the degree.

It is known that the order as well as the
number and location of interior knots have an
impact on model fitting. In general, cubic spline
(the order is 3) is smooth enough to fit the curve,
whereas too many (few) knots lead to over (under)
fitting, Yu and Ruppert®® made the strategy that 5
to 10 knots are adequate for unimodal or monotone
functions while more than 10 knots are necessary to
capture the characteristics for multimodal
functions, In simulation studies, we tried different
numbers of interior knots to evaluate the
performance. Once the number is determined, the
knots are equidistantly placed at the quantiles of

support of splines.

Substituting the splines approximation into
A,(+) , the baseline cumulative hazard function Eq.

(3) can be written in vector notation as
At | ;) =a"I(c;)exp(xB) (5

where @ = (a;,**,ax)T and I(c;) = (I,(c;),*,

I (e, DT,

1.2 Data augmentation for the EM algorithm
Direct maximization of Eq. (3) is intractable

because of the complex form. In the spirit of Wang

1[32]

et al**', an EM algorithm is proposed to identify

the maximizer of unknown parameters. In order to
derive the algorithm, a two-stage data augmentation
involving latent Poisson random variables is utilized
based on the relationship between the Cox model
and a nonhomogeneous Poisson process.

The first stage is to associate the censoring
indicator §; with nonhomogeneous Poisson process
w; with meanaTI(c;)exp(x7B) . The second stage
w; is decomposed into a sum of independent Poisson
process w; . Therefore, the data augmentation
procedure is as follows:

0; = I(w; >0),
w,; ~ Poisson(a™I(c;)exp{zxIB})

K .
w; = Ewik » wy ~ Poisson(a, I, (c;)exp{xIB}) » i
=1

E=1,,K
(6)

Denote P, ;(+) the Poisson mass function
associating with the random variables w; and w

respectively, the augmented data likelihood can be
expressed as

n K
Lug= ]I I] Pu, (wa) (@I (Gw; > 0) +

i=1 =1
1 —6)I(w; =0)) D)
1.3 Prior specification
To facilitate Bayesian variable selection, the
well-known spike-and-slab prior is assigned to the
regression coefficients 8. An indicator variable y =
(71557 ,)7 is introduced to identify 8 , i.e. , 8, =
0if 7, =0 and B,, 7% 0 otherwise form =1,,p .
Thus, the prior we assigned to f8 is

P(B | 790’9'01) :N(Oyzp) with
2/3 =02diag(d1,"',d,),
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where N is normal density function and d,, = (1 —
Ym) ®* Vo+Vm* vy for 0 < v, < wv;. Though v, is
frequently set to be O in practice, George and

McCullocht"
positive v, to exclude unimportant nonzero effects.

recommended setting small but
v, of the spike distribution serves to pull coefficients
estimates toward zero, The increase of v, enlarges
the variance of the spike component, which has the
effect to shrink the small effect without much
affecting the significant effects. To leave large
coefficients possibly unaffected by the shrinkage of
spike prior, a heavy-tailed slab prior suggested by

Ref. [27] is induced for v, ,
i (14 vy )72
B(az —|—1,bz —|—1)

where B(+, ) is Beta function. Referring to Refs.

P(‘U1): I(v1>0)9

[21,33,34], hyper-parameters a, and b, are set to
be 0 and — 3/4 for better performance. The setting
of a, and b, makes more flat proper prior, resulting
in stable estimation.

Without extra structural information about the
identically

predictors, an independent and

distributed (i.i. d) Bernoulli prior is chosen for 7,, »

P(y | ) =l (1_w)p—ly\ ,

q
where | 7 |= 27,,, and w is a hyperparameter

m=1
following uniform distribution U(0,1) .
As a is constraint with non-negativity, the i. i. d

exponential priors are assigned toa ,
P(ak | A) =A eilak ’ k =1,°°°9K’

where A is a hyperparameter. This specification
allows the hyper prior for A providing information
for the spline coefficients, more important, can
penalize the coefficients of unnecessary spline basis
functions toward zero™#,

The priors foro? and A are chosen as IG(a;,b6,)
and Ga(a;,b;)

uninformative priors,

respectively, resulting  in
where IG and Ga denote
and 7
respectively. a,, b1, a3, b3 are set to be 0.5 in all

inverse Y  distribution distribution,
numerical experiments.

Lemma 1.1 The joint posterior distribution
P(B,0* | 9 given d,,, m = 1,*+,p, fixed is
unimodal.

Remark 1. 1

for any value of ¥ and any choice of v, and v, , in the

The unimodality is established

sense that for every ¢ > 0, the upper level set { (3,
o’ | P(B,6%))} is connected.

Finally, the joint posterior distribution of all

the parameters is given by
L.(a,B,756% 015054 | D,w) < P(D,w | a,fB) »
PB|7s6*v)Pla | P | w) -+

P (6*)P (v)P Q)P (w) ®
where h = (AT, ,hT)T , w = (wy,***rywik s***»
Wa s »w,k ) and the first term in the right side is
Lo .
1.4 EM algorithm

An EM algorithm is derived to find the
posterior maximizer of parameters iteratively as an
alternative to the conventional MCMC approach,
which possesses much computational efficiency over
stochastic search alternatives.

The EM algorithm begins with the expectation
(E-step) of the logarithm of L, with respect to the
latent variables (w and Yy ) conditional on the
observed data 9 and current parameter estimate,

whereafter, the maximum (M-step) likelihood
estimators of the expected log-posterior likelihood
resulting from E-step are calculated. Each

parameter is estimated under the condition that the

remaining parameters are fixed in M-step. The two

steps are repeated until the convergence is achieved.
Denote § = {a,856%sv,5w,A}. In (u+1)th

iteration, the expected log likelihood in E-step is

given by

EllogL. | 2,0’ ]1=Q,(a 9,890'2 sv1sA | D,00) +
Q:(w | 2,60)+C,

where C is a constant and
Q. (a 7,8702 »U15A | @70(1‘)) =

n K
21 2 H{E(wy | 9,6%) [loga, + 28] —
i=1 k=1

aply (c)exp(x]B) } —

?
lEE(Iogd,,, | 9,60%) — (£+a1 —|—1) loge® —
204 2

1 1< 1

- {bl —I—E,;E(Z | @,6¢ >)ﬁ,,,2} +

bzlogvl — (az +bz +2)10g(1 _'_'Ul) _|_
K

(K 4+a;—Dlogh — (Das +55) 4,
k=1

i
Q:(w | 2,6%)=DVE(, | 9,6°)logw +

m=1
b4
(p— DVEWw | 9,6°)) log(1 — w).

m=1
The E-steps proceeds by computing the
conditional expectations E (wy | 2,0°), E(y,. | 9,
0), E(logd,. | 2,0°) and E(1/d,, | 9,0 from
Q. and Q.. Noting that w; follows a multinomial
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distribution given w; and w; is truncated Poisson
distributed, the expected values can be expressed

aiu)Ik (Ci)

E(wik | @’0(14)) - K
DrafI, (e
E=1

K
DafT, (c;)exp{zTB™ )8,
E(w,; | 9,60) ="

E(wi | @16(1‘))1

1 — exp{— exp{zip™}
And 7, is multinomial . Following Rockova and

271 the conditional expectations are

George
rm

P Sm

E(ogd,. | 9,0%) =1 — p:)loguv, + p. logvi®,

1—p.  Pa
J= e+

EWw | 2,0°)=P(y,,=1|)=p, =

1
E | — @’ (u)
419

m Vo

where 7, =P (8, | (6*)* ,v{* ,7,, =1 P (r,, = 1|w™)

and

sm=PBn | D ,v{,r, =P, =0] 0™).
The next step is to find 0 “™ that maximizes Q,

and Q,. Consider the partial derivation of Q; and Q,

with respect to each parameter, forf ,

n K
821 _ Z EIiEE(wik | @,HW)) _
i=1 k=1

aka (Cl)exp{x,Tﬂ—l—hTB(z,)}] _2‘8,

where
b5 =%diag<E<dl—l | 2,6%),

--,E(% 1,9,6%)).

Setting the partial derivation 0, the new maximizers
B“™ can be obtained from equation. The root of
above equation can be found using standard root
finding routine. As the new maximizers in regard to
closed-form

the remaining parameters have

expressions, the parameters are directly updated by

ZE(wik | 9’0(11))

i=1
al(eu+1) —

b

2@ 4 zIk (ci)exp{xt-TB("“)}
i=1

1y (1
b, JF?ZQE(Z 9,6 ) (B+>?

P/2+a1 +1
A—B+/(B—-A)?*+4A(5/4+B)
2(5/4+B)
K+a;—1

K
E :al(zu—o—l) + bs
k=1

(0.2)(u+1) — ,

v §u+1) —

9

1
A(u+): ,

»
@D :ZP;/P’

m=1

b4
where A = D, p. (B¢)?/(2(6%)“™) and B =

m=1
y
Db/
m=1
Thus, the EMVS algorithm proceeds as
follows:

Step 1 Initialize the parameters «” , B,
@ L @, @ and A

Step 2 Evaluate the conditional expectations
Etv,|92,0%),Elogd, | 2,6%),EQ/d, | 9,
0) and E(wy | 2,0)

Step 3 Obtain o “*™ , g™,
w @™ and A “*Y by maximizing Q0 | 2,0) ;

Step 4 Tterate between Steps 2 and 3 until the
maximum absolute difference of B between two

o.(u+l) , ,viu+1)) ,

successive iterations is smaller than 1075,
1.5 Variance estimation

The covariance matrix of ,§ can be estimated
based on the profile likelihood. Denote ¢ = {a 6%,
viswsA} » then the profile log-likelihood is defined
as

1,,(® = max log(L X P(B | 750%sv1) »
P(*)P(vy) P(7 | @)P(w)P(a | ADPA)).

Referring to Ref. [14], the covariance matrix of

B is calculated by the inverse of the information

matrix I(ﬁ) » where the (s,¢) th of I(‘§) element is
approximated by

li’n (B\) - lﬁn (§+ rnes) - an (ﬁ—’_ rnet) + an (§+rnes +rnet)

where e, is a p-dimensional vector with the sth
element 1 and the remaining is 0, and r, a tuning
constant of order n7*%. The value of Z,,(8) can be
calculated using the EM algorithm again with 8 held

fixed.

2 Simulation studies

Simulation studies are conducted in this section
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to illustrate the performance of the proposed
method in different scenarios. We independently

generate 200 data sets from the following model
FGilz)=1—exp[—A,Dexp{zB}].

We consider three cases: (i) The cumulative
baseline hazards function A,(z) =log(1+¢) andB =
a,0,2,0, —1,0,0,0) is a 8 X 1 vector. For the
discrete covariates vector x; = (x1,x,)" , first we
sample £, ~ Bernoulli(p) with p =0. 5 then sample
z, =k | {x,=0} ~ pp (A =1,2,3) with p, =(0.5,
0.4,0.1) andx;, =& | {z; =1} ~ p(k =1,2,3)
with p,, = (0.4,0.4,0.2). The

continuous covariates vector x, = (x3s*,x5)T

remaining

follows a multi-normal distribution with mean 0 and
covariance matrix (0.5" 7" ), ;. The censoring
time C is generated from exponential distribution

with mean 1, then the censoring indicator is

determined as A= I(t <c¢) ;5 (i) Ao (1) = 4t /2. The
remaining setup is the same as case (i); (iii) A high
dimensional case with n =200 and p =100, where
A0() =log(1+¢) and p=(1,1,1,0,+++,0) with only
the first three nonzero elements. The covariate
vector £ = (x1y***»X100) " is generated from a multi-
normal distribution with mean 0 and covariance
matrix (0.5"% 7" )14 ,<100. The censoring time C
follows the exponential distribution with mean 1. In
each case, the proposed EMVS method PH model is
taken into account.

In specifying the monotone splines to estimate
AgCe)

adequate smoothness. We try different numbers of

cubic basis functions are utilized for

equally spaced interior knots for the cumulative
baseline hazard function within the minimum and
maximum of ¢ . v, of the spike distribution is set to
be 0. 01 in the first two cases, and we empirically
find that the estimation results are quite robust for
the variation of v, within [0. 001,0.1] . In the third
case, as the dimension is high, v, is set to be 1
within [0.5,2] Iteration of the proposed EM
algorithm is terminated if the maximum absolute
difference of the parameters between two successive
iterations is smaller than 107°, The decision of
variable selection is based on the probability p (7,, =
1), that is, the
calculated in E-step. The default threshold value is
0.5, i. e. , x, is selected if p, > 0.5 and is not

conditional expectation p,,

selected otherwise.

We use LASSO as a benchmark method to
compare the variable selection accuracy with the
proposed method
specifications. We calculate the LASSO estimator
based on Eq. (7) using EM algorithm, where w; and

under the same model

wy are treated as missing data and {a,B} are the
parameters to be estimated. In («+1)th iteration,
the expected values of w; and w; in E-step take the
same value of the proposed method. In M-step,

first we update a as

EE(wlk | 9’,8("))

i—1

a}(@u‘i‘l) — nl .
E I,(c))exp{z!p™tV}
i=1

Then we update 8 by maximizing

»
QB | ﬁ(u),a(u-H))_nT(E |,3m |> ,

where

Q(B | B(u) ’a(u+1)) —
n K
Z EE(wik | 9,‘8(")) Dogaiu—o—l) _|_x:rl;] _

i=1 k=1
af™PI, (c.)exp{x!B}

and 7 is a tuning parameter. Define VQ(B*) =

—0Q/88 |, and V* Q) = —&F Q/BAB™ |y
Through a second-order Taylor expansion around
B, —Q (B I B“, a™™) can be written as
1/2(Y—RAT (Y — RB), where R is from Cholesky
decomposition of VZ Q (B™) satisfying RTR =
VZQ(B™) and pseudo response Y=R"){V? QB“)B—
VQ(B™ )} Thus, we need to minimize

?
%(Y—RB)T(Y—RB) + 1t D, B
m=1

To obtain the LASSO regressor 8™ , we use
GLM net package in R. The EM algorithm stops if
the maximum absolute difference of the parameters
between two successive iterations is smaller than
1075,

The estimation results based on the 200 data
sets of EMVS of the first two cases are summarized
in Tabs. 1 and 2, including bias and mean square
error (MSE) between the estimated parameters and
the true values, the Monte Carlo standard error
(MCE), the average of the numerical standard error
(SEE).

performs satisfactorily under different situations.

The results indicate that our method
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And the performance of the estimates becomes
improved when the sample size increases. It seems
that the estimation results rarely depend on the
of For the

estimation, we set h, 10772 for all cases.

variance
The

variance method is quite accurate even in small samples.

number interior knots.

The false positive rate (FPR) and false negative
rate (FNR) are important indexes to evaluate the
variable selection accuracy. They are given by FPR
= FP/(FP + TN) and FNR = FN/(FN + TP),

where FP is the number of false positives, FN is the

number of false negatives, TP is the number of true
positives and TN is the number of true negatives.
We independently generated 200 data sets for each
case. Tabs. 3 and 4 reported the average of FPR and
FNR of the first two cases with different numbers of
interior knots. It is shown that EMVS outperforms
LASSO in different settings. EMVS exhibits a
considerable accuracy of variable selection even in
small sample size. The results of LASSO are more
conservative as it inclines to reserve more variables,

possibly affected by the correlation of the covariates.

Tab.1 Simulation results on the estimation of the non-zero coefficients for Case 1

True effect Bias MSE MCE SEE
B —0.0183 0.1231 0.2913 0.2277
K=5 Bs —0.1674 0.1063 0. 2806 0. 2306
Bs 0.0983 0. 0525 0.2074 0.1667
n=200
B 0. 0394 0.1665 0. 3071 0. 2410
K=10 B: —0. 1356 0.0412 0. 2886 0. 2406
Bs 0.1000 0.0279 0.1918 0.1705
B —0. 0465 0. 0469 0.2121 0.1647
K=5 Ba —0. 1175 0.0416 0.1673 0.1411
Bs 0. 0650 0.0192 0.1229 0. 1408
n=>500
B 0.0089 0.0318 0.1785 0.1652
K=10 Ba —0.1070 0.0346 0.1524 0.1663
Bs 0. 0679 0.0170 0.1116 0.1378
Tab.2 Simulation results on the estimation of the non-zero coefficients for Case 2
True effect Bias MSE MCE SEE
B —0.0393 0.1121 0.2934 0.2138
K=5 B —0.1643 0.1148 0. 2970 0. 2519
Bs 0.1006 0.0772 0. 2598 0.1648
n=200
B 0.0529 0.1192 0.2921 0.2197
K=10 Bs —0.1205 0.1127 0.2641 0. 2543
Bs 0. 0868 0.0516 0.2105 0.1668
B 0.0284 0. 0459 0.2129 0. 1496
K=5 Bs 0. 0461 0. 0360 0. 1846 0.1425
Bs —0.0225 0.0166 0.1272 0.1044
n=>500
B 0.0619 0.0473 0.2091 0.1504
K=10 B 0. 0349 0.0372 0. 1900 0. 1430
Bs —0.0139 0.0138 0.1170 0.1086
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Tab.3 FPR and FNR of EMVS and LASSO for Case 1

FPR FNR
EMVS LASSO EMVS LASSO
K =5 0. 006 0. 105 0.017 0. 080
n=200
K =10 0.033 0.092 0.027 0.077
K = 0.012 0.092 0. 007 0. 005
n=>500
K =10 0.026 0.072 0. 000 0. 000
Tab.4 FPR and FNR of EMVS and LASSO for Case 2
FPR FNR
EMVS LASSO EMVS LASSO
K = 0. 008 0. 097 0.025 0.048
n=200
K =10 0.033 0. 087 0.013 0. 097
K = 0.008 0.077 0. 000 0. 007
n=>500
K =10 0.017 0.073 0.002 0.002
Tab.5 Variable selection of EMVS and LASSO for Case 3
MSE
Method FPR FNR
ﬁl ﬂz ps
EMVS 0. 2443 0. 2655 0. 2351 0. 000 0.036
K=5
LASSO 0.2035 0.1751 0.2192 0.104 0. 000
EMVS 0.1970 0.2462 0. 2275 0. 000 0.030
K=10
LASSO 0.2073 0. 2070 0. 2207 0.099 0.002

This phenomenon gets more obvious in high-
dimensional case, From Tab.5, EMVS and LASSO
show comparable MSE with different interior knots.
While the two methods produce higher FNR and
FPR than each other respectively. Consequently,
EMVS performs well whether in common or in
high-dimensional situations.

3 Real data analysis

In this section, we applied the proposed
Bayesian variable selection procedures for PH model
to the Worcester Heart Attack Study (WHAS) data
set used in Ref. [36]. The goal of WHAS is to
describe time trend associated with risk factors in
long-term survival among residents following acute
myocardial infraction (MI). A total of 500 patients
were followed up from the hospital admission years
1997, 1999 and 2001. This dataset contains 22
attributes, identification code (id), age at hospital
admission (age), gender (0 = male, 1 = female),
initial heart rate (hr), initial systolic blood pressure
(sysbp), initial diastolic blood pressure (diasbp),
body mass index (bmi), history of cardiovascular

disease (cvd, 0 = no, 1= yes), atrial fibrillation
(afb, 0=no, 1=yes), cardiogenic shock (sho, 0=
no, 1=yes), congestive heart complications (chf, 0
=no, 1=yes), complete heart block (av3, 0=no,
1 = yes), MI order (miord, 0 = first, 1 =
recurrent) , MI type (mitype, 0= non Q-wave, 1=
Q-wave), cohort year (year, 1=1997, 2=1999,
3= 2001), hospital admission date (admitdate),
hospital discharge date (disdate), date of last follow
up (fdate), length of hospital stay (los), discharge
status from hospital (dstat, 0= alive, 1= dead),
total length of follwo-up (lenfol) and vital status at
last follow-up (fstat, 0=alive, 1=dead).

We aim to identify the risk factors that affect
the survival days after hospital discharge. As the
data set only gives the date of last follow up and the
vital status, for those people died before the last
follow up, the accurate survival days is unknown
but is known to be earlier than the date of last
follow-up, which is left-censored. Without regard
to those died during the hospitalization, the number
of target subjects is 461. Among these 461 patients,
there are 176 deaths, about 38% left-censoring.
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Tab.6 Results of the analysis of WHAS data set

EM EMVS
Factor
Estimate SEE P-value stimate SEE Index

age 4.9835 0. 4004 0. 0000 4.5401 0.7817 1
gender —0.5086 0.1753 0. 0037 —0.3112 0.1603 0
hr 2.1324 0.5228 0. 0000 1. 6006 0.4911 1
sysbhp 1.4633 0. 6940 0. 0350 0.2169 0.1182 0
diasbp —3.6527 1. 0582 0. 0006 —1.7694 0.7877 1
bmi —0. 4455 0.5718 0. 4359 —0.1356 0.3748 0
cvd —0. 2340 0.1898 0.2178 —0.1244 0.2142 0
afb 0.2153 0.1951 0. 2699 0. 1950 0.1829 0
sho 0. 4535 0.5115 0. 3754 0. 0848 0.7201 0
chf 0. 8968 0.1756 0. 0000 0. 8658 0. 3110 1
av3 0.7177 0. 4060 0.0771 0. 2350 0. 3740 0
miord 0. 0059 0.1654 0.9717 0. 0420 0.1620 0
mitype —0. 3609 0. 2028 0.0751 —0.3221 0.1720 0
year —0.5249 0. 2070 0.0112 —0. 3439 0.1828 0

[Note] index=1 means that the factor is selected, index=0 otherwise.

To model survival time, Hosmer Jr et al®
suggested fitting the PH model with six explanatory
variables: age, bmi, hr, diasbp, gender and chf.
For better the
explanatory variables are linearly transformed to [0,
17]. Based on this result, the PH model for WHAS
data set is given by

A(t | covariates) =A, (¢)exp{ageB; + genderf; +
hrp; + sysbpp, + diasbpfs + bmifs + cvdp; +
afbfs 4 shofy 4 chif,, +av3p, +
miordfB:; + mitypefi; + yearfiy ).

modeling performance, all

curves of Ag(+). It is can be seen that the

cumulative hazard no longer increases after reaching
a threshold value.

4 Conclusion

In this paper, an EMVS
algorithm for variable selection of proportional

we developed
hazards model in the context of survival analysis.
Based on spike-and-slab prior and the two-stage data
augmentation procedure, the proposed method is

We applied the proposed method and the EM 0.05+
methods™*! without Bayesian variable selection to
WHAS data set. The data analysis results are 0.04+
reported in Tab. 6. The left column shows the
estimates, the estimated standard errors and the p- 0034
values of EM algorithm. The factors age, gender, %
hr, sysbp, diasbp, chf and year are shown to be 0.02+
significant., Our method selected four factors, age,
hr, diasbp and chf, a subset of the significant 0.014
covariates by EM method into the PH model. Old
age, high heart rate and the existence of congestive 0.00 : . . . .
heart complications will decrease the survival rate of 0 500 1000 1500 2000
people, and higher diastolic blood pressure has survival days

Fig.1 The estimated baseline cumulative

positive effect of the survival rate, which agrees

with common sense. Fig. 1 provides the fitted

hazard function of WHAS data set
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efficient and easy to implement. Both the simulation
studies and the WHAS data analysis demonstrate
the good performance of the proposed method. The
method can be extended to other types of censored
data, for example, the case Il interval-censored
data, where the failure time is known to be lied in
an interval. The two-stage data augmentation
procedure can be applied to case Il interval-censored
data directly, Furthermore, the linear assumption
of the covariates effect can be softened. The
nonparametric model may describe the more
complex relationship between the survival time and

the explanatory variables.
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Appendix

Proof of Lemma 1.1

The marginal posterior distribution P (8,6 | %) is obtained by integrating « from P(8,a o

follows.

2| D) as

P(B,6% | D =JRKP(B,01,0-2 | 2)da oc P (B | gZ)P(gz)JRKL(Q | B,a) P (a)da.

By using the first-order Taylor expansion we have

L(9D|Bra)= H [1—exp{—a I(c)exp(xfB) }]% [exp{—aTI(c;)expaip)}]" % =~

i=1

H 0TI (c;)exp(xfB) exp{— (1 —8,)a"I(c;)exp(xfB) }.

i=1
Therefore,

JRKL(Q | Bra) P (a)da :J . H 8:a"T(c)exp(xTB) exp{— (1 —8)aTI(c;)exp(xTB) }AKe™ da —

Ik(C )

K
A H 8.1 (c)exp(zip) H [ =61, (c)expx!®) +A/n]"

The marginal joint posterlor distribution of (B ,02) can be written as

?
P@Bsa? | Do ([1d.)
m=1

1
T2 (02 )—%+a1+1 exp

—;(;}li'”mwl)}x
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Ik(C)
[Q—6DI(c)exp(xipf)+A/n]?

o)+

AKH 8:I(c)exp(xP) H

Then, the log posterlor is given by

1 y
logP (80 | 9 =— (& +a, + Dlogs? —7(2

2

n

d,
Ik(C) }
T
SV C,
p E’”’[H [(1—o; )Ik(c Yexp(xIB) +4/n]? +

where C is the term not involving either 8 and 6°. Denote

gB =D, [+ 1,(c)/[A—8)I,(c)exp@B)+A/n]?].
i=1

2t g(B)
oB.,"

<C 0. It can be checked

To show g (B) is concave in each component of 3 , it suffices to show that

that

<0

' g _ EZ zlexp(x{pl1— (1 —6:1,(c.))]
B’ oia [A—60Li(c)expxip)+A/n]?
asI;(+), k=1,+,K, are bounded in [0,1] . Therefore, g(f) is concave in each component of 3 .
Denote

™

2 P 2 1 N
hBio®) =— (5 +ai+ Dlogo* — (X

m=1

2
o)
we introduce the coordinate transformation, which is defined by
r=1/¢%; ¢, =Bn /o’
where ¢,,, m =1,+,p, and r are continuous. Thus, unimodality is the original coordinates is equivalent in
the transformed coordinates. Let ¢ = ($:,°*5¢,)" . With the above transformed coordinates, the above
formula becomes

i 2
h(¢,r)=(%—I—a—|—1)logr—blr—%z L

— d,’
22 h(g,r) 2> h(B,0%)
—_— 0 and —————
or? < 0 an 2.
Consequently, the joint posterior distribution of 8 and ¢? is unimodal.

It can be checked that < 0 for each m. Thus, h(B,s%) is concave.



