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Abstract: Let p be a multiplicative arithmetic function defined by p(p*)=p*—p« '+ p * —--+

(—1)* for every prime power p°. For a positive integer n, n is called a near-imperfect number if

20(n)=n-+d where d is a proper divisor of n. Here all near-imperfect numbers with two distinct

prime divisors were obtained.
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0 Introduction

Let 6(n) be the sum of the positive divisors of
a positive integer n. Then n is said to be perfect if
and only if 6 (n) = 2n. In 2012, Pollack and
Shevelev'!! introduced the concept of near-perfect
number. A positive integer n is called near-perfect
if it is the sum of all of its proper divisors except

one of them. The missing divisor is called
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redundant. In 2013, Ren and Chen'* determined
all near-perfect numbers with two distinct prime
factors. Tang et al. ! proved that there are no odd
near-perfect numbers with three distinct prime
factors. In 2016, Tang et al. ' showed that the
only odd near-perfect numbers with four distinct
prime factors are 3' « 7% + 11% » 19%. Recently, Li
and Liao"™ considered a special class of near-perfect

numbers and obtained some results.
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As a variation of the sum-of-divisors function
o» lannucci® defined a multiplicative arithmetic
function p by p(1)=1 and

p(p*) =p* — pt 4 po — e (— D)
for every prime power p*(a==1). He said that n is
imperfect if 20(n) =n and that n is k-imperfect if
ko(n) = n for some integer # = 2. In fact,
Martin"™ introduced the function p at the 1999
Western Number Theory Conference and raised
three questions(see Ref. [8:72]). In 2013, Toth™
pointed out the function p has a double character.
For related research of the function p, one can
refer to Refs. [10-11].

Let n be a positive integer and d a proper
divisor of n. In analogy with the near-perfect
numbers, n is said to be near-imperfect and d is
said to be redundant if

20(n) =n+d (D
In this paper, we consider near-imperfect numbers
with two distinct prime divisors and obtain the
following result:

Theorem 0. 1
with two distinct prime divisors, then

n € {27 « 3%, 22« 3%, 2° 32, 27 « 34,

28 3%, 2% 45,2" 45,25, 275,
20«52, 2% 5%, 287,277, 20 11,
27«17, 35,37, 3%«7}.

Throughout this paper, we use the following

If n is a near-imperfect number

notation: p;. p; always denote primes with p; <<

P23 ays a; always denote positive integers; ¥, 7»
denote nonnegative integers; (;) denotes the

Legendre symbol.

1 Lemmas

Lemma 1.1 If n=2% p% is a near-imperfect
number with 21 a,, 21 a,, then
n € {2°«5,27+5, 2% «5%,
20«7, 207,27« 17},
Proof Let n =24 p% be a near-imperfect
number with redundant divisor d =2 p%:, where
Yi<<ais ¥V:<<a, and 71 +7,<a; ta,. By (1),

we have

@t =D (peT —1 =
3(py, +D @2 P ps + 21 1pl) 2)
Then a;=3. Let

f(ala 02)2(1_2;1[‘1)(1_]);‘1)3
, 3D 3D
glayy, az) — 4PZ D )

where D = 29 17 2p% 7271 Then g (a1, ay)=
fCays az)<<l1. Thus p;>3 and
12
p2—3

We now discuss four cases according to the

3+ <297 pgeTe 3

value of ps.

Case 1 p,=5. By (3), we have D=2% « 57,
Thus f (ars ;) =g (ays ay) <<0. 99. By (2),
we have

2¢15% — 5%l — 20t L] =9 . 27157 4

If y,=>2, then 22" =1(mod 25). Thus 20|

(a;+1). It means that a;==>19. However

. 1 1
O.99>f((119 az) > (1*%)(1*?)20998"'9

a contradiction. Thus 7, € {0, 1}. If a,==3, then
a1 € {3, 5). By (4), we have a, =7, =a, = 3.
Thus n=2° « 5 and d =2° * 5. Now let a,=1. By
(4), we have 7,=3, ¥v,=1, ay=7 or ¥,=3, 7,=
0, a;="5. Thusn=2"+5,d=2"+50rn=2°+5,
d=2%,

Case2 p,=7. By (3), we have D =>2% »
7% and

38, 3-8
4.7+ D =g(ars ay) =
1 1 45
fay, a2)>(1_?)(1_ﬁ) =%

Thus DE{2° « 7, 2% « 7%, 2% « 7%},

If D=2°+7, thena,=Y,+3 and a;=7,. By
(2), we have

201 e 7 — it — 7t 4] =0,

If y,=1, theny;,=2. Thusn=2°+«7andd =
Ze 7,

If y,>1, then ;=3 and a;=5. However
3.8, 3.8

47 207

0. 96+ + =gla;, ay) =

f-(afly (12) > (172716)(17%) =0, 98"’9



706 T EAFHERKFFIR

%49 %

a contradiction.
I D=2%«7, thena, =y, +1 and a, =7, +
1. By (2), we have
2N e 7Y — Nt 7t 4] =0,
If y,=0, then y,=2. Thus n=2% « 7 and d =2°.
If y,>>0, then a,==3. However
3.8, 3-8
47 207

0.91--- + =glars az) =

f(a19 (12) > (1_2*14)(1_7*14):0 93"'7

a contradiction,
If D=2%+ 7%, thena; =7, and a,=7,+1. By
(2), we have
20 e 7 — it — 7t 4] =0,
Then 7,>1, a,=3 and a,=5. However
3.8 3-8

4.7+72:g(a1,a2):

0. 97+ oo

1 1
f(aly 0(2) > (1_?)(1_F):O 98"‘9

a contradiction.
Case3 p,€ {11, 13}. By (3), we have D=
2°p,. However

1
)=
2

: 1
f(a/ls 0(2) >(1*?)(1*p

15(p, —D (P + 1D

b

16p3
3P+ 3(p,+1 27(p,+ D
s A2 < = -
gCayy az) 1p, + 7 1, 320

a contradiction,

Case 4 p,=>17. By (3), we have D=2"p,.
By f(ai1» az)=g(ays a;)s we have D=2"p, and
a1<<7. Then a; =7, +2 and a, =¥,. By (2),
we have

(py— 152 pp — 27 — pptl 1 =0,
Then a1, =7, p,=17 and a, =1. Further n=27 -
17 and d=2° « 17.

This completes the proof of Lemma 1. 1.

Lemma 1.2 If n=2%p% is a near-imperfect
number with 21 a,, 2la,, then

n € {2° 3%, 27« 3",

Proof

number with redundant divisor d =21 p¥:, where

71<a1, 72<a2 al’ld }’1+72 <(11+(12. By (1)7

we have

27« 5%},

Let n = 21 p% be a near-imperfect

@t =D (pe™ + 1D =
3(p, + D@20 pse + 217 ph) (5
It is easy to prove that a; =3 and 7, =>>1.

If a; =3, then

pe 5 =dpy + 20 pl 217 ple,
Thus ¥, €{0, 1} and p,>3. Noting that 1=<{y, <3
and 5=2"1"'p% (mod 5), we can get ¥, =1, p,=
5, 7,=1 and @, =2. Thus n=2° « 52 and d =
2 0.

Now let @, =5. If p,=3, then

971+ 371 4 a9l ] —,
Since 32 '=3(mod 8), we have y,=1. Thus
20 —1 =371 (44 3% 7)),

If .22, then 29" =1 (mod 27). Thus
18| (a;+1) and (2 —1) | (297" —1). Noting
that (7 « 19) | (2" —1), we have (7 « 19) | (4-+
3%277%2), It follows that a; — 7, =1(mod 6) and
a;—7Y,=5(mod 18), which is clearly false. Thus
7.€1{0, 1}.

If y,=0, then

2802077 —1)=3"(32 " —1).

If «,>7, then 22 "=1(mod 3°). Thus 162
(ay—7) and (2" —1)| (2277 —1). Noting that
262657| (2'%—1), we obtain 262657| (3% *—1).
Thus 14592 (e, —4) and (3" —1) | (32 ' —1).
However, 3 =1 (mod 2'), a contradiction.
Thus a7 = 7 and a, = 4. Further n = 27 + 3!
and d =2.

If y,=1, then

20020 —1) =3%(32 % — D).

If «,>5, then 221 °=1(mod 3*). Thus 18]
(a; —5) and (2% —1) | (297° —1). Since 19 |
(2%—1), we have 19| (32 % —1). Thus 18|
(a;—2) and (3" —1) | (3272 —1). Noting that
757] (3" —1), we obtain 757 | (2217°—1). Then
756 (a; —5) and (27 — 1) | (2977 — 1),
However, 2"°=1(mod 3"), a contradiction. Thus
a1=>5 and as =2. Further n=2° *+ 32 and d =2 « 3.

If p,=5, then

2m 5o — Gt gutl — 1 =9+ g5,
Since 52 "'=1(mod 4) s we have ¥, =1. However

27 « 5% < (291 —5) (5% +2) <18 + 572 <L 18 » 5%,
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a contradiction.
If p,=7, then
gt gy — aytl | gatl ] —3 4 9NF27Yy
Since 7 "'=7(mod 16) s we have y,=1. However
57 « 7% < (29 — (72 4+ 1) <
24 « 772 < 24 o 72,
a contradiction,

Now we assume that p,=>11. Let

f(al’a2):(172a1+1)(1+p%2+1)9
3P+ D 3(py D)
g(al, (12)— 4132 + ) ,
where D=2"" ‘2])‘52772 1 By
3+ 3(p+1) B
4?2 _'_ D —g(al, 012)—
1 63
f(alaaz)>1—?:@’
we have
2 2 pg e < 07
i 5p, — 16 :

Thus a1 — 7, € {1, 2} and ay =7%,. By (5), we
have a, =%, +2 and
20 —1=((15—p)29 % + p,)p%.

If p,=11, then 29" —1=(29 " '+11)11%, a
contradiction.

If p,=13, then 29" —1=(291"2+4+13)13%, a
contradiction.

If p, =17, then (15— p,) 2972+ p, <0, a
contradiction.

This completes the proof of Lemma 1. 2.

Lemma 1.3 If n=2% p% is a near-imperfect
number with 2|a;s 2|a,, then n=2% « 3°.

Proof
number with redundant divisor d =2”1 p¥2, where
Yi<<ais ¥V:<<a, and 71 +7,<a; ta,. By (1),
we have

Qa4 D(pe + 1 =

3(p, F D@ py F-21 phe),
If p,=3, then
artl | gaytl L] — v gyt
Since 327'=3(mod 8), we have ;=1 and 207!+
1=3%""1(4—3%7), Thus a1 =2, a,=2 and 7, =
1. Hence n=2% * 3* and d =2 * 3.

Let n = 21 p% be a near-imperfect

Now suppose that p,—=5. Let

1 1
2n1\1)(1+1)%z41)’
3P+ 3(p D
g(al, az)— 4p2 + D ’

where D=24""1"%pg: 721 Then

flays az) =1+

1

51
‘%z

1<< f(ay, a2)2(1+2a11+1)(1+p ) <

(1—1—2*13)(1—5—5*13):1. 134.

It implies that
m SETpE T <3 mli 3
Thus 5<p,<<13 or p,=>127.
If p,=5, then
2005% 20t 5ot -] =9 « 271572
Since 51 (217" +1), we have 7, =0. However,
29152 >>9 « 21, a contradiction.
If 7<p,<13, thena, =y, +2 and a; =7,. It
follows that
20 petl 1 =(15— p,)29 3 pg2,
By p, | (297" + 1), we have p, = 11.
112""'=13 (mod 8), we have «; = 3, which
contradicts 2] a;.
If p,==127, then a1 =7y, +1 and a, =7,. It
follows that
Pyl 2t ] =202 et 49 . 20 ps

which is clearly false.

Since

This completes the proof of Lemma 1. 3.
Lemma 1.4 If n=2% p% is a near-imperfect
number with 2|a,» 21 a,, then
n € {2237, 28«3, 275,25, 2" « 11}.

Proof
number with redundant divisor d =21 p¥:, where
Yi<a;s ¥V:<<a, and ¥, +¥,<a; +a;. By (1),
we have

Q4D (pe™ —1) =

3(pr D@29 py 4217 phe) (6)

Now we discuss two cases according to the

Let n = 2“1 p% be a near-imperfect

value of p,.
Case 1 p,=3. Then
ezt — 9a+1 +1+ 27111 37,1 .
Since 8| (31 —1), we have y,=>2.
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First we assume that ¥, =1. If 7, =3, then

32 l=24"145+ 29, However
3\ ol 9\ ot

1:(3) :(3) —(— Dt =—1,
a contradiction. If ¥,=>4, then 3*"'=1(mod 32).
Thus 8] (a;+1) and (3°—1) [ (3™ —1). Noting
that (5 « 41) | (3°* —1), we obtain (5 « 41) |
(2971 +9). Then a;=y,(mod 4) and a1 =¥, +5
(mod 20), a contradiction. Thus Y, =2 and

2°(247F —1) =3"(32° — 1.

If a,>2, then 221 2=1(mod 3*). Thus 54 |
(ay—2) and (2 —1) | (2972 —1). Noting that
262657 (2" —1), we obtain 262657 | (3% *—1).
Thus 14592 (e, —3) and (3" —1) | (32 % —1).
However, 3 =1 (mod 2"), a contradiction.
Thus a; =2 and @, =3. Further n=2% + 3 and d =
2%« 3.

Now let 7, =2. Since 27| (29T 4+ 1), we
have a;=8(mod 18). Since 19| (2°+1) and (2°+
D] (2977 41), we have 19| (3% 72 —27"1) and

3\ 2\ 1t
e =() =(G) =D,
It means that a,—7,—7;=1(mod 2).

If y,2=3, then 16| (327" —1). Thus a,=3
(mod 4) and 5| (32" —1). It follows that 5|
(240771 +372"1) and

(— D :(%)ml -
) e

It implies that @y — ¥, —¥;=1(mod 2), which
contradicts 2|a,s 21 a,. Thus ;=2 and 2|7,. I
¥s=4, then 3°| (29" 41), Thus a; =80 (mod
162) and (2% +1)| (271 41). Noting that (19 «
163) [(2"'+1), we have (19 + 163) | (3% 72 —8).
It implies that a; — 7, =69(mod 162) and a;— 7>
=3(mod 18), a contradiction. Thus ¥,=2 and
270208 — 1) =3(3=2° — D).

If «,>8, then 221 *=1(mod 3°). Thus 486 |
(a;—8) and (2% —1) [ (2278 —1). Noting that
262657 | (2" —1), we obtain 262657| (3% °—1).
Thus 14592 (@, —5) and (3192 —1) [ (3%27° —1),

311592

However, =1 (mod 2), a contradiction.

Thus a; =5 and a; = 8. Further n = 2%3° and
d=2:3,
Case 2 p,=>5. Let

1 1
f(ala (12):(1+2a1+1)(1_p;2+1)9
~3(p,+ 1D 3(p, 4+ 1)

g(al, (12)— 4pz + D ’
where D=24"7"1"%pg52" 721 Since
24 1 1 9
%glfp%ﬁl <f<0(17 012)<1+2a1+1 <§a
we have

2p,+2 . 25p,+25

po—z EE ST s

Thus p,€ {5, 7, 11, 13, 17, 19, 23, 29, 31, 37,
41},
If p,=5, then
201 5% — 20l L 5etl — ] =9 27157,

Since 51 (2971 +1), we have 7, =0. Noting
that (52 —2)241<C9 « 21, we obtain a;=1. Thus
a1=4, y1=3 or a1 =2, Y1 =2. Further n=2"+5,
d=2% or n=2* 5, d=2".

If p,=7, then

Qulay _ guFl | qatl ] —3 4 N2,

Noting that 71 (227" +1), we obtain ¥, =0.
By (72 —1) 2011 2>=3 « 211"2, we deduce that the
above equality can not hold.

If p,=11, then ay, =7, +2 and a; =7,. By
(6), we have

((py — 150293 4+ p)py =29 1,
If p,=>17, then
((py — 150293 4 py)pyr =
2021717 > 209 41,
a contradiction. Thus p, € {11, 13}. By p, |
(2971 +1), we have p,=11. It implies that a; =4
and a; =1. Further, n=2% + 11 and d =2° + 11.

This completes the proof of Lemma 1. 4.

2  Proof

Proof of Theorem 0. 1
near-imperfect number with redundant divisor d =
plvph, where Yi<<ais Ys<<a, and ¥, +7,<<a; +
as. By (1), we have

20p T (= D) (pe (= 1)2) =

Let n = p$1 p% be a
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(p1 +D O, +D(psrpe +plrpl) (D

Then
a1+1 . ay
1—9. Pt (—1D .
pi(pr+1D
Pyt (=D 1 =
pe(p+1D  ppipy

it —1 py—1 1 -
pi(pr+1) pe(p,+1)  paipe s
pr—1 p,—1 1

2 -
2! b2 2
If p,=5, then
pi—1 p,—1 1 4 6 1
2. 07*7>2'*'***>19
23 V2 P1/ 5 7 5

a contradiction. Thus p, €{2, 3}. Now we divide
into the following four cases according to the parity
of a; and a.
Casel 2{a; and 21«a,. By Lemma 1.1, we
can get
n€ {25,275, 2% 5%, 2°¢7,2° 47,2717}
when p,=2. Now let p;=3. By (7), we have
@Gt =D (pe™ —1) =
2(py + D (31 ps2 + 31 pi2) 8
If a;=1, y;,=0, then
(pr =3 py — p" — pr — 4 =0.
Thus 7, =0, p.=5 and a; =1. Hence n=3 * 5
and d =1.
If a;=1, y;,=1, then
(pr —=3)ps —3p" —3ph —4=0.
Thus 7, =0, p,=7 and a; =1. Hence n=3 « 7
and d =3.
Now suppose that a;==3. Let

! )(1*L),

3a1+l p%2+l
20, +1)  2(p,+ D
3p, D ’
where D=341"7"" pe=7 1 _If p,2>11, then
212 2412

096 =31 o

f‘(a]a Clz) :(1*

g(a]9 (12):

>g(a“ az):

1 1
f(ala 0(2) > (lfg)(lfﬁ) =0. 97"‘9

a contradiction. Thus p,€ {5, 7}. By

2(p,+ 1) +2(p2 +1
3> D o

gCayy ay) =f(ay, ay) <1,

we have D=34"""1 pe "2 "1>3p% and

1 1

(173“1“)(17#;#1) =flays ar) =glay, ay) =
20p, +F1)  2(p,+ 1
35, D < 0. 96.

Thus a,=1. By (8), we have 3% p, —34 ! —
p:t+1=2 ¢« 31 pl. However, it is impossible
since 0<.y,<1 and a, =>3.

Case2 21, and 2|a;. By Lemma 1. 2, we
can get

n € {2°«3%, 27 « 3%, 2% « 5%}
when p,=2. Now let p;=3. By (7), we have
@ =D (pe 4+ 1D =
2(p, + 1D (31 pg +31 ph) (9

If a;=1, then 3" p32 =4(mod p,), which is

impossible. Thus a;==3. Let
1 1

f(a'la az):(lf

3“1+])(1+p‘§2+‘)’
C2p, 41D | 200, 4D
g(ala (12)— sz + D s
where D=34"""1ps 7" If p,2>11, then
32 212 212
P = ’ 2 ) —
53 3.11 9.1l = gl e
1 80
f(a17 (22) > l_gzﬁv
a contradiction. Thus p,€ {5, 7}. By
2+ 2+ D
3p, D -

: 80
g(al, (12)2](((119 az) >g9

we have D=3%p,. Then a; =¥, +1 and a; =7,.
By (9), we have

31 ppt 3Nt — 1 =8 3% pk,
which contradicts as=2.

Case3 2|a; and 2|a,. By Lemma 1. 3, we
can get n=2° + 3 when p,=2. Now let p,=3. If
p.=>11, then

L S O N B
T 2.3a ps(ps 4+ 1) 3977 pge T
3 11 1
2 1 3 b

Thus p, € {5, 7}. I

which is clearly false.
3477 pge T2 =5, then
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173a1+1+1 p:§2+1+1 B 1
2 ¢ 3% p‘;z (pz +1) 3&1771 p§2772
3 5 1
2% 5 >1,

which is false. Thus a1 =7;+1 and a,=7>.
If p,=5, then
3&1{1 +5a2\1 +1:3a15a2'
By 51 (397" +1), we deduce that the above
equality can not hold.
If p,=7, then
3a1+1 + 7a2+1 + 1 :30(1 17(12 .
By 31 (72" 4+ 1), we deduce that the above
equality can not hold.
Case 4 2|a, and 21 a,. By Lemma 1. 4, we
can get
n € {223,283, 25,25, 2"« 11}
when p,=2. Now let p,=3. If p,=>11, then

A G et NN
2« 3n ps (ps 4+ 1) 3977 pge e
3 10 1
2 3 b

which is clearly false. Thus p, € {5, 7). If
39" pg 72 =5, then

A G et N
2« 3n s (ps 4+ 1) 3977 pge T
3 4 1
25 5 &

which is false. Thus a1 =7,+1 and a;,=7>.
If p,=5, then
Sal 5&2 + Sn1+1 _ 5a2+1 _'_ 1 :O.
By 51 (397" +1), we deduce that the above
equality can not hold.
If p,=7, then
3(11*17&2 +3nl 1 77&2\1 +1:O.

Noting that 3“1 '<(7, we can get a;, =2 and a,=
1. Thusn=3%«7and d=3+7.
This completes the proof of Theorem 0. 1.
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