文章编号:0253-2778(2019)08-0606-08

Berry-Esséen type bound of sample quantiles for positively associated sequence

HU Xueping, ZHANG Tong, GUO Zhidong, ZHANG Heng

(School of Mathematics and Computation Science, Anging Normal University, Anging 246133, China)

Abstract: By utilizing some inequalities for positively associated (PA) random variables, a Berry-Esséen type bound of sample quantiles for PA samples under mild conditions was studied. The rate of uniform asymptotic normality was presented and the rate of convergence is near $O(n^{-1/6})$ when the third moment is finite.

Key words: Berry-Esséen bound; sample quantiles; PA random variables

CLC number: O211. 4 **Document code:** A doi:10.3969/j.issn.0253-2778.2019.08.002 **2010 Mathematics Subject Classification:** 62F12; 62E20; 60F05

Citation: HU Xueping, ZHANG Tong, GUO Zhidong, et al. Berry-Esséen type bound of sample quantiles for positively associated sequence[J]. Journal of University of Science and Technology of China, 2019,49 (8):606-613.

胡学平,张彤,郭志东,等. PA 序列样本分位数估计的 Berry-Esséen 型界[J]. 中国科学技术大学学报,2019,49(8):606-613.

PA 序列样本分位数估计的 Berry-Esséen 型界

胡学平,张 彤,郭志东,张 恒

(安庆师范大学数学与计算科学学院,安徽安庆 246133)

摘要:主要利用 PA 随机序列的有关不等式,在合适条件下探讨了 PA 样本分位数估计的 Berry-Esséen 型界,获得了其一致渐近正态性的收敛速度且在三阶矩有限时,其收敛速度近似为 $O(n^{-1/6})$.

关键词: Berry-Esséen 界;样本分位数;PA 随机序列

0 Introduction

Let $\{X_n\}_{n\geqslant 1}$ be a sequence of random variables defined on a fixed probability space (Ω, \mathcal{F}, P) with a common marginal distribution function $F(x) = P(X_1 \leqslant x)$. F is a distribution function (continuous from the right, as usual). For $p \in (0, 1)$, let

$$\xi_p = \inf\{x: F(x) \geqslant p\},$$

denote the pth quantile of F, and be alternately denoted by $F^{-1}(p)$. $F^{-1}(u)$, 0 < u < 1, is called the inverse function of F. An estimator of the population quantile $F^{-1}(p)$ is given by the sample pth quantile

$$F_n^{-1}(p) = \inf\{x: F_n(x) \geqslant p\},\,$$

Received: 2018-05-08; Revised: 2018-06-11

Foundation item: Supported by the NSFC (11626031), the NSF of Anhui Province Ministry of Education (KJ2016A428).

Biography: HU Xueping (corresponding author), male, born in 1972, master/Prof. Research field: Probability limit theory. E-mail: hxprob@163.com

where $F_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \leqslant x), x \in \mathbb{R}$, denotes the empirical distribution function based on the sample $X_1, X_2, \dots, X_n, n \geqslant 1$, I(A) denotes the indicator function of a set A and \mathbb{R} is the real line.

The concept of positively associated sequence was proposed by Joag-Dev and Proschan^[1]. A finite of random variables $\{X_i\}_{1\leqslant i\leqslant n}$ is said to be positively associated, if for any disjoint subsets A, $B\subseteq\{1,2,\cdots,n\}$

Cov $(f(X_i, i \in A), g(X_i, i \in B)) \geqslant 0$, where f and g are real coordinate-wise nondecreasing functions such that this covariance exists. A sequence $\{X_n\}_{n\geqslant 1}$ of random variables is said to be PA if for every $n\geqslant 2, X_1, X_2, \dots, X_n$ are PA.

For a fixed $p \in (0,1)$, denote $\xi_p = F^{-1}(p)$, $\xi_{p,n} = F_n^{-1}(p)$ and $\Phi(u)$ is the distributing function of N(0,1). The Berry-Esséen bound of the sample quantiles for i. i. d. random variables is given in Ref. [2] as follows:

Theorem 0.1 Let $p \in (0,1)$ and $\{X_n\}_{n \ge 1}$ be a sequence of i. i. d. random variables. Suppose that F possesses a positive continue density f and a bounded second derivative F'' in a neighborhood of ξ_p . Then

$$\sup_{-\infty < x < \infty} \left| P\left(\frac{n^{1/2} (\xi_{p,n} - \xi_p)}{\left[p (1-p) \right]^{1/2} / f(\xi_p)} \leqslant x \right) - \Phi(x) \right| = O(n^{-1/2}), n \to \infty.$$

Berry-Esséen theorem, which is known as the rate of convergence in the central limit theorem, can be available in many monographs such as Refs. [3-4]. Under the i. i. d. random variables, the optimal rate is $O(n^{-1/2})$, and for the case of martingales, the rate is $O(n^{-1/4}\lg n)^{[5, \text{Chapter 3}]}$. Recently, Ref. [6] obtained the Berry-Esséen bound of the sample quantiles for α -mixing sequence. Their result has an optimal rate of $O(n^{-1/2})$ under the strong condition of mixing coefficients satisfying $\alpha(n) = O(n^{-a_0})$, $\alpha_0 > 12$. Yang et al. [7-9] investigated the Berry-Esséen bound of the sample quantiles for NA random sequence and ϕ -mixing sequence, respectively, and obtained the same

convergence rate: $O(n^{-1/6} \lg n \lg n \lg n)$. In other papers about Berry-Esséen bound, Ref. [10] studied the Berry-Esséen bound for the smooth estimator of a function under association samples. Refs. [11-12] obtained the Berry-Esséen bound in kernel density estimator for associated samples. Refs. [13-15] investigated uniformly asymptotic normality of the regression weighted estimator for NA, PA and strong mixing samples, respectively. Ref. [16] obtained the Berry-Esséen bound in kernel density estimation for α -mixing censored samples. Under associated samples, Ref. [17] studied the consistency and uniformly asymptotic normality of wavelet estimator in the regression model.

There are very few literature works on Berry-Esséen bound of sample quantiles for a sequence of PA random variables. Inspired by Refs. [2,6-10,16], we investigate the Berry-Esséen bound of the sample quantiles for PA random variables under some mild conditions and obtain two preliminary lemmas and a theorem. The proof of the theorem is provided in Section 1. The proofs of two preliminary lemmas are given in Section 2. The appendix contains some known results (Lemmas A. 1~A. 5).

Throughout the paper, C, C_0, C_1, \cdots denote some positive constants not depending on n, which may be different in various places. $\lfloor x \rfloor$ denotes the largest integer not exceeding x and second-order stationary means that $(X_1, X_{1+k}) \stackrel{\text{d}}{=} (X_i, X_{i+k})$, $i \geqslant 1, k \geqslant 1$.

1 Assumptions and main results

In order to formulate our main results, we now list some assumptions as follows:

Assumption 1.1 Let $\{X_n\}_{n\geqslant 1}$ be a second-order stationary PA sequence with zero means and common marginal distribution function F, and F possesses a positive continue density f and a bounded second derivative F'' in a neighborhood of ξ_p , for $p\in (0,1)$.

Assumption 1. 2 There exist some r > 2 and $\delta > 0$ such that

$$\sup_{j\geqslant 1} E \mid X_{j} \mid^{r+\delta} < \infty,$$

$$u(n)_{:} = \sum_{j=n}^{\infty} \operatorname{Cov}(X_{1}, X_{j+1}) = O(n^{-(r-2)(r+\delta)/(2\delta)})$$
(1)

Assumption 1.3 There exists an $\epsilon_0 > 0$ such that for $x \in [\xi_p - \epsilon_0, \xi_p + \epsilon_0]$

$$\sum_{j=n}^{\infty} j \operatorname{Cov} \left[I(X_1 \leqslant x), I(X_{j+1} \leqslant x) \right] = O(n^{\frac{-(r-2)(r+\delta)}{2\delta} + 1})$$
(2)

where $0 < \delta < \frac{r(r-2)}{4-r}$, if 2 < r < 4; $\delta > 0$, if $r \ge 4$, respectively.

Assumption 1.4 There exit positive integers $p_{:} = p_{n}$ and $q_{:} = q_{n}$ such that for sufficiently large n

$$p+q \leqslant n, qp^{-1} \leqslant C < \infty$$
and let $k := k_n = \lfloor n/(p+q) \rfloor$, as $n \to \infty$

$$\gamma_{1n} = qp^{-1} \rightarrow 0, \ \gamma_{2n} = pn^{-1} \rightarrow 0, \ kp/n \rightarrow 1$$
(4)

Assumption 1.5 There exist some r > 2 and $\delta > 0$ such that

$$\sum_{j=n}^{\infty} j \operatorname{Cov}(X_1, X_{j+1}) = O(n^{-\frac{(r-2)(r+\delta)}{2\delta} + 1})$$
 (5)

where $0 < \delta < \frac{r(r-2)}{4-r}$, if 2 < r < 4; $\delta > 0$, if $r \ge 4$, respectively.

Remark 1. 1 Assumptions 1. 1, 1. 2 and 1. 4 are used commonly in the literatures. For example, Refs. [12, 14, 16-17] used Assumption 1. 4. Assumptions 1. 1 and 1. 2 were used by Refs. [14,17] and Assumption 1. 1 was assumed in Refs. [7-9]. Assumption 1. 4 is easily satisfied, for example, when $p = \lfloor n^{2/3} \rfloor$, $q = \lfloor n^{1/3} \rfloor$, $k = \lfloor \frac{n}{p+q} \rfloor = \lfloor n^{1/3} \rfloor$. It is seen that $pk/n \rightarrow 1$ implies $qk/n \rightarrow 0$, as $n \rightarrow \infty$.

Our main results are as follows.

Theorem 1.1 Assume that Assumptions 1.1, 1.3 and 1.4 are satisfied, and let $Var[I(X_1 \le \xi_b)] +$

$$2\sum_{j=2}^{\infty} \operatorname{Cov}[I(X_1 \leqslant \xi_p), I(X_j \leqslant \xi_p)]_{:} = \sigma^2(\xi_p) > 0.$$

Suppose that $p_n \leq \frac{n \lg \lg n}{\beta \lg n}$, where $\beta = \frac{144\alpha^2}{\sigma^2(\xi_p)}$,

for some $\alpha \ge 1$, and

$$C(p_n) = \frac{\lg n}{n^{\alpha/2} p_n \lg \lg n} \bullet$$

 $\exp\{(\beta n \lg n/(p_n \lg \lg n))^{1/2}\}v(p_n) \leqslant C_0 < \infty,$ where

$$v(n) = \sum_{j=n}^{\infty} \text{Cov}[I(X_1 \leqslant x), I(X_{j+1} \leqslant x)],$$

ther

$$\sup_{-\infty < x < \infty} \left| P\left(\frac{n^{1/2}(\xi_{p,n} - \xi_p)}{\sigma(\xi_p)/f(\xi_p)} \leqslant x\right) - \Phi(x) \right| = O(a_n)$$
(6)

where $a_n = \gamma_{1n}^{1/3} + \gamma_{2n}^{1/3} + \gamma_{2n}^{(r-2)/2} + u^{1/3} (q) \rightarrow 0$, $n \rightarrow \infty$.

Remark 1. 2 The above condition $C(p_n) < \infty$ is similar to (2, 3) in Ref. [18]. When $p_n = \frac{n \lg \lg n}{\beta \lg n}$, $v(n) = n^{-\rho}$, for some $\rho > 0$, we can obtain $C(p_n) \le C_0 < \infty$, while for some $\rho(n)$, if $v(n) = O(e^{-\rho(n)})$, it follows that $C(p_n) \le C_0 < \infty$.

Corollary 1.1 Suppose all the assumptions of Theorem 1.1 are satisfied, and r=3, then

$$\sup_{-\infty < x < \infty} \left| P\left(\frac{n^{1/2} (\xi_{p,n} - \xi_p)}{\sigma(\xi_p) / f(\xi_p)} \leqslant x \right) - \Phi(x) \right| = O(n^{-(3+\delta)/(18+2\delta)}).$$

Remark 1.3 The rate of convergence is near $O(n^{-1/6})$ as $\delta \rightarrow 0$ by Corollary 1.1. First, we give some preliminaries, which will be used to prove Theorem 1.1.

Lemma 1. 1 Let $\{X_n\}_{n\geqslant 1}$ be a stationary random variable sequence with zero mean and $|X_n| \leqslant d < \infty$ for $n=1,2,\cdots$. Suppose that Assumption 1.2 is satisfied. If

$$\liminf_{n \to \infty} n^{-1} \operatorname{Var}(\sum_{i=1}^{n} X_i) = \sigma_1^2 > 0$$
(7)

then

$$\sup_{-\infty < x < \infty} \left| P\left(\frac{\sum_{i=1}^{n} X_{i}}{\sqrt{\operatorname{Var}(\sum_{i=1}^{n} X_{i})}} \le x \right) - \Phi(x) \right| = O(a_{n})$$
(8)

Corollary 1.2 Suppose all the assumptions of Lemma 1. 1 are fulfilled, and r = 3, u(n) =

 $O(n^{-(3+\delta)/(2\delta)})$, then

$$\sup_{-\infty < x < \infty} \left| P\left(\frac{\sum_{i=1}^{n} X_{i}}{\sqrt{\operatorname{Var}(\sum_{i=1}^{n} X_{i})}} \leqslant x \right) - \Phi(x) \right| = O(n^{-(3+\delta)/(18+2\delta)}).$$

Remark 1.4 The rate of convergence is near $O(n^{-1/6})$ as $\delta \rightarrow 0$ by Corollary 1.2.

Lemma 1. 2 Let $\{X_n\}_{n\geqslant 1}$ be a second-order stationary PA sequence with common marginal distribution function F and $EX_n = 0$, $|X_n| \leqslant d < \infty$, $n \geqslant 1$. Assumption 1. 5 is satisfied and let

$$Var(X_1) + 2\sum_{i=3}^{\infty} Cov(X_1, X_j)_i = \sigma_0^2 > 0,$$

then

$$\sup_{-\infty < x < \infty} \left| P\left(\frac{\sum_{i=1}^{n} X_{i}}{\sqrt{n}\sigma_{0}} \leqslant x\right) - \Phi(x) \right| = O(a_{n}) \tag{9}$$

Similar to Remark 1.3, it follows that the rate of convergence is near $O(n^{-1/6})$ as $\delta \rightarrow 0$, if r=3 in Eq. (9).

Proof of Theorem 1.1 By taking the same notation as that in the proof of Ref. [9, Theorem 1.1], denote $A = \sigma(\xi_p)/f(\xi_p)$ and

$$G_n(t) = P(n^{1/2}(\xi_{p,n} - \xi_p)/A \leq t).$$

Similar to the proof of Ref. [9, Eq. (3. 3)]. Let $L_n = (p_n \lg n \lg \lg n)^{1/2}$, we have

$$\sup_{|t| > L_n} |G_n(t) - \Phi(t)| \leqslant$$

$$P(|\xi_{p,n} - \xi_p| \geqslant AL_n n^{-1/2}) + 1 - \Phi(L_n)$$
(10)

Let $\varepsilon_n = \frac{A}{2} L_n n^{-1/2}$, it follows that

$$P(|\xi_{p,n} - \xi_p| \geqslant AL_n n^{-1/2}) \leqslant P(|\xi_{p,n} - \xi_p| \geqslant \varepsilon_n)$$

$$(11)$$

by Lemma A. 5(iii), we have

$$P(\xi_{b,n} > \xi_b + \varepsilon_n) =$$

$$P\left(\sum_{i=1}^{n}I(X_{i}>\xi_{p}+\varepsilon_{n})>n(1-p)\right)=$$

$$P\left(\sum_{i=1}^{n}\left(V_{i}-EV_{i}\right)>n\delta_{n1}\right)$$
,

where $V_i = I(X_i > \xi_p + \varepsilon_n)$ and $\delta_{n1} = F(\xi_p + \varepsilon_n) - \rho$. Likewise,

$$P(\xi_{b,n} < \xi_b - \varepsilon_n) = P(p \leqslant F_n(\xi_b - \varepsilon_n)) =$$

$$P\left(\sum_{i=1}^{n}\left(W_{i}-EW_{i}\right)>n\delta_{n2}\right),$$

where $W_i = I(X_i > \xi_p - \varepsilon_n)$ and $\delta_{n2} = p - F(\xi_p - \varepsilon_n)$. It is easy to see that $\{V_i - EV_i, 1 \le i \le n\}$ and $\{W_i - EW_i, 1 \le i \le n\}$ are still PA sequences, and $|V_i - EV_i| \le 1$, $|W_i - EW_i| \le 1$. According to Assumption 1.3, we have

$$v(n) \leqslant n^{-1} \sum_{j=n}^{\infty} j \operatorname{Cov} \left[I(X_1 \leqslant x), I(X_{j+1} \leqslant x) \right] =$$

$$O(n^{-\frac{(r-2)(r+\delta)}{2\delta}})$$

Combining Ref. [18, Remark 2.1] with Assumption 1.4, Assumptions (A1) \sim (A3) in Ref. [18] were satisfied for n large enough. According to Lemma A.1, for some $\theta > 0$, $\theta p_n \leq 1$, we obtain

$$P\left(\sum_{i=1}^{n} (V_i - EV_i) > n\delta_{n1}\right) \leqslant 2\left\{\theta^2 nv(p_n)e^{n\theta} + e^{C_1 n\theta^2}\right\} e^{-\frac{n\theta\delta_{n1}}{2}},$$

and

$$P\left(\sum_{i=1}^{n} (W_{i} - EW_{i}) > n\delta_{n2}\right) \leqslant 2\left\{\theta^{2} n v(p_{n}) e^{n\theta} + e^{C_{1} n\theta^{2}}\right\} e^{-\frac{n\theta\delta_{n2}}{2}}.$$

Since F(x) is continuous at ξ_p with $f(\xi_p) > 0$, by the assumption on f(x) and Taylor's expansion

$$\delta_{n1} = F(\xi_p + \varepsilon_n) - p = f(\xi_p)\varepsilon_n + o(\varepsilon_n);$$

$$\delta_{n2} = p - F(\xi_p - \varepsilon_n) = f(\xi_p)\varepsilon_n + o(\varepsilon_n).$$

Therefore, we obtain that for n large enough

$$\frac{f(\xi_p)\varepsilon_n}{2} = \frac{\sigma(\xi_p)L_n}{4n^{1/2}} \leqslant F(\xi_p + \varepsilon_n) - p = \delta_{n1},$$

$$\frac{f(\xi_p)\varepsilon_n}{2} = \frac{\sigma(\xi_p)L_n}{4n^{1/2}} \leqslant p - F(\xi_p - \varepsilon_n) = \delta_{n2}.$$

Taking $\theta = \left(\frac{\beta \lg n}{np_n \lg \lg n}\right)^{1/2}$, it is clear that from $\theta p_n \leqslant 1$

$$e^{-n\theta \delta_{n1}/2} \leqslant e^{-n\theta f(\xi_p)\epsilon_n/4} = e^{-\frac{3\alpha}{2}\lg n}$$
 (12)

Note that $p_n \rightarrow \infty$, we have for n large enough

$$e^{C_1 n \theta^2} = \exp\{C_1 \beta \lg n / (p_n \lg \lg n)\} \leqslant e^{\frac{a}{2} \lg n} \quad (13)$$
where assumption $C(p_n) \leqslant \infty$ in Theorem 1.1

by the assumption $C(p_n) < \infty$ in Theorem 1. 1 $\theta^2 nv(p_n) e^{n\theta} =$

$$\frac{\beta \lg n}{p_n \lg \lg n} \exp\left\{ \left(\frac{\beta n \lg n}{p_n \lg \lg n} \right)^{1/2} \right\} v(p_n) \leqslant e^{\frac{\alpha}{2} \lg n} (14)$$

From $(11)\sim(14)$ we obtain

$$P(\mid \xi_{p,n} - \xi_p \mid > \varepsilon_n) \leqslant C \exp\{-\alpha \lg n\} \leqslant O(n^{-1}).$$

Since $1 - \Phi(L_n) \leqslant \frac{(2\pi)^{-1/2}}{L_n} \exp\{-L_n^2/2\} = o(n^{-1}),$
we have $\sup_{\mid t \mid > L} |G_n(t) - \Phi(t)| \leqslant O(n^{-1}).$

According to the proof of convergence rate of $|\sigma^2(n,t)-\sigma^2(\xi_p)|$ in Ref. [9]. Taking $p_n=(n/(\lg n \lg \lg n))^{1/3}$,

we obtain that for $|t| \leq L_n$,

$$\mid \sigma^2(n,t) - \sigma^2(\xi_p) \mid = O(n^{-1/3}(p_n \lg n \lg \lg n)^{1/2}) + O(n^{-\frac{(r-2)(r+\delta)}{12\delta}}).$$

By taking $r=3,\delta=3$, we obtain $|\sigma^2(n,t)-\sigma^2(\xi_p)|$ = $O(n^{-1/6})$. On the other hand, seeing the proof of Ref. [9, Eq. (3. 9)], by Lemma 1. 2 it follows that,

$$\begin{split} \sup_{|t| \leqslant L_n} \mid G_n(t) - \Phi(t) \mid \leqslant \sup_{|t| \leqslant L_n} \left| P \left[\frac{\sum_{i=1}^n Z_i}{\sqrt{n} \sigma(n,t)} < -c_{nt} \right] - \Phi(-c_{nt}) \right| + \sup_{|t| \leqslant L_n} \mid \Phi(t) - \Phi(c_{nt}) \mid \leqslant \\ C \left\{ \gamma_{1n}^{1/3} + \gamma_{2n}^{1/3} + \gamma_{2n}^{(r-2)/2} + u^{1/3}(q) \right\} + \sup_{|t| \leqslant L_n} \mid \Phi(t) - \Phi(c_{nt}) \mid \leqslant C \left\{ \gamma_{1n}^{1/3} + \gamma_{2n}^{1/3} + \gamma_{2n}^{(r-2)/2} + u^{1/3}(q) \right\}. \end{split}$$

Therefore, Eq. (6) follows the same steps as those in the proof of Ref. [9, Theorem 1.1].

Proof of Corollary 1. 1 We obtain it by taking $p = \lfloor n^{3(\delta+1)/(6+4\delta)} \rfloor, q = \lfloor n^{\delta/(3+2\delta)} \rfloor$.

2 Proof of preliminary lemmas

Proof of Lemma 1.1 We employ Bernstein's big-block and small-block procedure and partition the set $\{1,2,\cdots,n\}$ into $2k_n+1$ subsets with a large block of size $p=p_n$ and small blocks of size $q=q_n$, and let $k=k_n:=\lfloor\frac{n}{p_n+q_n}\rfloor$. Define $Z_{n,i}=X_i/\sqrt{\mathrm{Var}(\sum_{i=1}^n X_i)}$, then S_n may be split as $S_n:=\frac{\sum_{i=1}^n X_i}{\sqrt{\mathrm{Var}(\sum_{i=1}^n X_i)}}=\sum_{i=1}^n Z_{n,i}=S_{n1}+S_{n2}+S_{n3},$ where $S_{n1}=\sum_{j=1}^k \eta_j$, $S_{n2}=\sum_{j=1}^k \xi_j$, $S_{n3}=\zeta_k$, and $\eta_j=\sum_{i=1}^k Z_{n,i}$, $\xi_j=\sum_{i=1}^k Z_{n,i}$, $\xi_k=\sum_{i=k(p+q)+1}^n Z_{n,i}$, $k_j=\sum_{i=1}^n Z_{n,i}$

According to Lemma A. 2 with $a = \gamma_{1n}^{1/3} + \gamma_{2n}^{1/3}$, we have

 $(j-1)(p+q)+1, l_i=(j-1)(p+q)+p+1, j=$

 $1, 2, \dots, k$.

$$\sup_{-\infty < t < \infty} |P(S_n \leqslant t) - \Phi(t)| =$$

$$\sup_{-\infty < t < \infty} |P(S_{n1} + S_{n2} + S_{n3} \leqslant t) - \Phi(t)| \leqslant$$

$$\sup_{-\infty < t < \infty} |P(S_{n1} \leqslant t) - \Phi(t)| + \frac{a}{\sqrt{2\pi}} +$$

$$P(\mid S_{n2} \mid \geqslant \gamma_{1n}^{1/3}) + P(\mid S_{n3} \mid \geqslant \gamma_{2n}^{1/3})$$
 (15)

Step 1 We estimate $E(S_{n2})^2$ and $E(S_{n3})^2$, which will be used to estimate $P(|S_{n2}| \ge \gamma_{ln}^{1/3})$ and $P(|S_{n3}| \ge \gamma_{2n}^{1/3})$ in (15). By the conditions $|X_i| \le d$ and (7), it is easy to find that $|Z_{n,i}| \le \frac{C}{\sqrt{n}}$.

Combining the definition of PA with the definition ξ_j , $j = 1, 2, \dots, k$, we can easily prove that $\{\xi_i\}_{1 \le i \le k}$ is PA. According to the stationary and $EX_n = 0$, $n \ge 1$, we have

$$E(S_{n2})^{2} = \sum_{j=1}^{k} E\xi_{j}^{2} + 2 \sum_{1 \leq i < j \leq k} Cov(\xi_{i}, \xi_{j}) = \sum_{j=1}^{k} \sum_{i=l_{j}}^{l_{j}+q-1} E(Z_{n,i})^{2} + 2 \sum_{j=1}^{k} \sum_{l_{j} \leq i_{1} < i_{2} \leq l_{j}+q-1}^{l_{j}+q-1} Cov(Z_{n,i_{1}}, Z_{n,i_{2}}) + 2 \sum_{1 \leq i < j \leq k} \sum_{i'_{1} = l_{i}}^{l_{i}+q-1} \sum_{i'_{2} = l_{j}}^{l_{2} + q-1} Cov(Z_{n,i'_{1}}, Z_{n,i'_{2}}) \leq C n^{-1} kq + \sum_{j=1}^{k} \sum_{i=1}^{q-1} (q-i) Cov(Z_{n,1}, Z_{n,i+1}) + \sum_{i=1}^{k-1} \sum_{i'_{1} = l_{i}}^{l_{i}+q-1} \sum_{j=i+1}^{k} \sum_{i'_{2} = l_{j}}^{l_{2}+q-1} Cov(Z_{n,i'_{1}}, Z_{n,i'_{2}}) \leq C [kq + kqu(1) + kqu(p)]/n \leq C [kq + kqu(1) + kqu(p)]/n \leq C [kq/n = Cqp^{-1} = C\gamma_{1n}]$$

$$E(S_{n3})^{2} = \sum_{i=k(p+q)+1}^{n} E(Z_{n,i})^{2} + 2 \sum_{k(p+q)+1 \leq i_{1} < i_{2} \leq n}^{n} E(Z_{n,i_{1}}, Z_{n,i_{2}}) \leq C \{n^{-1} \lceil n - k(p+q) \rceil + 2 \}$$

$$p \sum_{i=1}^{n-k(p+q)-1} \operatorname{Cov}(Z_{n,1}, Z_{n,i+1}) \} \leqslant$$

$$C \{ n^{-1} [n-k(p+q)] + p n^{-1} u(1) \} =$$

$$C(p+q)/n = C \gamma_{2n}$$
(17)

Hence, by Markov's inequality, (16) and (17), we have

$$P(|S_{n2}| > \gamma_{1n}^{1/3}) \leqslant C\gamma_{1n}^{-2/3}E(S_{n2})^{2} \leqslant C\gamma_{1n}^{1/3}$$

$$(18)$$

$$P(|S_{n3}| > \gamma_{2n}^{1/3}) \leqslant C\gamma_{2n}^{-2/3}E(S_{n3})^{2} \leqslant C\gamma_{2n}^{1/3}$$

Step 2 We estimate $\sup_{-\infty < t < \infty} |P(S_{n1} \le t) - \Phi(t)|$. Define

$$s_n^2 := \sum_{j=1}^k \operatorname{Var}(\eta_j), \ \Gamma_n := \sum_{1 \leq i < j \leq k} \operatorname{Cov}(\eta_i, \eta_j).$$

Clearly $s_n^2 = E(S_{n1})^2 - 2\Gamma_n$, and since $ES_n^2 = 1$, by (16) and (17) we get that

$$|E(S_{n1})^{2}-1| = |E(S_{n2}+S_{n3})^{2}-2E[S_{n}(S_{n2}+S_{n3})]| \leq E(S_{n2})^{2}+E(S_{n3})^{2}+ |E(S_{n2})^{2}]^{1/2}E[(S_{n3})^{2}]^{1/2}+ |2E[(S_{n})^{2}]^{1/2}E[(S_{n2})^{2}]^{1/2}E| |2E[(S_{n2})^{2}]^{1/2}+ |2E[(S_{n2})^{2}]^{1/2}E[(S_{n3})^{2}]^{1/2} \leq |C(\gamma_{n2}^{1/2}+\gamma_{n2}^{1/2})|$$
(20)

On the other hand, similarly to the process of (16),

$$\Gamma_{n} = \sum_{1 \leqslant i < j \leqslant k} \sum_{s=k_{i}}^{k_{i}+p-1} \sum_{t=k_{j}}^{k_{j}+p-1} \text{Cov}(Z_{n,s}, Z_{n,t}) =$$

$$\sum_{i=1}^{k-1} \sum_{s=k_{i}}^{k_{i}+p-1} \sum_{j=i+1}^{k} \sum_{t=k_{j}}^{k_{j}+p-1} \text{Cov}(Z_{n,s}, Z_{n,t}) \leqslant$$

$$C[kpu(q)]/n \leqslant Cu(q)$$
(21)

From (20) and (21), it follows that

$$|s_n^2 - 1| \le C[\gamma_{1n}^{1/2} + \gamma_{2n}^{1/2} + u(q)]$$
 (22)

We assume that η'_j are the independent random variables and η'_j have the same distribution as η_j ,

$$j = 1, 2, \dots, k$$
. Let $H_n := \sum_{j=1}^k \eta'_j$. It is easily

seen that

$$\sup_{\substack{-\infty < t < \infty}} |P(S_{n1} \leqslant t) - \Phi(t)| \leqslant$$

$$\sup_{\substack{-\infty < t < \infty}} |P(S_{n1} \leqslant t) - P(H_n \leqslant t)| +$$

$$\sup_{\substack{-\infty < t < \infty}} |P(H_n \leqslant t) - \Phi(t/s_n)| +$$

$$\sup_{\substack{-\infty < t < \infty}} |\Phi(t/s_n) - \Phi(t)| := D_1 + D_2 + D_3.$$

Let $\phi(t)$ and $\psi(t)$ be the characteristic

function of S_{n1} and H_n , respectively. Thus applying Esséen inequality (see Ref. [3, Theorem 5.3]), for any T>0,

$$\begin{split} D_1 \leqslant & \int_{-T}^{T} \left| \frac{\phi(t) - \varphi(t)}{t} \right| \mathrm{d}t + \\ T \sup_{-\infty < t < \infty} \int_{|u| \leqslant C/T} |P(H_n \leqslant u + t) - P(H_n \leqslant t)| \, \mathrm{d}u : = \\ D_{1n} + D_{2n}. \end{split}$$

By Lemma A. 3, we have that

$$|\phi(t) - \varphi(t)| =$$

$$\left| E \exp\left(it \sum_{j=1}^{k} \eta_{j}\right) - \prod_{j=1}^{k} E \exp\left(it \eta_{j}\right) \right| \leqslant$$

$$4t^{2} \sum_{1 \leqslant i \leqslant j \leqslant k} \sum_{s=k_{i}}^{k_{i}+p-1k_{j}+p-1} \operatorname{Cov}(Z_{n,s}, Z_{n,t}) \leqslant Ct^{2} u(q).$$

Therefore

$$D_{1n} = \int_{-T}^{T} \left| \frac{\phi(t) - \varphi(t)}{t} \right| dt \leqslant Cu(q) T^{2}$$
 (23)

It follows from Berry-Esséen inequality^[3, Theorem 5, 7] and Lemma A. 4, that

$$\sup_{-\infty < t < \infty} |P(H_n/s_n \leqslant t) - \Phi(t)| \leqslant$$

$$\frac{C}{s_n^r} \sum_{j=1}^k E |\eta_j'|^r = \frac{C}{s_n^r} \sum_{j=1}^k E |\eta_j|^r \leqslant$$

$$\frac{Ck [(p/n)]^{r/2}}{s_n^r} \leqslant C \frac{\gamma_{2n}^{(r-2)/2}}{s_n^r}$$
(24)

Note that $s_n \to 1$, as $n \to \infty$ by (22). From (24), we get that

$$\sup_{-\infty < t < \infty} |P(H_n/s_n \leqslant t) - \Phi(t)| \leqslant C\gamma_{2n}^{(r-2)/2}$$
(25)

which implies that

$$\sup_{-\infty < t < \infty} |P(H_n \leqslant t + u) - P(H_n \leqslant t)| \leqslant$$

$$\sup_{-\infty < t < \infty} \left| P\left(\frac{H_n}{s_n} \leqslant \frac{t + u}{s_n}\right) - \Phi\left(\frac{t + u}{s_n}\right) \right| +$$

$$\sup_{-\infty < t < \infty} \left| P\left(\frac{H_n}{s_n} \leqslant \frac{t}{s_n}\right) - \Phi\left(\frac{t}{s_n}\right) \right| +$$

$$\sup_{-\infty < t < \infty} \left| \Phi\left(\frac{t + u}{s_n}\right) - \Phi\left(\frac{t}{s_n}\right) \right| \leqslant$$

$$2 \sup_{-\infty < t < \infty} \left| P\left(\frac{H_n}{s_n} \leqslant t\right) - \Phi(t) \right| +$$

$$\sup_{-\infty < t < \infty} \left| \Phi\left(\frac{t + u}{s_n}\right) - \Phi\left(\frac{t}{s_n}\right) \right| \leqslant$$

$$C\left(\gamma_{2n}^{(r-2)/2} + \left|\frac{u}{s_n}\right|\right)$$
(26)

By (26), we obtain

$$D_{2n} = T \sup_{-\infty < t < \infty} \int_{|u| \le C/T} |P(H_n \le t + u) - t|$$

 $P(H_n \le t) \mid du \le C(\gamma_{2n}^{(r-2)/2} + 1/T)$ (27)

Combining (23) with (27), and choosing $T=u^{-1/3}(q)$, it is easily see that

$$D_1 \leqslant C(u^{1/3}(q)) + \gamma_{2n}^{(r-2)/2})$$
 (28)

and by (25),

$$D_{2} = \sup_{-\infty < t < \infty} \left| P\left(\frac{H_{n}}{s_{n}} \leqslant \frac{t}{s_{n}}\right) - \Phi\left(\frac{t}{s_{n}}\right) \right| \leqslant C \gamma_{2n}^{(r-2)/2}$$
(29)

On the other hand, from (22) and Ref. [3, Lemma 5.2], it follows that

$$D_{3} \leqslant (2\pi e)^{-1/2} (s_{n} - 1) I(s_{n} \geqslant 1) + (2\pi e)^{-1/2} (s_{n}^{-1} - 1) I(0 < s_{n} < 1) \leqslant C |s_{n}^{2} - 1| \leqslant C [\gamma_{1n}^{1/2} + \gamma_{2n}^{1/2} + u(q)]$$
(30)

Consequently, combining (28), (29) with (30), we can get

$$\sup_{-\infty < t < \infty} |P(S_{n1} \leq t) - \Phi(t)| \leq C[\gamma_{1n}^{1/2} + \gamma_{2n}^{1/2} + \gamma_{2n}^{(r-2)/2} + u^{1/3}(q)]$$
(31)

Finally, by (15),(18),(19) and (31), (8) is verified.

Proof of Corollary 1. 2 We obtain it by taking $p = \lfloor n^{3(\delta+1)/(6+4\delta)} \rfloor, q = \lfloor n^{\delta/(3+2\delta)} \rfloor$.

Proof of Lemma 1.2 Define $\sigma_n^2 := \operatorname{Var}(\sum_{i=1}^n X_i)$ and $\gamma(k) = \operatorname{Cov}(X_i, X_{i+k})$ for $i = 1, 2, \dots$, according to (5), it is checked that

$$\sum_{j=n}^{\infty} \operatorname{Cov}(X_1, X_{j+1}) \leqslant$$

$$n^{-1} \sum_{i=n}^{\infty} j \operatorname{Cov}(X_1, X_{j+1}) = O(n^{-\frac{(r-2)(r+\delta)}{2\delta}}) \quad (32)$$

therefore Assumption 1. 2 holds true. For the second-order stationary process $\{X_n\}_{n\geqslant 1}$ with common marginal distribution function, by Eq. (5) it follows that

$$|\sigma_{n}^{2} - n\sigma_{0}^{2}| =$$

$$\left| n\gamma(0) + 2n \sum_{j=1}^{n-1} \left(1 - \frac{j}{n} \right) \gamma(j) - n\gamma(0) - 2n \sum_{j=1}^{\infty} \gamma(j) \right| =$$

$$\left| 2n \sum_{j=1}^{n-1} \frac{j}{n} \gamma(j) + 2n \sum_{j=n}^{\infty} \gamma(j) \right| \leq$$

$$2 \sum_{j=1}^{\infty} j\gamma(j) + 2 \sum_{j=n}^{\infty} j\gamma(j) \leq 4 \sum_{j=1}^{\infty} j\gamma(j) = O(1)$$

$$(33)$$

On the other hand,

$$\sup_{-\infty < t < \infty} \left| P\left(\frac{\sum_{i=1}^{n} X_{i}}{\sqrt{n}\sigma_{0}} \leqslant t\right) - \Phi(t) \right| \leqslant$$

$$\sup_{-\infty < t < \infty} \left| P\left(\frac{\sum_{i=1}^{n} X_{i}}{\sigma_{n}} \leqslant \frac{\sqrt{n}\sigma_{0}}{\sigma_{n}} t\right) - \Phi\left(\frac{\sqrt{n}\sigma_{0}}{\sigma_{n}} t\right) \right| +$$

$$\sup_{-\infty < t < \infty} \left| \Phi\left(\frac{\sqrt{n}\sigma_{0}}{\sigma_{n}} t\right) - \Phi(t) \right| : = I_{1} + I_{2} \quad (34)$$

By (33), it is easy to see that $\lim_{n\to\infty} \frac{\sigma_n^2}{n\sigma_0^2} = 1$.

Thus, applying Lemma 1.1, one has

 $I_1 \leqslant C \{\gamma_{1n}^{1/3} + \gamma_{2n}^{1/3} + \gamma_{2n}^{(r-2)/2} + u^{1/3}(q)\}$ (35) and according to (33) again, similarly to the proof of (30), we obtain that

$$I_{2} \leqslant C \left| \frac{\sigma_{n}^{2}}{n\sigma_{0}^{2}} - 1 \right| = \frac{C}{n\sigma_{0}^{2}} |\sigma_{n}^{2} - n\sigma_{0}^{2}| = O(n^{-1})$$
(36)

Combining (34), (35) with (36), (9) holds true.

Appendix

Lemma A. 1^[18] Let $\{X_n\}_{n\geqslant 1}$ be PA random variables with zero means and $\max_{1\leqslant i\leqslant n}|X_n|\leqslant c_n<\infty$, a. s. for $n=1,2,\cdots$. Denote

$$u(n) = \sup_{i \geqslant 1} \sum_{j: |i-j| \geqslant n} \operatorname{Cov}(X_i, X_j),$$

and satisfies $\sum_{i=1}^{\infty} u^{1/2}(2^i) < \infty$. Assume that $\theta p_n c_n \le 1$ for some $\theta > 0$. Then there exits a positive constant C_1 , which does not depend on n, such that for every $\varepsilon > 0$

$$P\left(\left|\sum_{i=1}^{n} X_{i}\right| > n\varepsilon\right) \leqslant 4\left(\theta^{2} n u\left(p_{n}\right) e^{n\theta c_{n}} + e^{C_{1} n\theta^{2} c_{n}^{2}}\right) e^{-n\theta c_{2}}.$$

Lemma A. 2 Let X and Y be random variables, then for any a > 0,

$$\sup \mid P(X+Y \leqslant t) - \Phi(t) \mid \leqslant$$

$$\sup_{t} |P(X \leq t) - \Phi(t)| + \frac{a}{\sqrt{2\pi}} + P(|Y| > a).$$

Lemma A. 3^[14] Let $\{X_n\}_{n\geqslant 1}$ be a PA sequence, and let $\{a_n, n\geqslant 1\}$ be a real constant sequence, $1=m_0 < m_1 < \cdots < m_k = n$. Denote by

$$\eta_l := \sum_{j=m_{l-1}+1}^{m_l} a_j X_j \text{ for } 1 \leq l \leq k. \text{ Then}$$

$$\left| E \exp\left(it \sum_{l=1}^k \eta_l\right) - \prod_{l=1}^k E \exp\left(it \eta_l\right) \right| \leq 4t^2 \sum_{1 \leq s < t \leq n} |a_s a_t| \operatorname{Cov}(X_s, X_t).$$

Lemma A. 4^[14] Let $\{X_j\}_{j\geqslant 1}$ be a stationary PA sequence with $EX_j=0$ for $j=1,2,\cdots$, and there exist some r>2 and $\delta>0$ such that

$$\sup_{j\geq 1} E\mid X_j\mid^{r+\delta}<\infty,$$

$$u(n) = \sum_{j=n}^{\infty} \text{Cov}(X_1, X_{j+1}) = O(n^{-(r-2)(r+\delta)/2\delta}).$$

Let $\{a_j\}_{j\geqslant 1}$ be a real constant sequence, $a_i = \sup_j |a_j| < \infty$. Then there is a constant C not depending on n such that

$$E \Big| \sum_{j=1}^n a_j X_j \Big|^r \leqslant Ca^r n^{r/2}.$$

Especially, if $\{X_n\}_{n\geq 1}$ is a stationary PA sequence with $EX_n=0$, $|X_n| \leq d < \infty$, for $n=1,2,\cdots$, and assume $u(n)=O(n^{-(r-2)/2})$ for some r>2, then

$$E \mid \sum_{j=1}^{n} X_{j} \mid^{r} \leqslant Cn^{r/2}$$
.

Lemma A. 5^[2] Let F(x) be a right-continuous distribution function. The inverse function $F^{-1}(t)$, 0 < t < 1, is nondecreasing and left-continuous, and satisfies

- $(i) F^{-1}(F(x)) \leq x, -\infty \leq x \leq \infty;$
- $(||)F(F^{-1}(t)) \ge t, 0 \le t \le 1;$
- (iii) $F(x) \ge t$ if and only if $x \ge F^{-1}(t)$.

References

- [1] JOAG-DEV K, PROSCHAN F. Negative association of random variables with applications [J]. Ann Stat, 1983, 11(1): 286-295.
- [2] SERFILING R J. Approximation Theorems of Mathematical Statistics[M]. New York: John Willey & Sons, 1980.
- [3] PETROV V V. Limit Theorem of Probability Theory: Sequences of Independent Random Variables[M]. New York: Oxford Univ Press Inc, 1995.
- [4] SHIRYAEV A. N. Probability [M]. 2nd ed. New York: Springer-Verlag, 1989.
- [5] HALL P. Martingale Limit Theory and Its Application

- [M]. New York: Academic Press Inc, 1980.
- [6] LAHIRI S N, SUN S. A Berry-Esséen theorem for samples quantiles under weak dependence [J]. Ann Appl Probab, 2009, 19(1): 108-126.
- [7] YANG W Z, WANG X J, LI X Q, et al. Berry-Esséen bound of sample quantiles for φ-mixing random variables [J]. J Math Anal, 2012, 388(1): 451-462.
- [8] YANG W Z, HU S H, WANG X J, et al. The Berry-Esséen type bound of sample quantiles for strong mixing sequence[J]. J Statist Plann Infer, 2012, 142 (3): 660-672.
- [9] YANG W Z, HU S H, WANG X J, et al. Berry-Esséen bound of sample quantiles for negatively associated sequence [J]. J Inequal Appl, 2011, 2011: 83.
- [10] CAI Z W, ROUSSAS G G. Berry-Esséen bounds for smooth estimator of a function under association[J]. J Nonparameter Stat, 1999, 10: 79-106.
- [11] ROUSSAS G G. Asymptotic normality of the kernel estimate of a probability density function under association[J]. Statis Probab Lett, 2000, 50: 1-12.
- [12] ROUSSAS G G. An Esséen-type inequality for probability density functions with an application [J]. Stat Probab Lett, 2001, 51: 397-408.
- [13] YANG S C. Uniformly asymptotic normality of the regression weighted estimator for negatively associated samples[J]. Stat Probab Lett, 2003, 62(2): 101-110.
- [14] YANG Shanchao, LI Yufang. Uniform asymptotic normality of the regression weighted estimator for positively associated samples [J]. Chinese J Appl Probab Statist, 2005, 21(2): 150-160.
- [15] YANG Shanchao, LI Yongming. Uniform asymptotic normality of the regression weighted estimator for strong mixing samples [J]. Acta Math Sinica (Chin Ser), 2006, 49(5): 1163-1170.
- [16] LIANG H Y, DE UNA-ÁLVAREZ J. A Berry-Esséen type bound in kernel density estimation for strong mixing censored samples [J]. J Multivariate Anal, 2009, 100: 1219-1231.
- [17] LI Y M, YANG S C, ZHOU Y. Consistency and uniformly asymptotic normality of wavelet estimator in regression model with associated samples [J]. Statist Probab Lett, 2008, 78: 2947-2956.
- [18] YANG S C, CHEN M. Exponential inequality for associated random variables and strong laws of large number[J]. Science in China Series A: Mathematics, 2007, 50(5): 705-714.