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0 Introduction

Let {X, },= be a sequence of random variables
defined on a fixed probability space (2,7, P) with
a common marginal distribution function F (x) =
P(X, << ). F is a
(continuous from the right, as usual). For p € (0,
1, let

distribution function

Received: 2018-05-08; Revised: 2018-06-11

&, =inf{x.F(x) =pj,
denote the pth quantile of F', and be alternately
denoted by F ' (p). F7'(u),0<u<1, is called
the inverse function of F. An estimator of the
population quantile F~'(p) is given by the sample
pth quantile
F'(p)=inf{x:F,(x) =p},
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where F,, (x) :%EI(X,- < x),x € R, denotes
i=1

the empirical distribution function based on the
»X,.n=1, I (A) denotes the

indicator function of a set A and R is the real line.

Sample X19X29"

The concept of positively associated sequence
was proposed by Joag-Dev and Proschan'. A
finite of random variables { X, } <<, is said to be
positively associated, if for any disjoint subsets A ,
BC {1.,2,+,n}

Cov(f(X;s1 € A),g(X,;5i € B)) =0,
where f and g are real coordinate-wise
nondecreasing functions such that this covariance
exists. A sequence {X, },> of random variables is
said to be PA if for every n=2,X,,X,,, X,
are PA.

For a fixed p € (0,1),denote §,=F ' (p),
E,,=F, ' (p) and @ (u) is the distributing
function of N (0,1). The Berry-Esséen bound of
the sample quantiles for i. i. d. random variables is
given in Ref. [ 2] as follows:

Theorem 0.1 Let p€(0,1) and {X, },=; be a
sequence of 1. 1. d. random variables. Suppose that
F possesses a positive continue density f and a
bounded second derivative F” in a neighborhood of
¢,. Then

n'2(&,, —&,)
P<[p(1—p)]“2/f(5,,) =
O V%) sn — oo,

Berry-Esséen theorem, which is known as the

sup

o <00

)~ @) | =

rate of convergence in the central limit theorem,
can be available in many monographs such as Refs.
[3-4]. Under the i. i. d. random variables, the
optimal rate is O (2 Y?), and for the case of
martingales, the rate is O (n V'lgn Lo Chavters],
Recently, Ref. [ 6] obtained the Berry-Esséen
bound of the sample quantiles for a-mixing
sequence. Their result has an optimal rate of
O~ "?) under the strong condition of mixing
coefficients satisfying a (n) =0 (n %), a, > 12.

™) investigated the Berry-Esséen bound of

Yang et al.
the sample quantiles for NA random sequence and ¢-

mixing sequence, respectively, and obtained the same

convergence rate: O(n~ "*lgnlglgn). In other papers
about Berry-Esséen bound, Ref. [ 10] studied the
Berry-Esséen bound for the smooth estimator of a
Refs. [ 11-12]
obtained the Berry-Esséen bound in kernel density
Refs. [ 13-15 ]

investigated uniformly asymptotic normality of the

function under association samples,
estimator for associated samples.

regression weighted estimator for NA, PA and strong
mixing samples, respectively. Ref. [ 16 ] obtained the
Berry-Esséen bound in kernel density estimation for a-
mixing censored samples. Under associated samples,
Ref. [ 17 ] studied the consistency and uniformly
asymptotic normality of wavelet estimator in the
regression model.

There are very few literature works on Berry-
Esséen bound of sample quantiles for a sequence of PA
random variables. Inspired by Refs. [ 2,6-10,16], we
investigate the Berry-Esséen bound of the sample
quantiles for PA random variables under some mild
conditions and obtain two preliminary lemmas and a
theorem. The proof of the theorem is provided in
Section 1. The proofs of two preliminary lemmas are
given in Section 2. The appendix contains some known
results (Lemmas A. 1~A. 5).

Throughout the paper, C,C,, C,, - denote
some positive constants not depending on n, which
may be different in various places. | = | denotes the

largest integer not exceeding x and second-order

stationary means that (X, X ;) =] (X Xit)s
izl k=1

1 Assumptions and main results

In order to formulate our main results, we
now list some assumptions as follows:

Assumption 1. 1 Let {X, },=; be a second-
order stationary PA sequence with zero means and
common marginal distribution function F, and F
possesses a positive continue density f and a
bounded second derivative F” in a neighborhood of
&, for p€(0,1).

Assumption 1. 2 There exist some » >>2 and
0>>0 such that
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S E X,‘ rto < oo, 1 1 14:4 2

=P X | L Suppose that p, <n[81gg§n , where ,8:62 (Ea )’
p

w(n)s = D) Cov(X, . X;0) =0 2o/

j=n
@b
Assumption 1,3 There exists an €, >0 such
that for x+ €[ &, —¢,,&, e,

DiCov (X, <) I(X,0 <a2)]=
j=n
(r—2) (r468)

O =» (2)
r(r—2) . .
where 0<<0<< = if 2<r<<4; 60, if r=4,
respectively.

Assumption 1. 4 There exit positive integers
p:= p, and g: = q, such that for sufficiently
large n

ptg<n.,qgp'<<C <o (3
and let k: =k, = n/(p+q)], as n—>co
Yiu=qp ' >0 Yo, =pn ' >0, kp/n—>1
€Y

Assumption 1,5 There exist some r >2 and

0>>0 such that

oo

G—2)(r40)
DiCov(X . X; 1) =0 & ) (5
j=n

rr—2) . .
where 0<<0<< = if 2<r<<4; 6>0, if r=4,
respectively.
Remark 1.1 Assumptions 1. 1,1. 2 and 1. 4

are used commonly in the literatures. For
example, Refs. [12, 14, 16-17] used Assumption
1. 4. Assumptions 1. 1 and 1. 2 were used by
Refs. [14,17] and Assumption 1. 1 was assumed in

Refs. [7-9]. Assumption 1. 4 is easily satisfied, for
n

J:
ptq
L n'* | Tt is seen that pk/n— 1 implies gk /n—> 0.,

example, when p=| n%* |, = n'* |, k=[

as n—>ee,

Our main results are as follows.

Theorem 1.1 Assume that Assumptions 1. 1,
1. 3 and 1. 4 are satisfied, and let
Var[ [(X, <&, ]+

23 Cov[ T(X, << &,).1(X, <£,)]: =

i=2

i (€,) >0.

for some a=1, and
lgn
n*%p,lglgn )
exp{ (Bnlgn/(p,lglgn)V* v (p,) < C, << o,

where

C(p,) =

0(n) = D) Cov[ T(X, < ) T (X0 < )],

j=n

then

(7’11/2(5/;,” _5/;)
a(&,)/F (D

<) B | =0,

(6)

where a, =71, + 73’ v +u'? (¢)—> 0,
n—>0oo,

Remark 1.2 The above condition C(p, )<{co
nlglgn
Blen
v(n)=n ¢, for some p >0, we can obtain C (p,)
<C,<<co, while for some p (n), if v(n) =
OCe ™), it follows that C(p,)<<C,< oo,

Corollary 1.1 Suppose all the assumptions of

is similar to (2. 3) in Ref. [18]. When p, =

Theorem 1. 1 are satisfied, and =3, then

P<711'/2<Sp.,, _Sp)
e N TR VI

()(n7(3+8)/(18+26‘) )

<1‘>*€D(.r) =

Remark 1.3 The rate of convergence is near
On™Y%) as 6 0 by Corollary 1. 1. First, we give
some preliminaries, which will be used to prove
Theorem 1. 1.

Lemma 1. 1 Let {X, ), be a stationary
random variable sequence with zero mean and | X, | <<
d<<co for n=1,2,-.
1. 2 is satisfied. If

Suppose that Assumption

liminfn 'Var(>) X,) =¢? >0 (7

n—=cc .
i=1

then
IP.¢
sup P %<I —@(x) |=0C(a,)
‘ [Var(>) X))
i=1
(8)

Corollary 1.2 Suppose all the assumptions of

Lemma 1. 1 are fulfilleds and » =3, u (n) =
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O(n BT/ | then

X,
i=1

/Var(z X
i=1

()<n7(3+8>/<18+28) )

<a|—P(x)|=

sup | P
o p<o0

Remark 1.4 The rate of convergence is near
O(n %) as 6— 0 by Corollary 1. 2.

Lemma 1.2 Let {X, },> be a second-order
stationary PA sequence with common marginal
distribution function F and EX, =0, | X, | <d <<
co, n==1. Assumption 1. 5 is satisfied and let

Var(X,) 4+ 2>, Cov(X,,X,): =c? >0,

i=2

then

sup

—oco< g<(o0

P(Z;XI <1)@<I) =0(a,) (9
«/7700

Similar to Remark 1. 3, it follows that the rate of
convergence is near O(n~ %) as §—> 0, if r=23 in
Eq. (9.

Proof of Theorem 1. 1
notation as that in the proof of Ref. [ 9, Theorem
1. 1], denote A=5(&,)/f(&,) and

G, ()=Pm'"*(,, —&)/A<0D.
Similar to the proof of Ref. [9, Eq. (3. 3)]. Let
L,=(p,lgnlglgn)?, we have
sup | G, (1) —@() |

[t|>L,

P(| épm 75/7 |>AL”7’171/2) +17@(L”)

By taking the same

(100
A
Lete, :EL”n 172 it follows that
P(‘ S[J,n _E/) ‘>AL:17171/2) <
P(&,,—& |[=e) an

by Lemma A. 5(iii) , we have
PE,, >§&, +e,)=

P(XI(X, >€,+e) >n(1—p))=
i=1

P(>)(V,—EV) >nd,)
i=1

where V, =1(X,>¢§,+e¢,) and §,, =F (§,+e,) —
p. Likewise,
P(,, <& —e,)=P(p<F, (&, —¢,))=

P(O)(W, —EW,) >nd,.) »

i=1
where W, =1(X;, > &, —¢,) and 0, = p —
F(&,—¢,). It is easy to see that {V,—EV,, 1<<
i<n} and {W, —EW,, 1<i<{n} are still PA
sequences, and |V, —EV,[<1, |W,—EW, |<1.
According to Assumption 1. 3, we have

o) <n ' D jCov[I(X, <), (X, ., <2)]=

j=n
DGt

O 5 ).
[ 18, Remark 2. 1] with
Assumption 1. 4, Assumptions (Al) ~ (A3) in

Combining Ref.

Ref. [ 18] were satisfied for n large enough.
According to Lemma A. 1, for some >0, 0 p,<<
1, we obtain
P(2)(V, —EV) >nd,) <
i=1

o, |

2{0nv(p,e” + ey e 2,

and

P> (W, —EW,) >nd,,) <
i=1

b,

200 n0(p,)e’ + e p e T,
Since F (x) is continuous at &, with f(§,)>0,
by the assumption on f(x) and Taylor ’s expansion
O =F(, +e,)—p=f( e, +ole,);
O =p —F(&, —e,)=f(E)e, +o0(e,).
Therefore, we obtain that for n large enough

. . Ln
f&)en oL, F(&, 4+e)—p=0bu>

2 4n'?
S(EDe, o(&EHL,
é - 4;1/2 < p _F(Sp _en) :8112-
1/2
Taking 0 = (f%;g) , it is clear that from
np,lglgn
0p, <1
¢ 00/2 L e,/ — o sl (12)

Note that p,—>°°, we have for n large enough

<" —exp{C,Plgn/(p,lglgn)} < et (13)
by the assumption C(p, )< in Theorem 1. 1
*nv(p,)e’ =

Blgn { B nlgn 12} a
< 7 lgn

p.lglgn P <z>,, lglgn) vlp) = e b

From (11)~(14) we obtain
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P(lE&,,—¢&, |>e,) <Cexpl{—algn} <OG").
2m) 12
L}I

we have ‘sgg) |G, ()—P(@) <O ).

Since 1 —® (L, )<< exp{—L%Z/2}=0(n 1),

According to the proof of convergence rate of
lo?(nst)—c*(£,) | in Ref. [9]. Taking
p.=/Ugnlglgn)'?,

n

Z;
‘q‘up | G, (1) —d() |< sup P {‘1
' ’ Jno(nst)

we obtain that for |¢|<L,,
| 6*(nst) —a* (&) |= O V3 (p,lgnlglgn)V) +
(r—2) (r-+8)

O 1
By taking r=3.8=3. we obtain |¢* (n.¢) —0¢*(&,) |
=0 "%). On the other hand, seeing the proof
of Ref. [9,Eq. (3. 9) ], by Lemma 1. 2 it follows
tha‘[,

[¢|<L

< l —®P(—c,) |+ sup | @) —D(c,) | <

Cirid +rvid +rs 2 +u* (@) + Sup | () —@(c,) |[<<CP+rid +ra 2 +u* ().

Therefore, Eq. (6) follows the same steps as
those in the proof of Ref. [9, Theorem 1. 1].
Proof of Corollary 1.1 We obtain it by taking

p :L n3(3+1)/(6+45)J’q :L 713/(3+28)J.
2 Proof of preliminary lemmas

Proof of Lemma 1.1 We employ Bernstein’s
big-block and small-block procedure and partition
the set {1,2,+*, n} into 2k, +1 subsets with a
large block of size p = p, and small blocks of size

q=q,» and let k=F,:=| |. Define Z,.;, =

n
p.tq.,

X./ /Var(z X,;) , then S, may be split as
i=1

n

X,

+:2 7.
Var D) xH
i=1

where S, —Z N sS.u = 2 s Su=

kj+p—1 Litg—1
22711’5_227117§k: 2 Zois kj:
i=k(ptq)+1

(]—1)(p+q)+1,lj:(]—1)(p+q)+P+1,j:
172""9&.

S,:= =S, +Se +Sn$ ’

i andp; =

According to Lemma A. 2 with a=71+74’,
we have
sup | PGS, <<t) —@@) |=

S}flE(, ‘ P(Snl +SnZ +SHS < t) 7@(1‘) |<

Sup ‘ P(Snl

—co <&

<) -0 |+ +
N

2

P S, =71 +P( S, [=ry® A5

Step 1 We estimate E (S,,)? and E (S,3)%,

which will be used to estimate P (|S,, |=71) and

P(|S,; =74 in (15). By the conditions | X, |<<

d and (7), it is easy to find that | Z,.; |<£

n

Combining the definition of PA with the definition

§+j = 1.2,

{& }1<i<x 1s PA. According to the stationary and
EX,=0, n=1, we have

. ks we can easily prove that

E(S,)? = ZE52+2 D7 Cov(&.&) =

1<i<|j<wk

p o Litat

DD VEWZ, D+
i=1i={;
k
2>, 2
J=1 < <ip<d g1
li+q71/j +¢—1

Cov(Z,i, +Zoi)) +

2 20 2 2 CovlZyi Zuy) <
1<k iy =1, iy=1;
ko g1
n g+ 20 25 (q—DCOV(Z,1 s Z,i) +
j=1 i=1

p—1 Lty Z]‘h{*l

D0 20 20 CovlZyy o Zoy) <

i=1 i =1, j=itl iy =1,

Clkq +kqu(1) +kqu(p)]/n <

Ckq/n =Cqp ' =Cyy, (16)
ES,)) = > EZ,)'+
i=k ()

2 2]

k(ptg)+Hls<i| <<iy<an

nn—Fkp+g) ]+

(‘/OV(ZH.I'1 7Zn.i2 ) <
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n—k (ptq)—1

P Z COV(sz,l’Zr:.iJrl)} <

i=1
ntn—kp+ge)]+pntu)) =
Cp+q)/n=Cy, an
Hence, by Markov’s inequality, (16) and
(17>, we have

P S, [ 717 < Cri/E(S,))* < Cri)

(18)
PO S, | = 7i)) < Cru,/PE(S,:)* < Cry)}
(19
Step 2 We estimate sup \P (S, =<t)—
@(t)|. Define
k
:2 Var(p;), I',: = >, Cov(n; s p;).
<< <k
Clearly s2=FE(S,;)*—2I',, and since ES?=1, by
(16) and (17) we get that
‘ E(Snl)z 71 ‘:

| E(S,, +S,5)? —2E[S,(S,, +S,:)] |<
E(S,2)*+E(S,)*+
2E[(S, ) ]VPE[(S,)? ]V +
2E[(S,)O*]VPE[(S,)2 V2 +
2E[ (SO IVPE[(S,)? ]V <
CO 4+ (20)

On the other hand, similarly to the process of
(16),

kitp—1k; +/)
- 2 Cov(Z,. s Z,p) =

I<i<j<tk s=k; = k;

p—1 ki tp— P }» +p—1

Z Z Cov(ZyisZyt) <

i=1 s=k; j=itl t= /v

C[/zpu(q)]/n < Cu(g) 2D
From (20) and (21), it follows that
| s?—1|<Clylr+7y+ulg] @2

We assume that 7, are the independent random

variables and 7, have the same distribution as 7, ,

k
j=1.2, =k Let H,: = >,7,. It is easily
j=1

seen that
sup | P(S, <t) —P() |<

:\tsi}p | P(S,. <t)—PH, <) |+
Csup [ PCH, <0 —@/s,) [+

sup | ®t/s,) — @) |+ =D, + Dy + D,

Let ¢ (¢t) and ¢ () be the characteristic

—oo<t<

and H, , Thus
applying Esséen inequality (see Ref. [ 3, Theorem
5.31]), for any T>0,

b=

function of S, respectively.

¢ (1) — go(t)

T

|P(H, <<u-+t)—PH, <) | du:=

\u<(1

T sup._

D111+D2n-
By Lemma A. 3, we have that
| (1) — () |=

k k
‘Eexp(itz n)— HEexp(im,-) <
kb 1/111;; 1 !

DYDY Z(Jowzn.,zn,)

1\1\;\ks/e lk

Therefore

T
Dln :J
T

It follows from Berry-Esséen inequality

Ct*u(q).

¢ () — ()
t

dt < Cu(OT? (23)
[3, Theorem 5. 7]

and Lemma A. 4, that

;fu[/) \ P(H,/s, <t)—d() |<
nj 1 ”] 1
r/2 (r—2)/2
C/e[([){n)] <C72nr (20
Sn Sn
Note that s,—> 1,as n—>°° by (22). From

(24), we get that
sup | P(H,/s,

—co<l fL 0o

<it)— D) | K Cys e

(25)
which implies that

Cswp | POH, < i+w) —PUH, <0 |<
s PRt e
_sup, P(H <f)‘¢(f) +

s o) —e() <

2 swp | P(r<i) 0w |+

swp | P

s o' ) —e(!) <
Clrise+1 1) (26)

By (26), we obtain
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Dy, =T sup | P(H, <t —+u)— On the other hand,
TS Lot z") X
(r—2)/2 i
PCH, <0 | du < CO 27 +1/T) 2D wp P(” <t)_®<t) _
Combining (23) with (27), and choosing T o, -
T=u""%(g), it is easily see that n
D, < Cw"* (@) +y5?™ (28) 2 X, Ny Jna,
q 2n sup Pl iz - ncfot —(15( z‘) +
and by (25, o o, on o
H, t
D,= sup P(; <7) @(\) Vs, P sup @(ﬁaot)—@(t) c=1,+1, (34)
o< 00 n Sn o< <00 o,
(29) o
On the other hand, from (22) and Ref. [ 3, By (33), it is easy to see that ,,lirr} nel =1

Lemma 5. 2], it follows that
D; < Q2re) (s, —DIG, =1+
Qre) V2 (s,' — DI <<s, <<1) <
Clsi—1[<CLyiy+ri! +ulp] 30
Consequently, combining (28), (29) with

(30), we can get
_sup | P(S,) <t) —@() |<

(/[yln Vi 24 Y P4 u'? (q)] 3D

Finally, by (15),(18),(19) and (31), (8) is
verified.

Proof of Corollary 1.2 We obtain it by taking

p :L n3(5‘+1)/(6+46)J’q :L 71(‘)‘,/(34*28)J.

Proof of Lemma 1.2 Defines?: = Var( E X

i1
and ¥ (k) = Cov (X;, X;4,) for i = 1, 2, -,
according to (5), it is checked that

ZLOV(X] ’X +1)

Jj=n

- G—2) (r40)
7771 E‘].COV(lex_/H):O(n7 26
j=n

therefore Assumption 1. 2 holds true. For the
{ Xn }n>1

common marginal distribution function, by Eq. (5)

) (32)

second-order stationary process with

it follows that

| o7 —noj |=

n—l . co

j=1
n—l -

o> —y<]>+2n2m>

j=1 j=n

22m]>+22mj> 42;7(;)—()(1)

j=n

(33)

Wy (0) £ 20> (1—7’7—)7<j>—ny<o>—zn2y<j> —

Thus, applying Lemma 1. 1, one has

I <<C{y\P+rii+vs2" +u1/3(q)} (35)
and according to (33) again, similarly to the proof
of (30), we obtain that
: C

00

<C

nol |=0n™Y)

1=

o]

(36)
Combining (34),(35) with (36), (9) holds true.

Appendix

Lemma A. 1/®  Let {X,},=1 be PA random

variables with zero means and max\ X, 1<, <<oo,

1<i=n

a.s. forn=1,2,++. Denote

u(n) =sup >, Cov(X,,X,).

i=1

jili—jl=n
and satisfies E u'?(2") < co, Assume that 8 p,c,
i=1

<1 for some 0 >0. Then there exits a positive
constant C,, which does not depend on n, such

that for every e=>0

P(ilx,-

4402 nu (p,) el en + oCrnt’c) Y a2,
Lemma A, 2 Let X and Y be random

variables, then for any a >0,
sup | P(X4+Y<t) —o@) |

sup\P(X 1) — @) \+7+P(\Y|>a)
N

2
Lemma A, 3"  Let (X, },~1 be a PA
sequence, and let {a,,n=>1} be a real constant

sequence, 1=m,<m; <-+<m; =n. Denote by



% 8

Berry-Esséen type bound of sample quantiles for positively associated sequence 613

m;

2 a;X; for 1=<</<k. Then

]'7171171 1
k k
‘ Eexp(it 2 ) — HEexp(itr;z) ‘ <
=1 =1

4t >

1< s<1<n
Lemma A, 4"
PA sequence with EX; =0 for j =1, 2, -
there exist some r>2 and >0 such that
;s\glpE | X; |70 oo,

=

| a,a, | Cov(X,,X,).

Let {X; };=1 be a stationary

+, and

wln) = E Cov(X 1+ X ,11) =0 2wy,

j=n

Let {a; };= be a real constant sequence, a:=

supla; [<<eo, Then there is a constant C not
J

depending on n such that

E‘ Zain

j=1
Especially, if {X,},>1 is a stationary PA sequence
with EX,=0,|X, |<d<{co, for n=1,2,++, and

assume u(n) =0 ""?%) {or some r>2, then

E| DX,
i=1
Lemma A. 590 Let F (x) be a right

continuous distribution function. The inverse

"< Can"?.

r ~ //’
< Cn'""”.

function F~' (¢), 0<(t<{1, is nondecreasing and
left-continuous, and satisfies

(i) FH(F)<ax,—ooa<{oo;

CIDF(F "=, 0<e<<lls

(i)Y F(x)=t if and only if 2 =F 1 ().
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