文章编号:0253-2778(2019)08-0603-03

Large induced subgraph with restricted degrees in trees

HUANG Ziyang, HOU Xinmin

(Wu Wen-Tsun Key Laboratory of Mathematics, School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, China)

Abstract: A problem was proposed to determine for a tree T the size of the largest $S \subseteq V(T)$ such that all vertices in T[S] have either degree 1 or degree 0 (mod k). Here it was proved that, for integer $k \ge 2$, every tree T contains an induced subgraph of order at least $c_k |V(T)|$ with all degrees either equal to 1 or 0 (mod k), where $c_k = 3/4$ when k = 2, and $c_k = 2/3$ when $k \ge 3$. Moreover, the bounds are best possible. This gives a good answer to the problem.

Key words: tree; induced subgraph; degree

CLC number: O157. 5 **Document code:** A doi:10.3969/j.issn.0253-2778.2019.08.001

2010 Mathematics Subject Classification: Primary 05C69; Secondary 05C05

Citation: HUANG Ziyang, HOU Xinmin. Large induced subgraph with restricted degrees in trees[J]. Journal of University of Science and Technology of China, 2019,49(8):603-605.

黄子扬,侯新民. 树图中度数受限的大导出子图[J]. 中国科学技术大学学报,2019,49(8):603-605.

树图中度数受限的大导出子图

黄子扬, 侯新民

(中科院吴文俊数学重点实验室,中国科学技术大学数学科学学院,安徽合肥 230026)

摘要:有文献提出公开问题:对树 T,求最大的集合 $S \in V(T)$ 使得导出子图 T[S] 每个点的度为 1 或 $0 \pmod{k}$. 证明了,对给定的整数 $k \ge 2$,每一棵树 T 都包含一个阶数至少为 $c_k |V(T)|$ 的导出子图使得所有的度为 1 或 $0 \pmod{k}$,这里当 k = 2 时, $c_k = 3/4$;当 $k \ge 3$ 时 $c_k = 2/3$,且下界是最好的. 这个结果解决了上述问题.

关键词:树;导出子图;度

0 Introduction

A classical result of Gallai^[1] asserts that for any graph G, the vertex set V(G) can be partitioned into two sets, each of which induces a subgraph with all degrees even. From this we can

conclude that every graph of order n contains an induced subgraph of order at least $\lceil \frac{n}{2} \rceil$ with all degrees even, and this is best possible by considering a path.

A natural question is to ask for the largest size

Received: 2018-07-15; **Revised:** 2018-10-10

Foundation item: Supported by NNSF of China (11671376), NNSF of Anhui Province (1708085MA18), Anhui Initiative in Quantum Information Technologies (AHY150200).

Biography: HUANG Ziyang, male, born in 1993, master. Research field: Combinatorics and graph theory. E-mail; zyh16@mail. ustc. edu. cn

Corresponding author: HOU Xinmin, PhD/associate Prof. E-mail: xmhou@ustc.edu.cn

of an induced subgraph with all degrees odd in a graph of given order. There are many results related to the problem (see for example in Refs. [2-6]. In particular, for trees, Radcliffe and Scott^[7] proved that every tree of order n contains an induced subgraph of order at least $2\lceil \frac{n+1}{3} \rceil$ with all degrees odd. Berman et al. [8] further extended this result to an induced subgraph having all degrees congruent to 1 modulo k. In the same paper, they proposed the following interesting problem. Write G[S] for the subgraph of graph G induced by $S \subseteq V(G)$.

Problem 0. 1^[8] For any tree T, determine the size of the largest $S \subseteq V(T)$ such that all vertices in T[S] have either degree 1 or degree 0 (mod k).

In this paper, we give an answer to Problem 0.1 in the following theorem.

Theorem 0. 1 For every tree T and every integer $k \ge 2$, there is a set $S \subseteq V(T)$ such that $|S| \ge c_k |V(T)|$ and T[S] has all degrees either 1 or $0 \pmod{k}$, where $c_k = \frac{3}{4}$ for k = 2 and $c_k = \frac{2}{3}$ for $k \ge 3$. Moreover, the bound of |S| is best possible.

The tightness of c_k can be shown by considering a path P_{3n} on 3n vertices for $k \ge 3$ and the following tree T_{4n} on 4n vertices as shown in Fig. 1 for k=2.

Fig. 1 Tree T_{4n}

The rest of the paper is arranged as follows. We give the proof of Theorem 0.1 in Section 1. In Section 2, we give some remarks and discussions.

1 Proof of Theorem 0, 1

We call an $S \subseteq V(T)$ a good subset of T if $|S| \ge c_k |V(T)|$ and T[S] has all degrees 1 or 0 (mod k). Our proof is by contradiction. Suppose to the contrary that there is a tree T such that T

contains no good set $S \subseteq V(T)$. Without loss of generality, we may assume T is a smallest counterexample. Clearly, |V(T)| > 2. If $2 \le \operatorname{diam}(T) \le 3$ then T is a star or a double-star. It is an easy task to check that T has a good set, a contradiction. So we may assume that $\operatorname{diam}(T) \ge 4$, where $\operatorname{diam}(T)$ is the diameter of T.

Let L_0 be the set of leaves of T and L_1 be the set of leaves of $T-L_0$ and L_2 be the set of leaves of $T-(L_0 \cup L_1)$. For a vertex v of T, write $N_i(v)$ for $N(v) \cap L_i$ and $d_i(v)$ for $|N_i(v)|$, i=0,1,2. Since diam $(T) \geqslant 4$, L_2 is non-empty. By the definition, we have $d_0(v) > 0$ for $v \in L_1$ and $d_1(v) > 0$ for $v \in L_2$.

Claim 1.1 Let $x \in L_2$. Then for each $w \in N_1(x)$, we have $d_0(w)=1$ and $d_T(w)=2$.

Proof Let w be any vertex in $N_1(x)$. Note that $w \in L_1$. Then $d_0(w) > 0$.

Case 1 $k \geqslant 3$.

If $d_0(w) \ge 2$, let $T_0 = T[N_0(w)]$, then T_0 is an empty graph on $N_0(w)$. Now let $T' = T - (N_0(w) \bigcup \{w\})$. Then T' is a tree smaller than T. Hence T' has a good set S'. Therefore, $S' \bigcup N_0(w)$ is a good set of T since

$$|N_0(w)| = |V(T_0)| \geqslant \frac{2}{3} (|V(T_0)| + 1),$$

a contradiction.

Case 2 k = 2.

If $d_0(w) \ge 3$, with a same argument with $d_0(w) \ge 2$ for $k \ge 3$, we can find a good set $S' \cup N_0(w)$ with order at least $\frac{3}{4} |V(T)|$ of T, a contradiction.

If $d_0(w)=2$, let $S_0=\{w\}\bigcup N_0(w)$ and $T'=T-(S_0\bigcup\{x\})$. Then T' has a good set S'. Note that $T[S_0]$ is a path of length 2. Then S_0 is a good set of $T[S_0]$. Since $|S_0|=|V(T_0)|=3$, we have $|S_0|\geqslant \frac{3}{4}(|V(T_0)|+1)$. Therefore, $S'\bigcup S_0$ is a good set of T, a contradiction.

Note that $N_T(w) = N_0(w) \bigcup \{x\}$, we have $d_T(w) = d_0(w) + 1 = 2$.

Claim 1.2 If k=2, then for each $x \in L_2$, we

contradiction.

have $d_1(x)=1$, $d_0(x)=0$ and $d_T(x)=2$.

Proof Since $x \in L_2$, we have $d_1(x) \geqslant 1$. Let $S_0 = N_0(x) \cup N_1(x) \cup (\bigcup_{w \in N_1(x)} N_0(w))$ and $T_0 = T[S_0]$. Denote $d_1(x) = a$ and $d_0(x) = b$. By Claim 1. 1, T_0 consists of a independent edges and b independent vertices. So S_0 is a good set of T_0 . Let $T' = T - (S_0 \cup \{x\})$. Then T' is a tree smaller than T. By the minimality of T, T' has a good set S'. If $a \geqslant 2$ or $b \geqslant 1$ then $|S_0| = 2a + b \geqslant 3$. So $|S_0| = |V(T_0)| \geqslant \frac{3}{4}(|V(T_0)| + 1)$. Therefore, $S' \cup S_0$ is a good set of T, a

Note that for each $x \in L_2$, we have $d_T(x) = d_0(x) + d_1(x) + 1 = 2$.

Proof of Theorem 0.1 Choose a vertex $x \in L_2$. Case 1 $k \geqslant 3$.

By Claim 1. 1, we can find a vertex $w \in N_1(x)$ with $d_0(w)=1$. Denote $N_0(w)=\{v\}$. Let $T'=T-\{w,v,x\}$ and $T_0=T[\{w,v\}]$. By the minimality of T, T' has a good set S'. Let $S_0=\{w,v\}$. Note that S_0 is a good set of T_0 and $|S_0|=2\geqslant \frac{2}{3}(|V(T_0)|+1)$. $S' \cup S_0$ is a good set of T, a contradiction.

Case 2 k = 2.

2 Conclusion

In this paper, we proved that, for integer $k \ge$

2, every tree T contains an induced subgraph of order at least $c_k \mid V(T) \mid$ with all degrees either equal to 1 or 0 (mod k), where $c_k = \frac{3}{4}$ when k = 2, and $c_k = \frac{2}{3}$ when $k \geqslant 3$. Moreover, the bounds are best possible. This solved Problem 0.1 proposed by Berman et al. As a further step, for given integer $k \geqslant 2$ and general graph G, it is an interesting challenge to determine the size of the largest $S \subseteq V(G)$ such that all vertices in G[S] have either degree 1 or degree 0 (mod k).

References

- [1] LOVÁSZ L. Combinatorial Problems and Exercises M. Amsterdam: North-Holland, 1979.
- [2] CARO Y. On induced subgraphs with odd degrees[J]. Discrete Math, 1994, 132:23-28.
- [3] CARO Y, KRASIKOV I, RODITTY Y. On induced subgraphs of trees with restricted degrees[J]. Discrete Math, 1994,125; 101-106.
- [4] HOU X, YU L, LI J, et al. Odd induced subgraphs in graphs with treewidth at most two[J]. Graphs and Combin, 2018, 34 (4): 535-544.
- [5] TAO X, LIU B, HOU X. Weak internal partition of regular graphs[J]. Commun Math Stat, 2017,5(3): 335-338.
- [6] SCOTT A D. Large induced subgraphs with all degrees odd[J]. Comb Probab Comput, 1992,1 (4): 335-349.
- [7] RADCLIFFE A J, SCOTT A D. Every tree contains a large induced subgraph with all degrees odd [J]. Discrete Math, 1995, 140: 275-279.
- [8] BERMAN D M, RADCLIFFE A J, SCOTT A D. All trees contain a large induced subgraph having all degrees 1 (mod k) [J]. Discrete Math, 1997, 175: 35-40.