554995555 ¥ B # 2 & X X & 3 4 Vol. 49,No. 5

2019 fﬁ 5 H JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA May 2019

B 0253-2778(2019)05-0368-09

Maximum Balaban index and sum-Balaban index of cacti

FANG Wei', YU Hongjie' s« GAO Yubin*, JING Guangming®, LI Xiaoxin'

(1. College of Information and Network Engineering, Anhui Science and Technology University, Fengyang 233100, China ;
2. Department of Mathematics, North University of China, Taiyuan 030051, China ;
3. Department of Mathematics and Statistics, Georgia State University . Atlanta 30302, USA ;
4. School of Big Data and Artificial Intelligence s Chizhou University s Chizhou 247000, China)

Abstract; The Balaban index and sum-Balaban index were used in various quantitative structure-
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bounds of Balaban index and sum-Balaban index among all cacti were given and the cacti that

attain the bounds were characterized.
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. among these descriptors topological indices occupy
0 Introduction .
a special place because they are more complex than

Molecular  topology can be expressed counts of atoms, groups or bonds, but less

numerically in term of molecular descriptors, and complicated than quantum-chemical parameters.
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Consequently, they can be computed in a very
short time from various types of input data on

atom connectivities, and be used for quantitative

structure-property relationship ( QSPR ) and
quantitative  structure  activity  relationship
(QSAR).

Balaban index was proposed by Balaban!'*
which is also called the average distance-sum
connectivity or J index. The Balaban index of a
simple connected graph G is defined as

m 1
7N 1Lm§c> /m
Balaban et al. ") also proposed the sum-Balaban
index SJ (G) of a connected graph G , which is

defined as

J(G) =

m E 1
¢+ 1w D¢ (u) + D¢ (v)

where the distance between vertices u and v in G is

denoted by d(;(u 97)) and D(;(u) — Z d(;(u 9"())

veV(G)
(or D (w) for short) is the distance sum of vertex u

inG. p=|EWG) |—|V(G) |[+1=m —n—+1is the

cyclomatic number.

SJ(G) =

In 2002, Balaban'* compared the ordering of
constitutional isomers of alkanes with 6~9 carbon
atoms. It was shown that the ordering induced by
Balaban index parallels the ordering induced by
Wiener index, but reduces the degeneracy of the
latter index and provides a much higher
discriminating ability.

The behavior of Balaban index mimics the
behavior of the melting temperatures and glass
transition temperatures for linear macromolecules,
which possess an asymptotic limit for these
physical properties. The asymptotic value of
Balaban index for an infinite path is the number
= 3. 14159 in Ref. [ 3] and the asymptotic
properties for Fibonacci trees are analyzed in Ref.
[51.

For chemical

identify the

applications, it may be

interesting to graphs with the
maximum and minimum topological indices in a

given class of graphs. Deng'® proved that among

all trees with n vertices, the star S, and the path
P, have the maximal and the minimal Balaban
index, respectively. Fang et al. '™ gave the upper
bounds of Balaban index and sum-Balaban index
for bicyclic graphs, and characterized the bicyclic
graphs which attain the sharp upper bounds. You
and Dong'® gave the unicyclic graphs with the
maximum Balaban index and the maximum sum-
Balaban index among all unicyclic graphs on n
vertices. More mathematical properties of Balaban
index can be found in Refs. [ 9-12 ]. More
mathematical properties of sum-Balaban index can
be found in Refs. [10-11,13-14 ].

Let G be a simple and connected graph with
| V(G) |=n and | EG) |=m.
N¢(u) be the neighbor vertex set of vertex u .
Then dg(u) =] Ng(u) | is called the degree of « .

Let G be a graph and @ = U C V(G). The

subgraph of G whose vertex set is U and whose

As usual, let

edge set is the set of edges of G that have both ends
inU is called the subgraph of G induced by U and is
denoted by G[U ] . We say that G[U ] is an induced
subgraph  of G. The subgraph
G[V(G)H)\U] is denoted by G —U . HU={v} , we
write G — v for G — {v}.

V(G) , we define D¢ (v.U) = > d g (veu) .

welU
A block of a graph G is a maximal 2-connected

induced

For any vertex v €

subgraph of G. A cactus graph is a connected
graph in which no edge lies in more than one cycle,
such that each block of a cactus graph is either an
edge or a cycle. A vertex shared by two or more
cycles is called a cut-vertex. We denote C/, the set
of all cactus graphs of order n and [ cycles.
Obviously, C! are trees and C) are unicyclic
graphs. Refs. [6,8] obtained the upper bounds on
the Balaban index (sum-Balaban index) of trees
and unicyclic graphs, respectively. In this paper,
we let [ = 2 and then n =27 + 1.

If all blocks of a cactus G are cycles of the
same length m , the cactus is m -uniform. A
hexagonal cactus is a 6-uniform cactus such that

every block of the graph is a hexagon. If each
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hexagon of a hexagonal cactus G has at most two
cut-vertices and each cut-vertex is shared by
exactly two hexagons, we say that G is a chain
hexagonal cactus (see Fig. 1). More information
on cacti can be found in Refs. [15-20].

)

Fig. 1 A chain hexagonal cactus

In this paper, we obtain the upper bounds of
Balaban index and sum-Balaban index among cacti,
and characterize the cacti which attain the bounds.
In Section 1, we introduce some useful lemmas and
some useful graph transformations, and study the
changes of Balaban index and sum-Balaban index of
a cactus graph after these transformations. In
Section 2, we will give sharp upper bounds on

Balaban index and sum-Balaban index of cacti.

1 Some useful graph transformations

In this section, we will introduce some useful
lemmas and some useful graph transformations.
Lemma 1. 1" Let z,y.a € R such that
Then ! = ! , and
Jxy (x—a)(y +a)
the equality holds if and only if x =y +a.
Lemma 1. 2" Let x1,25.y,,y, € R such
thatx, > y; and x» —x; =y, — y; > 0. Then

1+1<1+1

1.1 Edge-lifting transformation

xr=y+a.

Let G, and G, be two graphs with n; > 2 and
n, = 2 vertices, respectively. If G is the graph
obtained from G, and G; by adding an edge between
a vertex u, of G, and a vertex v, of Gy, G’ is the
graph obtained by identifying u, of G, to v, of G,
and adding a pendent edge to vy, then G’ is called
the edge-lifting transformation of G (see Fig. 2).

Lemma 1. 31" Let G’ be the edge-lifting
transformation of G . Then J (G) << J(G') , and
SJ(G) < SJ(G).

(@G (b) G’
Fig. 2 The edge-lifting transformation

By Lemma 1. 3, we can verify that if C € C}
attains the maximum Balaban index and sum-
Balaban index of all graphs in C} , then C is a

cactus graph as shown in Fig. 3 and the following

five conditions hold.

Fig.3 The cactus graph C

D3 r<<n—2+2;

(i) each cycle of cactus graph C has at least
one cut-vertex;

(ii1) G; is a cactus graph, or pendent edges, or
a vertex, where 1 <{i < r ;

(WG NG =0 forany 1 <<i <j <r;

(v) there are/ —1cycles inG, UG, UG U -+~
UG, .

Fig. 4 shows an example of how to obtain C by
repeating edge-lifting transformations from a
cactus graph ¥ , where V(G,) = {v1,vs,v6,v7/) ;
E(G)) ={vivssvi1v6sv1v7 0507} 5 V(Gy) = {0y,

'Ug} H E(Gg) = {“Ugvg} H V(Gg) - {7)397/97"010} H

E(Gg) - {'Ug'Ug 9‘1}3‘1)10} H V(Gl) — {‘U,l}
Remark 1.1 In order to determine the cacti

which attain the maximum Balaban index and
maximum sum-Balaban index of all graphs in C¢, ,
we just need to discuss the cactus graph C € C/, as
shown in Fig. 3.

1.2 Cycle-edge transformation

Let C € C! be a cactus graph as shown in
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edge-lifting transformation
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Fig. 4 An example

Fig. 3, where C, =v,v,***v, is the biggest cycle of
C ., and | V(G,;) |=1t; + 1. Denote the vertex set
W, =N¢ () NV(G,) and | W, |=k,; for 1 <<i<<C
r. Obviously, t; =k, for1 <<i < r.

(i) If r is even and r =4, thenC’ is the graph
obtained from C by deleting the edge v;v; and the

edges from v, toW,,, , meanwhile, adding the edges

Uy

v1vs and from v, to w.,.
(i) If r is odd and » =5, then C” is the graph

obtained from C by deleting the edges v,v5.v;3v,
from v, to W,, and vs to W, » meanwhile, adding
the edges v v, v 05, fromo, toW,, and v, toW,_.

ThenC" € Cl .

edge transformation of C (see Fig. 5).

We say that C’ is the cycle-

Lemma 1.4 LetC € CJ be a cactus graph as
shown in Fig. 3 with » = 4, and C’ be the cycle-
edge transformation of C (see Fig. 5). Then

J(C) << J(Ch.

C(r is even and r=4)

(@

e cycle-edge transformation

cycle-edge transformation

C(r is odd and r=5)
(b)

Fig. 5 The cycle-edge transformation
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Proof Case 1
We first
VON{v,} .

r is even and r=4.
consider the vertex v, &
It is easy to see that

De(v,) = 2.De (v, sG) +De (v, sC,)

i=1
De(v,) = > De (v, G) +De (v, C,).
i=1

From the operation of cycle-edge transformation,
noting that C — {V(G,)} = C" — {V(G,)} and
Dc(v,,C,) = De(v,.,C.) s Do, Gy) =
D¢ (v, .Gy) s where v, € V(CO\{v,}. Then we
have D¢ (v, .G;) = D¢ (v, ,G;) » where 1 << i <<
r» and

D¢(v,) — D¢ (v,) =0 (D
where v, EVIC)\{v,}.

It can be checked directly that

L = L (2
D¢ (v, )De (vy) D¢ (v, )D¢(v,)
where v, v, € V(C)\{v,} .

In the following, we consider the edges on

vertex vy, of C : v,vs s vsv5 and from v, to w.,.

For v,v, € E(C), it can be checked
directly that
r2
D(#("Ug) _D(T(Uz) :ZZ,‘ +%_19
i—2

2

2 -
DAm%JM@J:Zm+%—L
i=2

Then
DC’ ('Uz) - D(‘('Uz) :D(‘('Ul) - D(j’ ('U1) —
2
2
Zu+%—1 (3)

Since d ¢ (v, ,v,) =1, we have

DC’ (‘Ug) - D(" (7)1) =n—2 >

ri2

Zti+%_1:D(j’<Uz)_D(j(v2) (4)
i=2

42
2

Letx :D(t/(”l)z) Y :D(j/("Ul )sa :Zti ?L% — 1.
i=2

Thenx —y=n—2>a.
1

D¢ (vy)De (vy)

1 J—

(Do (v) —a)(De (o) +a)

By Lemma 1. 1, we have

1
VD¢ (v,)De(v1)
For v,vs € ECC) , by (1) and (4), we have
D¢ (vy) < D¢ (w3)s De(vy) < De(vy) . Then
1 - 1
D¢ (v1) D¢ (v3) D¢ (v)De(vy)
For the edges fromv, toW,, , by (1) and (4),
we have D¢(vy,) > De(vy), and De(w) =
D¢ (w) for anyw € W,,. Then
1 ~ 1
D¢ (v)De (w) D¢ (vy)De (w)
for any weW,,.
By (2) and (5) ~ (7), it can be checked
directly that

©))

(6)

D

1 - 1
D¢ (v, )De (vy) D¢ (v, )De(vy)
From the definition of Balaban index, if p is
even, we have J (C") > J(C) .
Case 2 ris odd and r = 5.
We first consider the vertex v, € V(C)\{v;,

U3 } . From the

cycle-edge
transformation, noting that D¢ (v,,C,) =
D¢ (v, ,C.)and D¢ (v, sG;) =D (v, .G;) for 1 <<
i <<r. Then for any vertexv, € V(C)\{v,,vs} »

we have

operation  of

D(j(“(}_,.) >D(;’(“U_,-) (8)
Then
L > ! ()
D(j’(‘UJ-)D("('Uy) D(j(‘UJ-)D(‘('Uy)
where v, ,v, € V(C)\{v;,v;}.

We now consider the edges on vertices vy ,v3

of C : vivss vyv55 vsvys from v, toW,, and v to
W...
For V102

€ EC), it can be checked
directly that

De (vy) — De(vy) =1, + 1 ao
D(f(YJ1>_D(;’(U1) >t2 +I"_3 >
Z2+1:D("(U2)_D(‘(7}2> (1D

Since d ¢ (vy,v,) =1,we have
D¢ (vy) —Dev) =n—2 >
t; +1=D¢ (vy) — D¢ (vy) 12
Letx=D¢ (vy) » y=D¢ (vy) s anda=t,+1.

Thenx —y=n—2>>a. By Lemma 1. 1, we have
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1
D¢ (vy)De (vy)
1
(D¢ (vy) —a)(De (vy) +a)
1
€ E(C), it can be checked

=

(13

For v,v,
directly that

De(vy) — Do (vy) =Zr —3+1ty >t +1,

D¢ (v3) =D (vy).

By (10) and (12), we have D¢ (v3) — D¢ (v,)
= D¢ (vy) — Do) =1t + 1 and De(vy) >
D¢ (vy). Then D¢ (vy) > De(vy) > De (vp).
Letx=D¢(vy) , y=D¢(v), a=t;, +1. Then
x>y+ta.

By Lemma 1.1, we have

1
D(j’ ('U;; )D(" (7)1)
1
(D¢ (vy) —a)(De (vy) +a)
1

a4
D(j (‘U2 )D(j (”U;;)

For vsv, € E(C) , it can be checked directly
that D¢(vy,) = De(uy) s and De(vy) >
De (vy) . Then

1 - 1
D¢ (v)De (vyp) D¢ (v3)De(oy)

For the edges from v, to W,, and the edges
from vz toW,, » by (8) and (12). we have D¢ (v;)
> D¢ (vy) » and De(w) = D (w) for any w €

(15

w.,. Then
! ! (16)
D(j’(‘vl)D(j’(w) D(j(‘U2 )D((UJ)
forw e W,,.

Since D¢(vy) > De(vy) and De(w) =
D¢ (w) for anyw € W, . we have
1 - 1
De (v De (w) D¢ (v3)De(w)
forw e W, .
By (9) and (13) ~ (17), it can be checked
directly that

17)

1 ~ 1
D("('U‘,)D(j/('vy) D(‘("U‘,)D(j("l)y)
forv,,v, € V(C).

From the definition of Balaban index, if » is
odd, we have J (C") > J(C) .

Lemma 1.5 Let C € C. be a cactus graph as
shown in Fig. 3 with » == 4, and C’ be the cycle-
edge transformation of C (see Fig. 5). Then SJ (C) <C
SJ(Ch.

Proof Case 1

For the vertices v,,v, € V(C)\{v,} ., by
(1), we have

1 > 1
D¢ (v,) +De (o) D¢ (v,) +D¢(v,)
(18

r 1s even and r —= 4.

forv, v, € V(C)\{v,}.

In the following., we consider the edges on
vertex vy of C : v vy, vyvs, the edges from v, to
w.,.

Forv,v, € E(C) , by (3), we have D¢ (v,)
+ D¢ (vy) =D¢(vy) +De(v,) . Then
1 1

D¢ (vy) +De (vy) D¢ (vy) 4+ De(vy)
19
For v,vs € E(C) , by (1) and (4), we have
D¢ (v3) << D¢ (v3) and Do (v) <<D¢(vy) . Then
1 - 1
D¢ (vy) +De (uy) D¢ (vy) +De(vy)
(20)
For the edges fromv, toW,, , by (1) and (4),
we have D¢ (v;) << D¢(vy) , and De (w) <
D¢ (w) for any w € w.,. Then
1 1

=
D(T'(U])+D(f’ (w) D(‘(’U2>+D(7(ZU)
2D

forw € W,,.

By (18) ~ (21) and the definition of sum-
Balaban index, we have SJ (C") > SJ(C) .

Case 2 ris odd and r = 5.

For the vertices v, v, € V(C)\{v,,v;} » by
(8), we have

1 > 1
D¢ (v,) +De(v,) D¢(v,) +Dc(v,)
22

for UV sUy 6 V(C)\{"Ug 97/3}-

In the following, we consider the edges on
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vertices vy ,v; of C : vivs» vsvss vsvys the edges
from v, toW,, and v to W, .
For v,v, € E(C) , by (11), we have
1 ~ 1
D¢ (v) + De (v3) D¢ (vi) +De(vy)
(23)
For v,vys € E(C) , it can be checked directly
that D¢ (v3) — De(vy) >ty + 1 = De(vy) —
D¢ (vy) . Then
1 1
D¢ (vy) + D (vy) D¢ (vy) + D¢ (vy)
24)
For vsv, € E(C) , since D¢ (vy) = D¢ (vy)
and D¢ (vy) > D¢ (vy), we have
1 -~ 1
D¢ (vy) +De (vy) D¢ (vy) + De(vy)
(25)
For the edges from v; toW,, and vs to W, of
C, by (8) and (12), we have D¢(vy) >
Do (vy), De(w) = De(w) for any w €
w.,. Then
1 1
De (vy) +De (w) D¢ (vy) +De(w)
(26)

forw e W, .
Since D¢(vy) > De(vy) and De(w) =
D¢ (w) forw € W, , we have
1 ~ 1
D¢ (vy) +De (w) D¢ (vy) 4+ De(w)
27

forv, € W, .

By (22)~(27), we have

1 1

D¢ (v,) +De (v,) Dc(v,) +D¢(v,)
forv, v, € V(C).

From the definition of sum-Balaban index,
SJ(C" > SJ ).

Let C € C! be a cactus graph as shown in Fig.

3. By repeating cycle-edge transformations on C ,
we will get a cactus graph C, € C such that
J(C)) > J(C)and SJ (C,) > SJ (C) , where the
graph C; is defined in Fig. 6 and the following five

conditions hold.

(i) G, is a cactus graph, or pendent edge, or a
vertex, where 1 <C 7 < 3;

(ii) there are/ — 1 cycles inG, U G; U Gs;

(i) G, NG, =0 for1<<i <<j < 3;

(iv) each cycle of cactus graph C, has at least
one cut-vertex;

(v) the length of every cycle of C, is 3.

Fig. 6 The cactus graph C,
Remark 1. 2

which attain the maximum Balaban index and

In order to determine the cacti

maximum sum-Balaban index of all graphs in C¢, ,
we just need to discuss the cactus graph C, € C as
shown in Fig. 6.
1.3 Cycle-lifting transformation

Let C;, € C! be a cactus graph as shown in
Fig. 6. Denote W, = N¢ (v,) 1 V(G,) and
| W, |=k, for 1 <<i << 3. Let C'; be the graph
obtained by deleting the edges v,v, for v, € w,, .
Then
We say that C’; is the cycle-lifting

and adding the edges v v, for v, € W,,.
C' e .
transformation of C, (see Fig. 7).
Lemma 1.6 LetC, € C!, be a cactus graph as
shown in Fig. 6, and C’; be the cyclelifting
transformation of C; (see Fig. 7). Then J (C,) <
J(C"D) , and SJ(C1) << SJ(CD).
Let V(C)) = {v1svssv35° 50, ). It
can be checked directly that
D¢ (v,.) = D¢y (v,) for v, € V(C, N{wvs s
D¢ (vy) — D¢, (vy) =De, (v1) — De¢; (vy) >0,
D¢ (vy) > max{D¢, (v,),D¢ (vy)} = D¢ (v)).
For the vertex v,,v, € V(C)\{v,} » it is
easy to see that

1 1

=
D(;i (’(}I )D(?i (“Uy) D(‘l ("UJ- )D(jl ("Uy)
(28)

Proof
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&

cycle-lifting transformation

Gy {»}

2/

AN
o/

G

\)

AN
\9

Ci

Fig. 7 The cycle-lifting transformation

1 > 1
D¢ (v,) + D¢ (vy) D¢, (v,.) + D¢, (v,)
29
Forv,v, € E(Cy) » lettingx =D¢; (vy) s y =
D¢ (v)s a = D¢y (vy,) — De, (vy) = D¢, (vy) —
D¢ (vy) > 0, thenz > y +a , By Lemma 1. 1,

we have

1 - 1
D(j’l (Ul)D(ji ("Ug) D(?l(vl)D(Tl("Uz)
(30)

1 B 1
De, (v) +De, (vy)
3D
For vyvs, vivs € E(C,) , letting x, =
D¢ (vy) s a1 = D¢, (vy) s yo = D¢, (v1) s y1 =
D¢ (vy)  thenz) >y andzy, —x1 =y, —y1 >0.

D(ji (‘Ul) +D(1 ('Uz)

By LLemma 1. 2, we have
1 1 1 1
+ > +

D¢ (vy) D¢ (o) D¢, () D¢, (vy)
Meanwhile, D¢, (vs) =D¢; (v3) , then
1 1
D¢ (v,)De (o) D¢, (o) D¢ (vy)
1

32)

D¢, (v)De, (vg) D¢ (v D¢, (vy)
Let x, :D(‘i (vy) +D(fi (v3)y x, :D(tl (vy) +
D¢, (v3)s y2 =D¢ (v1) 4+ De (v3)s yi =D¢; (v))
+ D¢ (vy). Thenx, >y, andx, —x, =y, —y, >

0. By Lemma 1. 2, we have
1 4 1 -
Dc; (”Uz) +Dci (”03) Dc; (”Ul) +Dct{ ("03)
1 1
D¢, (vy) + De, (v3) D¢, (v) + De, (v3)

(33)
For each edge v;v, € E(G,), we have

D¢, (vy) > D¢ (vy) 5 and D¢, (v,) = D¢ (v,)
where v, € V(G)\{v,} » then
1 1
D¢ (v D¢ (v,) D¢, (v)De, (v,)

3D

1 1
D¢ (v) +De; (v,) - D¢, (vy) + D¢, (v,.)
(35)

By (28),(30),(32),(34), and the definition
of Balaban index, we have J (C")) > J(Cy) .

By (29),(31),(33),(35), and the definition
of sum-Balaban index, we have

SJ(C') > SJ(C .

By Lemma 1.6 we will get C, € C} from C,
by repeating cycle-lifting transformations such that
J(Cy) > J(Cy) and SJ (C,) > SJ(C,) , where
C,; is defined in Fig. 8.

Vi

Va2
Fig.8 The cactus graph C,
Remark 1. 3

which attain the maximum Balaban index and

In order to determine the cacti

maximum sum-Balaban index of all graphs in C! ,
we just need to discuss the cactus graphC, € C!, as

shown in Fig. 8.
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2 Maximum Balaban index and sum- ! ] _nti= Y 2L
D (vy) +D(vs3) [+1 /3,—5

Balaban index of cacti

From the discussions of Section 1, for any
cactus graph C € C! , we finally get the graph C,
from C by edge-lifting transformation, cycle-edge
transformation, cycle-lifting transformation or any
combination of these, where graphs C, € C! are
defined in Fig. 8. By Lemmas 1.4~1. 6, we have

JC) < J(Cy, SJTC) <K ST (C).

That is to say, C; attains the maximum
Balaban index and maximum sum-Balaban index of
all graphs in C; .

Theorem 2. 1 Let C, be defined in Fig. 8.
Then C, is the unique cactus graph in C, which
attains the maximum Balaban index and sum-
Balaban index of all graphs in C, , and

max J (CL) =] (C,) =

n+l—1< 21 n—2 —1 4 l >’

L1 Yo" —6n+4 Vol —m+3 4
max SJ (CL) =SJ (C,) =
n+l*1< 2l 7/1*2[*1_'_ l .
[+1 3n—5 3n—4 24n—2

Proof From the above discussions, we have
that C; is the unique graph of order n and [ cycles
which attains the maximum Balaban index and
sum-Balaban index of all graphs in C;,. We now
calculate the values J (C;) and SJ (C,) .

It can be checked directly that

D(vy) =n—1;

D(v;) =2n —4, where 2 <7 < 2]+ 1;

D(v;) =2n — 3, where 2/ +2 < j < n.
Thus

. n+Il—17< 1
JCo =" Lz/m+
l }:n+l—1< 21
VD (u,)D(vy) [+1 2n? —6n +4
n—20—1 / ).
Jon' —b5n+3 n—4
and
L ol —1ry 1
ST =" Lz D(v) +D(v)

n*ZZ*l_'_ l >

V3n—4 2v/n—2""
References

[ 1] BALABAN A T. Highly discriminating distance-based
topological index J]. Chem Phys Lett, 1982, 89: 399-404.

[ 2] BALABAN A T. Topological indices based on
topological distances in molecular graphs[ ] ]. Pure Appl
Chem, 1983, 55: 199-206.

[ 3] BALABAN A T, IONESCUCPALLAS N,
BALABAN T S. Asymptotic values of topological
indices J and J' (average distance sum connectivities)
for infinite cyclic and acyclic graphs [ J]. MATCH
Commun Math Comput Chem, 1985, 17 121-146.

[ 4] BALABAN A T. A comparison between various
topological indices, particularly between the index J
and Wiener’s index W[ C]// Topology in Chemistry:
Discrete Mathematics of Molecules. Chichester, UK.
Horwood, 2002 89-112.

[5]JIA N, MCLAUGHLIN K W. Fibonacci trees: A
study of the asymptotic behavior of Balaban’s index
[J]. MATCH Commun Math Comput Chem, 2004,
51: 79-95.

[ 6 ] DENG H. On the Balaban index of trees[]J]. MATCH
Commun Math Comput Chem, 2011, 66 253-260.

[7]FANG W, GAO Y, SHAO Y, et al. Maximum
Balaban index and sum-Balaban index of bicyclic graphs
[J]. MATCH Commun Math Comput Chem, 2016,
75: 129-156.

[8]YOU L, DONG X. The maximum DBalaban index
(sum-Balaban index) of unicyclic graphs[ ] ]. Journal of
Mathematical Research with Applications. 2014, 34:
392-402.

[ 9 1] DONG H, GUO X. Character of trees with extreme
Balaban index[J]. MATCH Commun Math Comput
Chem, 2011, 66 261-272.

[10] XING R, ZHOU B, GROVAC A. On sum-Balaban
index[J]. Ars Combin, 2012, 104; 211-223.

[11] YOU L, HAN H. The maximum Balaban index (sum-
Balaban index) of trees with given diameter[J]. Ars
Combin, 2013, 112; 115-128.

[12] ZHOU B, TRINAJSTIC N. Bounds on the Balaban
index[]J]. Croat Chem Acta, 2008, 81: 319-323.

[13] BALABAN A T. KHADIKAR P V., AZIZ S.
Comparison of topological indices based on iterated
‘sum’ versus ‘product’ operations[]J]. Iranian ] Math
Chem, 2010, 1. 43-67.

(F#:% 389 )



