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0 Introduction

In this study, we consider the following a
class of bilevel programming problem in which the
upper-level objective function is scalar and the
lower-level objective function is vectorial™’, i. e. ,
the semivectorial bilevel programming problem
(SBPP) :

“rnlin”F(x ,2)

s.t. G(z) <0, 2 € V() (D
where function F:R" X R” — R is the upper-level
objective function and G:R" — R? denotes the
upper-level constraint function. Let the set {x |
G(x) < 0} be nonempty and closed. The set-
valued mapping ¥, denotes the weakly efficient
optimal solution mapping of the following lower-
level multiobjective optimization problem:

Ry— n}inf(x ,2)

s.t. g(x,2) <0 (2)
where the function f:R" X R™ — R” is the lower-
level multiobjective function and g :R” X R™ — R*
is the lower-level constraint function. The term

i

“RY—min” in (2) is used to symbolize that
vector values in the lower-level problem are in the
sense of weak Pareto minima with respect to an
order induced by the positive orthant of R*. In
order to ensure that the results in this article are
correct, we make two hypotheses as follows.

Assumption 0.1 The set {x € R" | G(x) <
0} is nonempty and compact.

Assumption 0.2 For any x verifying G(x) <<
0, the set {z € R" | g(x,2) <0} is nonempty and
compact.

As we know, the weakly efficient solution set
V... (x) of the lower-level problem (2) in general
has more than one solution. Thus, the notion of
an optimal solution for the bilevel programming
problem may be ambiguous. which is why the
word “min” is written in quotes in (1). In order to
overcome this ambiguity, we can consider the
pessimistic

optimistic  formulation and the

formulation for the problem (1). The definition of

the optimistic and pessimistic semivectorial bilevel
programming problems can be found in Ref. [ 2].
For studies on the optimistic semivectorial bilevel
programming problem (OSBPP) the reader is
referred to Refs. [1,3-10]. The research review on
these literatures can be found in Ref. [2] and is
thus omitted.

In contrast to OSBPP, the study on the
pessimistic bilevel
problem (PSBPP) can be found in Refs. [2,11-12].
Firstly, we give the reformulation of PSBPP as

semivectorial programming

min max F(x,2)

s.t. G(x) <0, 2 € ¥ () (3
In Ref. [11], Bonnel and Morgan developed
optimality conditions for a class of bilevel optimal
control problem in the optimistic case and
pessimistic case, respectively. Nie % defined the
conservative optimal decision for the PSBPP by
However, the

using the weighting method.

detailed optimality conditions have not been
established. Hence, in Ref. [ 2], using the optimal
value function formulation and generalized
differentiation calculus of Mordukhovich, Liu et
al. developed the detailed first-order necessary

PSBPP

assumption of the upper-level and lower-level

optimality conditions for under the
objective functions and constraint functions are
continuously differentiable and the lower-level
problem is strictly convex. As an application, the
necessary optimality conditions for the PSBPP with
linear lower-level multiobjective function with
respect to the lower-level variables were
established. On the other hand, penalty function
method *', K-th best algorithm™*' and maximum
entropy approach'™ are currently adopted as
solving approaches to the pessimistic problem of
general bilevel programming.

It is just the smooth setting under which the
necessary optimality conditions were developed in
Ref. [2]. In this paper, we intend to extend those
results in Ref. [ 2] to the nonsmooth setting case.
For this

differentiation

by wusing the generalized

of Mordukhovich, we

purposes

calculus
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develop a sensitivity analysis of the lower-level
negative value function and the lower-level optimal
solution set mapping, respectively. Furthermore,
we also develop a sensitivity analysis of the
maximization bilevel optimal value functions
0, (xsy) and ¢,,(x) in the nonsmooth setting.
Based on the above results, the first-order
necessary optimality conditions are established
under the assumption of the basic CQ (see Section

2) holds.
extend the results in Ref, [2], Thus, all results in

The results proposed in this paper

Ref. [ 2] are the special case of the results obtained
in this paper.

The rest of the paper is organized as follows.
In Section 1, we recall the definitions of weakly
efficient solutions and Pareto minima, the relevant
notions and properties from variational analysis
will also be introduced. In Section 2, we transform
the PSBPP into a single-level generalized minimax
optimization problem with constraints by means of
the optimal value function reformulation. In
Section 3, in the nonsmooth setting, we first
develop the sensitivity analysis estimation of the
lower-level negative value function and the lower-
level optimal solution set mapping, respectively.
Based on these results, we also develop the
sensitivity analysis estimation for the maximization
bilevel value function. As the most important

results, the first-order optimality

conditions for the PSBPP are established when all

the functions

necessary

involved are locally Lipschitz
continuous. We finish with some conclusions in

Section 4.

1 Preliminaries

In this section, we mainly recall some basic
definitions of weakly efficient solutions and Pareto
minima. Some relevant notions and properties
from variational analysis are also introduced.

1.1 Weakly efficient solution and Pareto minima

Definition 1. 1 Let set C C R" be a closed
convex cone with nonempty interior, if C (1—C =

{0} , we call C pointed convex cone. We denote a

partial order by =S¢ in R” induced by C .
Definition 1.2 et set A & R" be nonempty.
A point 2" € A is said to be Pareto (resp. weak
Pareto) minima of A with respect to C if
ACz" + RN\ U {o}]
(resp. A Cz" +(R"\—int C))
where ‘int” denotes the topological interior of the
set in question,
Let us consider the following multiobjective
optimization problem with respect to = :
C—min f(x)
s.t. x € X 4
where f represents a vector-valued function and X
the nonempty feasible set. For a nonempty set A
C X , the image of A by f is defined by f(A): =
{(f(x) |x€EA}.
Definition 1.3

an efficient

A pointx* € X is said to be
(resp. weakly efficient ) optimal
solution of problem (4) if f(x") is a Pareto
(resp. weak Pareto) minima of f(X) .

Definition 1.4 A pointx”™ & X is said to be a
local efficient ( resp. weakly local efficient )
optimal solution of problem (4) if there exists a
neighborhood U of x * such that f(x ") is a Pareto
(resp. weak Pareto) minima of f(X (N U) .

Definition 1. 5 A vector-valued function f':
R" — R™ is said to convex with respect to a partial
¢ induced by a pointed, closed and convex cone
C , if we have

fQx+ A —=Da)3BAf () + A —=2) f(xy),
Yae 0,D, Yxi,x, €R".
1.2 Tools from variational analysis

Definition 1.6  Given a pointx , lim supl'(x)

T>x

is said to be the Kuratowski-Painlevé outer/upper limit
of a set-valued mapping I':R"=R™ at x , if
lirrLSTupF(x) ={v €ER" | 2, > x>
v, = v with v, € I'(x,) as bk — o},
Definition 1. 7 For an extended real-valued
function ¥:R" — R, 9W(Z) is said to be the
Fréchet subdifferential of ¥ at a point x of its
domain, if

oW (x) =
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(0 ER" | limfinflp(l) —¥(x) i(v,x —x)
e lz—=|
Definition 1. 8 Given a point x » oW (x) is
said to be the basic/Mordukhovich subdifferential
of Tatx , if
oV (x) =lim supo¥(x) (5)

a>x

If ¥ is convex, o¥(x) is reduced to the
subdifferential in the sense of convex analysis:
oV (x)={v €ER" | T(x) —T(x) =

(vex —a),Ya € R"},
where oW (x) is nonempty and compact when ¥ is
locally Lipschitz continuous, its convex hull is the
Clarke subdifferential O (x) . i. e.

AW (2) =co d¥(2) (6)
where “co” denotes the convex hull of the set in
question. Via this link between the basic and
Clarke subdifferential,
convex hull property:

co d(—¥)(x) =—coo¥(x) )

where ¥ is Lipschitz continuous near x .
Definition 1. 9 0, ¥ (x,y) is said to be the
partial basic (resp. Clarke) subdifferential of ¥

we have the {following

with respect to x , if we have
2,V (x,y) =0¥(,y)(x)
(resp. 9, W (x,y) =aW(+,3) (@),
The partial basic (resp. Clarke) subdifferential
with respect to y can be defined analogously
as follows
9,V (x,y) =0¥(y, ) (y)
(resp. 0, ¥ (x,y) =0¥(y, )(3)).
Definition 1. 10
Ngo(x) is said to be the basic/Mordukhovich
normal cone to a set2 C R" atx , if
N (@) =lim supNg (@) (8)

a—>r(x€Q)

Given a point x € 2,

where No(x) represents the prenormal/Fréchet
normal cone to a set {2 at x defined by
NaG) =o€ R" | lim sup 25— <o,
oz || —x |
The set 2 will be said to be regular at x € Q if
No () =Nq (@) holds,

For the lower semicontinuous function ¥ with

the epigraph epi¥ , we can equivalently define the

= 0}.

basic/Mordukhovich subdifferential (5) using the
normal cone (8) by
oV (x)={v € R" | (v, —1) € Nyw(x ,T()).
The singular subdifferential of ¥ at point x
(&€ domW¥) is denoted by
"W (x)={v €R" | (v,0) € Nyw (@, ¥}
If ¥ is lower semicontinuous near x , then
O”W(x) =1{0} if and only if ¥ is locally Lipschitz
continuous near x . Given a set-valued mapping = :
R" — 28" with its graph
gphZ: ={(x,y) ER"XR" | y E E(x)},
recall the notion of coderivative for & at (x,y) €
gphZ is defined by
D" E(x,y)(v): ={u € R" |
(us —v) € Nype(x»y)} forv € R (9)
via the normal cone (8) to the graph of 5. If 5 is
single-valued and locally Lipschitz continuous near
x » its coderivative can be denoted analytically as
D"E(x)(v) =0(v,E)(x) for v € R",
subdifferential (5) of the

scalarization {v,=)(x): =<{v,5(x)) , where the

via the
basic Lagrangian
component y(= E(z)) is omitted in the
coderivative notation for single-valued mappings.
This implies that the coderivative can be
represented as D" E(x)(v) = {(VE@) v} for
v € R™
z » and VE () denotes its Jacobian matrix at = .

Definition 1. 11

said to be inner semicompact at x withE(z) #= 0 ,

, where Z is strictly differentiable at point

A set-valued mapping = is

if for every sequence x, — x with 5(x,) # O ,
there exists a sequence of y, € EH(x,) which
contains a convergent subsequence as £ — oo,

Definition 1. 12

said to be inner semicontinuous at (x,y) € gphZ ,

A set-valued mapping = is

if for every sequence x, — x there exists a sequence
of y, € E(x,) that converges toy ask — o,
From Definitions 1. 11 and 1. 12, it is clear
that Z is inner semicontinuous at (x.y) , if 5 is
inner semicompact at x with E(x) = {y}.
inner semicontinuity

Generally speaking, the

which is  much stronger than the inner

semicompactness and is a necessary condition for

the Lipschitz-like/Aubin property, which means
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that there exist two neighborhoods U of x and V' of
v » and a constant &« > 0 such that Vx,u € U and
yEEwW NV,

d(y,B@) <kllu—=z| (10
where d means the distance from a point to a set in
R”. When V = R™ in (10), this property is
reduced to the classical local Lipschitz continuity of
E near x. A complete characterization of the
Lipschitz-like/Aubin property (10), and hence a
sufficient condition for the inner semicontinuity of
Eat(x,y) , is given for closed graph mappings by
the following coderivative/Mordukhovich criterion
(see Refs. [16, Theorem 5. 7] and [17, Theorem
9.400]):

D*"E(x,y)(0) ={0} an

In addition, the infimum of all « > 0 for which
(10) holds is equal to the coderivative norm
|D*E(x.y) || as a positively homogeneous
mapping D*E(x,y). Set x = x in (10), the
resulting weaker property is known as calmness of
E at (z.,y) ", which is used to derive the
sensitivity analysis of the lower-level optimal

solution mapping of the problem in the sequel.

2  Optimal value function reformulation
for PSBPP
In this section, we shall briefly present the
one-level formulation of the PSBPP (3), the
detailed reformulation process can be found in Ref.

[2]. For this

scalarization technique to transform the problem

purpose, we first use the

(2) into an usual one-level scalar optimization
problem, which consists of solving the following
parametric problem:

mﬂinf(x,y,z) =y, f(x,2)

s.t. g(x,2) <0 12>
where the parameter y is a nonnegative point of the
unit sphere, i.e. ,

yeEY={yeR |y=0.lyll =1} IO

For a given upper-level variable x , the weakly
efficient solution set ¥, (x) of the lower-level
problem (2) is not in general a singleton, hence it

is difficult to choose the best point z(x) on

V. (x) . Furthermore, we consider the setY (13)
as a new constraint set for the upper-level
problem". For all (x,y) € X XY (where X: =
{x ER" | G(x) < 0} ), we denote by ¥(x,y)
the solution set of the problem (12). When the
weakly efficient solutions are considered for the
lower-level problem (2), the relationship (see
e.g. Ref.[19]) relates the solution set of this
problem and that of (12) as follows.

Lemma 2. 1 Assume the functions g(x, )
and f(x,+) areR? - convex and R - convex for all
xr € X, Then Y (x) =
U(x,Y):=U {(¥(x,y) |y EY}.

Hence, the PSBPP (3) can be replaced by the

following classical pessimistic bilevel programming

respectively.

problem:

min max max F(x,2)
x y z

st (ray) € X XYz € Wiaay)  (14)
where the set Y (13) on the new parameter of the
lower-level problem acts like additional upper-level
(14 ) can be

reformulated as the following generalized minimax

constraints, The problem
problem
mfinmyax{go,,(x,y) |y €Y.x € X},
by defining) the following maximization bilevel
optimal value function (see e. g. Ref.[20])
0, (xsy) :max{F(l',z) | 2 € T(x,y)).
Furthermore, the problem (14) can be further
expressed as single-level optimization problem:
mrin{gp,),,(x) | € X} (15
if we define also the maximization another bilevel
optimal value function by
©pp () :mvax{go,,(x,y) |y €Y.
In the followiﬁg, we give the theorem of the
existence of the solution to the problem (14).
If the set {(x,y,2) | (x,y) €
X XY, g(x,2) << 0} is nonempty and compact,

Lemma 2. 2

and for each x € X , the Mangasarian-Fromowitz
constraint qualification (MFCQ) holds. Suppose
that the lower-level solution set mapping ¥ (x,y)
is lower semicontinuous at all points (x,y) € X X

Y. Then, the problem (14) has an optimal



356 T EAFHRRFFR

% 48 %

solution.

The link between the PSBPP (3) and (14)
will be given in the next result (also see Ref. [2,
Proposition 3. 1]).

Lemma 2.3 Consider the problems (3) and
(2), where the lower-level constraint function
g(x, ¢) is R% -convex and f(x, ) is R* -convex
for all x € X. that ¥ is

semicontinuous on X X Y, then the following

Assume lower
assertions hold.

(i) Let (x,2) be a local (resp. global)
optimal solution of the problem (3). Then, for all

y € Ywithz € ¥(x,y) , the point (x,y,.z) is a
local (resp. global) optimal solution of the
problem (14).

(ii) Let (x,y,z) be a local (resp. global)
optimal solution of the problem (14). Assume the
set-valued mapping ¥ is closed-valued. Then (x,
z) is a local (resp. global) optimal solution of the
problem (3).

Now we give the optimal value function
bilevel

reformulation  for  the  pessimistic

programming problem (14) as follows.

min ¢,, (x)
s.t. x € X,
¢, () =maxie,(x.y) [y €Y},

v

¢, (xsy) =max{F(x,2) [ 2 € W(x,y)},

(16)

V(r,y)={zx €ER" | f(x,y:2) —¢(x,y) <0,g(x,2) <0},
go(x,y):rr}in{f(x,y,z) | g(x,2) <0}

Based on this result, we will attempt to derive

the necessary optimality conditions of PSBPP (3)

via deriving those of the auxiliary problem (14).

Obviously, if we set the minimization optimal

value function as ¢} (x»y) =min{—F(x,2) |z €

W (x,y)}, then, for all (x,y) € X XY , we have

0, (xsy) =—¢%(xsy) an

The minimization of another optimal value function

can be set as ¢4, () =min{—¢,(x,y) | y €Y},
then, forallx € X , W:: also have

@pp(f)zfﬁo(;m(f) (18)

By (17) and (18), we analyze ¢, (x,y) and

0, (x) via analyzing ¢4%(x,y) and ¢%,(x) ,

respectively. For these purposes, we consider the

following a general ‘abstract’ framework of the

marginal function:

p (@) =min{¥(x,y) |y € E@)} (19
where ¥:R" X R" — R and Z:R" — 28" . Denote
the argminimum mapping in (19) by 5, (x) =

argmin{¥(z,y) | v € B} ={y € Ex) |
V(x,y) << u(x)}. We summarize in the next

theorem some known results on the general value
functions needed in the paper (see Refs. [ 16,
Theorem 1. 108 and [ 21, Theorem 5.2 ]).

Lemma 2.4 Let the value function ¢ given in
(19) be finite at x with 5, #* @ . The following
assertions hold:

(i) Let =, be inner semicompact at x , assume
that Z is a closed-graph at x » and that ¥ is lower
semicontinuous on gphG when x =z . Then g is
lower semicontinuous at x and the upper bound for
its basic subdifferential is given as follows:

o) CHx" | (x",0) €
U olp(x,y) +8((x,y);gphE)) ).

YEE, @
If in addition Z is Lipschitz-like around (x,y) for
all vectors y € H,(x) , then we also have the
Lipschitz continuity of p around x .

(i1) LetZ, be inner semicontinuous at (x,y) .
Then p is lower semicontinuous at x and the upper
bound for its basic subdifferential is given as
follows:

on(x) CH{x" | (7,00 €
o(p(x,y) +8((x,y);gphE))}.
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If in addition & is Lipschitz-like around (x,y),
then g is Lipschitz continuous around x.
By Egs. (17), (18) and (7). we easily have
op,(x,y) C— coogy (x,y) (20)
0@,y () C— coog}, () 2D
By Lemma 2. 4, we can estimate the upper
bound of the subdifferential of the bilevel optimal
value function ¢,(x,y) C(resp. ¢,,(x)) via
estimating the subdifferential of o{¢%}(x,y)
(resp. 2{¢%,}(x) ). In the next section, based on
specific structures of the set-valued mapping = .
our aim is to give detailed upper bounds for
D" "EZ(x,y) in terms of the problem data.
Verifiable rules for 5 to be Lipschitz-like will also
be provided. Further, we present the sensitivity
analysis for the maximization bilevel optimal value
function 9¢, (x,y) and d¢,, (x) . Based on these
results, we develop the necessary optimality
conditions for the problem (14) and thus for

PSBPP (3).

3 Necessary optimality conditions for
PSBPP

In this section, we shall establish the first-
order necessary optimality conditions for PSBPP,
For this goal, we need to develop the necessary
optimality conditions for the optimal value function
reformulation (16) of the problem (14). In the
next, we first recall that the solution set mapping
of the lower-level problem (12) as
V(x,y)={x €R" | f(x,y:2) —¢(x,y) <0,

g(x,2) <0} 22
with ¢ denoting the optimal value function associated
with the lower-level problem (12), i.e. ,

o(x,y) :rr}in{f‘(xyy,z) | g(x,2) <0}

(23)
Here, we employ the lower-level value function
approach™ to the sensitivity analysis of the bilevel
value function ¢} (x,y). So we have the lower-
level optimal value function reformulation of
o (xsy) as o) (xsy) :rr}in{—F(x w2) | glaa2)
< 0,f(xsys2) —¢(x,y) < 0} . Since the basic
subdifferential 0¢ does not satisly the plus

symmetry, an appropriate estimate of o(— ¢) is

needed to proceed with this approach. By the well-
known convex hull property (7)., the estimate of
9(—¢) can be done.

In order to develop the sensitivity analysis of the
negative value function in the lower-level problem
(12), we first recall the nonsmooth counterparts of the
lower- and upper-level regularity conditions, which are

defined, respectively, as

2/3,-1{* =03
i=1
=

B =088 (xs2) =0yi =1,y ps |
(l'l-'x- ,Z;) 6 5gl(;7§), i—l’-..’pJ
Bi=0,i=1,,p (24)

0€ 20,06, (x)=0;
j=1

} .
a; = 0:0,G;(x) =0, =1,4q
a; =0, j =1,%,g (25)
A particularity of the new constraint set Y
(13), that the related Lagrange multipliers can be
completely eliminated from the optimality
conditions, is given in the next lemma.
Lemma 3, 1'% mm2 421 The set of vectors (x»
ys2) ER"XR*XR" , 7,2, ER andpsd .9, €ER

withs =1,++,n +v + 1, satisfies the system
ntvtl

A 0) —A 2 pf(xaz) — 7+ py =0,
s=1

7 20971-5:07 H 5 H =1,
if and only if the following inequality holds:
ntvil

M D v G — 2 g feaae )]y —
o TR
[fGo = 2 G} <0 @26
s=1
3. 1  Sensitivity analysis of lower-level negative
value function 9(—¢)

In this subsection, we intend to develop the
sensitivity analysis of the negative value function in
the lower-level problem (12).

Theorem 3. 1

for the negation of the value function ¢ in (23).

The following assertions hold

(i) If f and g are Lipschitz continuous near the
point (x,2) and the solution map ¥(x,y) in (22) is
inner semicompact at (x,y) for all (x,y,2) € gph¥
satisfying (24) , then ¢ is Lipschitz continuous around

(x»y) » and the following inclusion holds:
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ntvtl v P

J — 200 (i + 20 Bwi)
s=1 k=1 i=1

\t ntvil

— D f @z
s=1

(=) (T3 C

ntvtl

77.\‘ :172.\' 6 W(z;y)yv\ 209 S::la"'an +V+19

s=1

(.T}j\ 72/;) e af/g(;yzx)»/c :17"'71/; .§:19"'77’l +V+19
(wzx\ 7"01?- ) 6 ag,‘(;vzi\-)9i:17°°'9p; S:19"°777+1J+19 .

25}&}\: + ﬁﬁ;‘yi =0, s=1,,m +V+19
=1 i=1

B = 0.8ig, (Tez) =00 =1,

(ii) If f and g are Lipschitz continuous near
the point (x,2) and assume that (z,y.2) € gph¥
with x € domg satisfying (24) and that either ¥ is

A=) (x.y) C {
— f(x2)

2 §»£ r

k=1

Proof The local Lipschitz continuity of ¢ is
justified from Ref. [ 18, Theorem 5. 2] under the
fulfillment of (24) in both the inner semicontinuity
and inner semicompactness cases.

To prove the subdifferential inclusion of (i),
firstly note that since for all 1,--,v, f, is
Lipschitz continuous near (z.z) » 2 € ¥(x,y) ,
by Ref. [6,Eq. (4. 39)], while taking into account
that y, = 0 for &k the

subdifferential of f(x,y,z) can be expressed as

17"'91-/ ’

Op(z+y) Czew

Zsy

{ (1’X ’yx)

Combining inclusions (27) and (28), we have

TEV(T,y)

B i} ﬁ,-ujf}

LE.WIZ Jfﬁﬁlu',*} ﬁ,‘ >O’ﬁig,-(592):03
k=1 =1
(xs2)

7])§ 5217"'97’1 +V‘|—1.

inner semicontinuous at this point orf and g are
convex. Then ¢ is Lipschitz continuous around (x ,

y) » and the following inclusion holds:

'71‘/71

e

v

o~ p o~
Zykzkx _'_ Eﬂlvi* =0,
k=1 i=1

(20 s20) € Of (T s2) sk =1,
(w; +v/) € g, (T,2)si =1 1p,
Bi =0,B:ig:(xs2) =0,i =1,",p.

the following inclusion relation:
Of (&30 C [ (@) +
(203 50,20 | (af 2i) €
k—1
afk (;95),k :1’"'7V}

o n-times L _petimes.
where f°(x,2) =(0,+,0, f(x,2),0,++,0) .

In addition, we recall the estimate of 9¢p(x5y)

27

] from Ref. [ 9, Theorem 7 (ii)] under the
basic ) )
assumptions of (i) as follows:
»
(1'* ’y* 70) E af(f,y,g) + Zﬂ,‘ajv,y,zgi(;yg)y (2 )
i—1 8
‘8,' 2 O,,Blgl(z,g) :Oal :19“'9P
2@25 =+ ﬁ:ﬁﬂ/f =0,
k=1 i=1
(29

(l‘/j 92/:) 6 afk (;92)9
(w,‘* 9'U,‘.x. ) e 8g,(f,§),
k :19°"7V; l

:1,...7p
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The claimed estimate of 0(— ¢) follows from here
by combining (7) and Carathéodory’s Theorem.

If ¥ is inner semicontinuous at (x,y,z) , we

op(z,y) CU

(x.2)

This implies the subdifferential inclusion of (ii) by
(6) and (7). This completes the proof.
3.2 Sensitivity analysis of the lower-level optimal
solution set mapping ¥
In this subsection, we shall present an upper
estimate for the coderivative of the solution set
mapping ¥ given in (22) and establish its
Lipschitz-like property. For this purpose, we first
present the calmness property. By Eq. (9),
calculating the coderivative of ¥, we must
compute the limiting normal cone to the graph
of ¥ .
gph¥ = {(x,y,2) € K | f(x,y,2) —¢(x,y) <0}
with K = {(x,y,2) | gla,2) <0} (30
in terms of the initial data. To proceed this way by
using the conventional results of the generalized
differential calculus requires the fulfillment of the
following basic qualification condition,
o(f —g)(x,y.2) N (=N, (x,y,2)) =0
3D
However, it is shown in Ref, [ 23, Theorem
3.1] that condition (31)

situations;

fails in common

in particulars when ¢ is locally

[ P
2oy 4 2iBw!
k=1 =1

have the Clarke subdifferential of ¢ by Ref. [22,
Theorem 5. 4] that

Divezi + EB/'U?' =0,
k=1 i=1

(xf+20) €0f(xs2),
(w; s0/) € 9g,(x»2),
B =0.B.g:(x+2) =0,

k=1,

°9Z;i:1,°"7p.

Lipschitz around the point in question. The weaker
assumption which can help circumventing this
difficulty is given as follows:
D) ={(x,y,2) €EK | flx,y.2) —olx,y) <v}
(32)
The condition (32) is automatically satisfied if f

is calm at (0,x,y,2)

and g are linear. Furthermore, (32) holds at (&,
v,2) for the locally Lipschitzian function ¢ if we
pass to the boundary of the normal cone in (31),
that  is, if the following  qualification
condition holds
O(f —g)(x,y.2) | (—bdN,(x,y.2)) =0
(33)
with K being semismooth, in particular, convex.
The condition (33) seems to be especially effective
for  the bilevel
For more details, the
readers can be refer to Refs. [ 23-24 ]. It is deserved

that for the latter case, the condition (33) can be

so-called simple convex

programming problems.

further weakened by passing to the boundary of the
subdifferential of f. For

coderivative of ¥, we present an additional

estimating  the

qualification condition;

I:(A 95,‘) 6 AJIsE»E,O),I* 6 (*90)(}75)]:)

/ p
Ax” —J — QA2 i + Eﬁ;wf) (w/ o) € 0gi(x,2)s ¢
=1

i=1

1

(l}: ’ZZ) e afk (zag)s
3D
}3:19°"9V;i:17°°’9p

where A, (x,y.2.,2" ) is a particular multipliers set, that is.,
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=0, 8 =0, fig:(x.2) =0,
A (T y,zaz™) —J(A,ﬁ,-) 2 A Z@Z; + Eﬁmf —0, ¢ (35)
P p

As it will be very clear in the proof of
Theorem 3. 2, they are sufficient conditions for the
coderivative criterion (11) to hold for the set-
0} and
Y (x,y) in (22), respectively, provided that the

valued mappings K(z) = {2z | g(x,2) <

calmness condition (32) is satisfied. Under some
mild

condition (24) can ensure that the condition (35)

conditions, the lower-level regularity

holds at point (x,y,z). More details on these
types of conditions and more generally on the
development of coderivatives can be found in Refs.
[16,18].

Lagrange multipliers

In the following, we give a lower-level

set which will play an

A(ZE&I/
k=1

important role in the sequel.
Alx,y,z)=
Yigi (I,E) =0,1=1,2,- Ry

v

Eysz +27'U =0

In the followmg,

{YI/O

we shall present the
coderivative estimate and Lipschitz-like property of
lower-level solution set mapping ¥ .

Theorem 3.2 (i) For all (x.y.2) € gph¥ ,
let the conditions (24) and (32) hold at this point,
and let ¥ (22) be inner semicompact at (x,y) .
Then, for all = € R™, (33) and the following

inclusion hold:

ntvtl

277 (Zym, +Zﬁw,\ >>+Zﬁw, ,

ntrfl

D’ W(x,y.2)(2) c:_‘HL/JWWGAEJ@W)Eng Af(xaz) —2 E NACH DY
ntvt1
Zl s = 1977.\- 2095': l,ssn+v+1
n! (ii) Let the solution map ¥ (22) be inner
with 2775:1and77x>Ofors:1,“',n+v+l. If P
s=1

in addition the condition (34) holds at (x,y,2,) »
then ¥ is Lipschitz-like around this point.

D" W(x,y.2)(z") C U u

GuBEA (T.3.3.2 7)Y €AY

If in addition the condition (34) holds at (x,y,
z) , then ¥ is Lipschitz-like around this point.
Proof We first show the proof for (i). It
follows from Theorem 3. 1(i) that the lower-level
function ¢ is Lipschitz continuous around (x,y)
under assumption condition (24) and the inner

If we add the

semicompactness assumptions,

semicontinuous at (x,y,z) € gph¥ , and let the
qualification conditions (24) and (32) hold at this

point. Then, for allz* & R™ we have

v v N » - B
{;{ Zyk‘r’: _’1<Z§k1/f + 2 Yiw )+ Zﬁi%’;& }
k=1 r—1 - po

(36)

calmness property (32), then we have

g,ph\I/(l vva) C U U {/l(af(l L%} Z)+

EV(x,y)A=0
8(*90)(173/) >< {0+ N, (x,y.2)},
by Ref. [25, Theorem 4. 1] taking into account
that the constraint f(x,y,2) — ¢(x,y) < 0 is

working at point (x,y,2) . By (30), we have
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»
NGy ={ Dl | B =0,
i=1

Big: (T2 =010 =1, p) (37)
which holds under the validity of the condition
(24) at point (x,y,z,) fors =1,+,n +v + 1.
Combining the definition of the coderivative (9),
we derive the coderivative estimate (35). Further,
by Eq. (35) and the coderivative criterion (11) for
the property, the

criterion holds provided that

Lipschitz-like coderivative

2
Zﬁiwi* ’

i=1

2" €Ayl FO(—)(xay)) +
k=1

Q.6 € A(x,y,2,0)
x" =0 (38)
Next we begin to prove (ii). According to
Theorem 3. 1 (ii), the lower-level function ¢ is
Lipschitz continuous around (x,y) under the
inner semicontinuous

condition (24) and the

If we add the calmness property
(32), then we have
N o (x5 52) CAL?\JO {Af(x.y,2) +
(=) (x,y) X{0}) + N, (x,y:2)},
by Ref. [ 25, Theorem 4. 1] taking into account

assumptions.

that the constraint f(x,y,2) — ¢(x,y) << 0 is
working at point (x,y,z) . By (30), the equality

(37) holds. Combining the definition of the

ago,) (; 75) CN
nttl
x, €

t=1

ntvil

(11* 9:)//*)
ntvtl
Z(Ot :19[0; 209 for ¢ =1,
=1
ntyil
Dip =1op =0, for s =1,

s=1

ES

Z Pt {‘T;/ 7/\1(25/?‘1‘;1 -
k=1

VOEAS @) = A 2 ()
s=1
(I[;; 70) 6 aF(E9E)9fOI‘ t :19"'972 +V+1;

ceanFv A1

'97’I+V+1

s

we derive the coderivative
by (36) the

coderivative criterion (11) for the Lipschitz-like

coderivative (9),

estimate (36 ). Further, and
property, the coderivative criterion holds provided
that Eq. (38) holds. This completes the proof.
Remark 3. 1
convex with respect to z , the inner semicontinuity

of ¥ can be dropped in Theorem 3. 2(ii).
3.3

If the functions f and g are

Sensitivity analysis of maximization bilevel
optimal value functions ¢, and ¢,
For the sake of simplicity, we first define the

solution

upper-level optimal set mapping as
follows:
T, (x,y)={z € T(z,y) |
—F(x.2) — ¢y (x,y) <0} (39

In the rest of this paper, we always assume that
the set ¥,(x.y) is nonempty. The following
results illustrate the local sensitivity analysis of the
bilevel value function ¢, .

Theorem 3. 3

Section 2 and (39) . the following assertions hold:

Considering ¢, defined in

(i) Assume that ¥, is inner semicompact at
(x,y) » the condition (24) holds at (x,y.2) €
gph? , while the condition (32) holds at (x,y,2)
for allz € ¥,(x,y) . Then the following inclusion
holds:

U U

2 €V@ 2 €V QL gHen, @373, B EAGTD)
ntvtl

2

=1

v p p
7 (v + 2B ) + DBl b
k=1 i=1 i=1
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If in addition (34) is satisfied at (x,y,2) for all =
€ V¥, (x,y), then ¢, is Lipschitz continuous
around (z,y) .

(i1) Assume that ¥, is inner semicontinuous

ntvi1

xf — 2 p A

t=1

at (x,y,z) » the conditions (24) and (32) hold at

this point. Furthermore, assume that the set
cON gw (x»y,2) is closed. Then the following

inclusion holds:

v

k=
ntvi1

9, (T53) & U U 9100 €0FG@.2). D py=1.p, =0,
=1

G, fOEA, @72 ) EATT D \

If in addition (34) is satisfied at point (x,y.2)
then ¢, is Lipschitz continuous around (x,y) .

Proof We first provide the proof of (i). To

o¢ (o) {(

2, €V, (x.y)

under the inner semicompactness assumption on
v, . Since ¥V, (x,y) CT¥(x,y) forall (x,y) € X
XY, the lower-level optimal solution map ¥ in
(22) is also inner semicompact at (x,y,z,) €
{gph¥,} . Hence, by the subdifferential of the
lower-level negation value function —¢ in Theorem
3.1(1) and the coderivative of ¥ in Theorem 3. 2
(i), combining with (20) and Carathéodory’ s
Theorem, we can derive the upper estimate of
0, (xsy) .

To prove the local Lipschitz continuity of
¢,(x,y) in (i) under the condition (34), the
latter condition implies the Lipschitz-like property

D W (z,y,2)@.(—F(x,2)) C U

QBDEA @yze )Y EeAG D

0, (—F(x,z,))
ay(_F(gvzl))

ezl — A (O yexh 2 Viw; ) + Eﬁﬁw; } l
1 k=1 i=1 i=1

fort=1,-n+v+1

(40)

justify (i), by Lemma 2. 4(i) and subdifferential
chain rules and related calculus in Ref. [ 16 ],

we have

)JrD* V(x,ysz,).(—F(x,2,)))

of ¥ around (x,vy,2z,) . Thus the desired result is
obtained from Lemma 2. 4(1).

For justifying (ii), since the function F is

Lipschitz continuous and ¥, is inner semicontinuous at

(Z+y+2) + we get!2: Thonms.1]

9, (—F(x,2) >)

¢ (x4y) C {(
Frey 3, (— F(z.2))

D W (x,y,2) 0. (F(x,z)))}.

Combining (36) and Carathéodory’s Theorem, we
can derive the estimation for the coderivative
D W(x,y,2)@.(—F(x,2))) :

ntvt-1 v

2000 2a v —
=1 £=1

A (D yiah + ﬁyfa}:; )+
k=1 i=1

U

ntvtl

gﬁzw; bl

t=1

pr =1,

PO >O’
fort=1,sn+v+1
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The latter inclusion implies that ngw (xsy,
2) = coNgw(x,y,2) provided that the set
cON g (x5 »2) is closed. Combining the above
two results, by (6) and (20), we can justify (40).
To justify the local Lipschitz continuity of ¢, (x,
y) in (i) under the condition (34), the latter
condition implies the Lipschitz-like property of ¥
around (x,y.2,) , fort =1,+-,n +v + 1. This
completes the proof.

In the following, we shall develop a local
sensitivity analysis of the maximization bilevel
optimal value function ¢,,(x) in (15). For this
purposes we need to estimate d¢%, (x) . Combining
(18) and the conclusion on the sensitivity analysis for
the value function of the nonparametric minimax

problem (see Rel. [ 26, Lemma 3. 3]), we have

op,, () C

o, (x) S o(— ¢, (xsy) = o¢} (x,y). By (21D,
we derive that9g,, (x) C—codg$ (xsy) and ¢, () is
Lipschitz continuous around x wunder the
corresponding conditions of Theorem 3. 3.

Based on the above analysis, we present the
the the
maximization bilevel optimal value function ¢,, (x)
in (15).

Corollary 3. 1

estimation  of subdifferential  of

Considering the definition of
¢, (x) and (39), the [ollowing assertions hold:

(1) Assume that ¥, is inner semicompact at
(x,y) » the condition (24) holds at (x,y,2) €
gph¥ , while the condition (32) holds at (x,y,2)
for allz € ¥,(x,y) . Then the following inclusion
holds:

U U

5 EVE D V@G BHEA, GF.5:7:2)8 EAG T D)

ntvtl
*
X, 6
t=1
nttl

(/) vy

ntvil

=1
ntvil

s=1

If in addition (34) is satisfied at (x,y,2) for all
z € ¥,(x,y) s then ¢,, is Lipschitz continuous
around x .

(i1) Assume that ¥, is inner semicontinuous

ntvil

*
XfrF —
1=

op,, () C U U

G, BOEA, @Yz ) eAGy D

2 O {I;t —/\I(EEM”E -
r=1

y[* 6 A,f'(IaZ,) */1, Z ”Af.(;’z“);
s=1
(1‘;190) 6 aF(;vg)9fOrl:1,--.’n+y+1;

E(Ot:l’pt 209 fOrlzla"°9n +V+1;

Dy =1up, =0, for s =1.wwun v+ 1.

ntvil

E 77-&'(25/«1751 + ﬁﬁfwif ) - iﬁf‘w; Vs
=l i=1 i=1

s=1

at (x,y,z) » the conditions (24) and (32) hold at

this point. Furthermore, assume that the set
cON e (x+y,2) is closed. Then the following

inclusion holds:

v

nttl

(xf+0) € OF (x42)s 2, p, =1.0, =0,
t=1

fort=1,n+v+1

v R p R p
DA D yexh — A (O e + D0 Vi) D Blwg ) \
1 k=1 k=1 i=1 i=1
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If in addition (34) is satisfied at (x,y,z) , then
©,, 1s Lipschitz continuous around x .
3.4 Necessary optimality conditions for the problem
(14) and PSBPP
In this subsection, we shall establish the
necessary optimality conditions for the optimal
value reformulation (16) of the minimax problem
(14) in the nonsmooth setting using the above
sensitivity analysis results. Furthermore, with the
help of LLemma 2. 3, we present the necessary
optimality conditions for the PSBPP with Lipschitz
continuous data.
Theorem 3. 4

regular local optimal solution to the problem (14),

Let (x,y) be an upper-level

ntvtl ntvtl v

t=1

fort =1,

fors=1,--

for j =1.".q: a; =0, a;G,;(2) =0,
fort =1,

fors =1,

ntvil

s=1

where we have the following inclusions:

forj=1,q: 25 € oG; (),
fork=1,--
for k=1,

fori=1,-"

Wit =1,
Wi s =1,
spit =1,
sps s =1,

fori =1,

(26) and (41)

together are called the KM-stationarity conditions.

The relationships considered

(i) Let ¥, be inner semicontinuous at (x,y,
z) s (x,2) be lower-level regular, f and g be
and let the

Lipschitz continuous at (x,.2) ,

Doodxi — A yexs — 20 (X vk
k=1 s=1 k=1

fort=1,"sn+v+1:p =0, 2,@21,
=1
ntvtl

fors =1, +v+1:7 =0, > =1,

whereas F and G are Lipschitz continuous at (x,2)
and x , respectively. Let X XY be closed. Then,
the following assertions hold:

(i) Let ¥, be inner semicompact at (x,y)
while for all 2 € ¥(x,y) and the point (x,2) is
lower-level regular, let f and g be Lipschitz
continuous at (x,2) , 2 € ¥(x,y) ., and let the
conditions (32) and (34) be satisfied at all points
(x,y,2) withz € ¥, (x,y) . Then there exist A,
=0sa B B sy 5005 (xrszp) € OF (2,2)
witht =1,",n+v+1landz, .z, € ¥(x,y) with
tss = 1yson + v + 1 such that (26) and the

following conditions hold:

3 e )+ S e 4 Slad =0,
i=1 i=1 j=1
vl o2 — A D2y — ﬁﬁﬁv; =0,
k=1 i=1

v p
oy 1 Dyl + DBl =0,
k=1 i=1

N +V+1; izla"'vﬁ: ﬁf 209,3?{{[(;»2[):0,
o N JFVJFI; i:ls"'vp: ﬁ; 20’[))1\5’1(;’%) =0,

41

fort:L'“,n +V+1: (I}f‘,yzg,) S aF(;yz)v

ntyv+1: (xps2n) € OF(x,2,),
o +v+1: (xps2in) € OF(x,2,),
n+v+1: (wi,v;) €90g,(x.2,),
n+v+1: (wy,vy) € 9g; (x.2,)

conditions (32) and (34) be satisfied at (x,y,2)
and the set coN guw (x sy ,2) be closed. Then there
exist (xp s2r) € OF(x52) » A, =0, a » 8 and 7"
such that the following conditions hold:
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ntvtl v

foret =1,

fort=1,--

forj =1.+".q: a; =0, a;G;(2) =0,
fOl’If:la'“

fort =1,

ntvil

v+l p =0, 2

t=1

fort =1,

(xf »2p) € OF (x,2),

sq: xg € G (),
wit=1,yn+v+1;
wit=1,yn+v+1;
spst =1, n+v-+1:

for j =1,
for k=1,
for k=1,

fori=1,-

fori=1,-

The relationships in (42) are called the KN-
stationarity conditions.

Proof
bilevel value function ¢,, is Lipschitz continuous
Since X is closed, one has from Ref. [ 16,
Proposition 5. 3] that 0 € 9¢,, () + N,(x). By

the inner semicontinuity of ¥, at (x,y,2) and the

Under the assumptions of (ii), the

near x .

upper regularity (25), we have
N ={Da,06,@) | o, = 0.
=1

0,G; () =0.j =Loweug|  (43)

Combining Corollary 3. 1 (ii) and (43),
Theorem 3. 4(i1) is easily derived. If ¥, is inner
semicompact around (x,y) , the condition (26)
holds at all point (x,y,2) withz € ¥(x,y) , and
that (32) and (34) are satisfied at all point (x,y,
z) withz € ¥,(x,y). Thus, by Corollary 3. 1(1),
we obtain the conclusion (i). This completes the
proof.

Remark 3.2 The prefixes ‘KN’ and ‘KM’
in Theorem 3. 4 reflect the difference between the

KKT-type optimality conditions via the inner

where we have the following inclusions:

sDs t=1,n+v+1: (U’;z:

2= S o D Fers = () gers + S yes ) + 38w ) + Dlajrd =0,
t=1 k=1 k=1 i=1 i=1 =1
byl 2E A D vah — ﬁ)ﬁsv; =0,
k=1 i=1

Vv N P N
vl D yeeh + D)7 =0,
k=1 i=1

N JFlJﬁLl; izla"'ap: )’i 209}",;{1(;75):0,
o JFVJFI; izly"'vp: ﬁi 207,@5,’,(;,;):0»

(42)

pr =1,

(xf+24) € OF (x,2),
(xf+24) € OF (x42)
(wy »vy) € 9g:(x»2),
v0;) € 9g:(xs2)

semicompactness and inner semicontinuity of the
upper-level optimal solution set mapping V¥, .
respectively. For the notions ‘KM-stationarity’
and ‘ KN-stationarity’, the readers can refer to
Ref. [27]. Under the inner semicontinuity of the
lower-level optimal set valued mapping ¥, the
necessary optimality conditions (ii) in Theorem
3.4 are in fact those of the problem:

rriin max max F(x,2)

s.t. x : X,z € U(x,y).

This means that the above framework, the
constraints described by Y (13) can be dropped and
the condition that set X X Y is closed is reduced to
that the set X is closed, the latter is immediately
reached by Assumption 0. 1, while deriving the
necessary optimality conditions of PSBPP,

By Lemma 2. 3 (i) and Theorem 3. 4, the
necessary optimality conditions for PSBPP are
derived when the involved functions are locally
Lipschitz continuous.

Corollary 3.2 Let (x,2) be a local optimal

solution of problem (3), where FF and G; , j =1,
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*s+,q, are Lipschitz continuous at (x,z) and z ,
respectively, Forallx € X , f(x, +) andg(x, *)
are R%- and R%-convex, respectively. Let x be
upper-level  regular.  Then, the {following
assertions hold;

(i) (KM-stationarity conditions) Let ¥, be
inner semicompact at (x,y) while for all = &
V(x,y) and the point (x,z) are lower-level
regular. Let f and g be Lipschitz continuous at (x,
2) ., 2 € ¥(x,y) , and let the conditions (32) and
(34) be satisfied at all points (x,y,2) with x &€
¥, (x,y) and the set X XY be closed. Then there
existd, = 0s as B 5 B s 7 005 (Tiszi) €
oF(x,z) , witht=1,,n+v-+1landz, € ¥(z,
y) witht,s =1,**,n +v 4 1 such that (26) and
(41) hold.

(ii) (KN-stationarity conditions) Let ¥, be
inner semicontinuous at (x,y,z) and the point (x,
z) be lower-level regular. Let f and g be Lipschitz
continuous at (x,z) » X XY be closed, and let the
conditions (32) and (34) be satisfied at (x,y,2)
and the set coN g (xsv,2) be closed. Then there
exist (xp s2r) € OF(x52) » A, =0, a , 8 and 7"
such that (42) holds.

4 Conclusion

In this paper, we present the first-order
necessary optimality conditions for the PSBPP with
nonsmooth data. With the help of the scalarization
method and optimal value function reformulation,
we first transform the original problem into a
generalized minimax optimization problem with
Then,

analysis and generalized differential calculus of

constraints, by using the variational
Mordukhovich, the first-order necessary optimality
conditions are established for PSBPP in the
nonsmooth setting. Our results enrich greatly the

ofbilevel
problems and especially for PSBPP. Furthermore,

optimization  theory programming
our results may inspire the design of new solving
methods for PSBPP and extensively expand its
application fields. In fact, all the results in this

paper can easily be extended to the more general

operator constraints in the sense of Mordukhovich.
In addition, it is also worth mentioning that the
first-order necessary optimality conditions for
PSBPP, in which all the functions involved are
fully convex with respect to their variables, can be
established based on our results.
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