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Abstract: The backward problem of two-dimensional parabolic equation with a time-dependent

coefficient was considered. This problem is severely ill-posed, i. e. , the solution(if it exists) does

not depend continuously on the given data. Using the method of regularization, an optimal

stability estimation of the solution was derived. A numerical example shows the effectiveness of

the presented method.
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0 Introduction

We discuss the backward problem of

nonhomogeneous two-dimensional parabolic
equation with a time-dependent coefficient:
u, (xsyst) —a@)Au=f(x,y.1),
(x,y.t) € B, X 0,T]

u ‘aB,_O =0,1t € [OvT] (2)
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ulz,y,T)=g(x,y),(x,y) € B, (3
where a(¢) ,» f(x,y,t) and g(x,y) are given
continuous functions. B, is the circle domain of
radius r, centered at the origin. We assume that
there are constants p ,q such that

0<<p<<alt) <q D)
When we know the information u(x,y.t) at

t =T , we need to obtain the information of u(x,
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yst) att=0. This problem is called backward heat
conduction problem(BHCP). Since the solution (if
it exists) to BHCP does not depend continuously
on the given data'’, a small perturbation on the
data can greatly affect the exact solution. Hence,
it is impossible to solve the BHCP using classical
methods. The method of quasi-reversibility (QR)
proposed in Ref. [ 2] was designed to solve ill-
posed problems. However, since the order of the
operator is replaced by an operator of second order
with a small parameter, it is very difficult to

implementation.  The
[3]

perform the numerical

method of logarithmic convexity'* is also effective
to get the conditional stability estimate when 0 <C
t << T rather than + =0. Furthermore, it usually
requires a’ (1) << 0. Some researchers have studied
this problem wusing the boundary element
method"**.

introduced in

A group preserving scheme was
Ref. [7].
methods™*'?) were introduced to solve the BHCP.

Some regularization
These methods were demonstrated to be very
effective, whereas most of them were applied to
the linear homogeneous case or constant coefficient
and one-dimensional problems. Ref.[12] gave a
modified method for regularizing the backward
problem of one-dimensional parabolic equation
with the time-dependent coefficient and obtained
between the regularized

the error estimates

solution and the exact solution as follows

ry

[ wCost) —u (g (o) || < 7 4+ Ayt
(5
where ¥y € (0,¢qT). We can easily see that the

above estimate tends to zero slowly in a

neighborhood of zero when EZ is very small.
q

In this paper, we consider the two-
dimensional equation with the time-dependent

coefficient (1)~ (3). To our best knowledge, few

papers have been published related to the time-

dependent  coefficient and  two-dimensional
equation, and even fewer in the area is circular
domain. We generalize the regularization method
and obtain a better convergence stability than Ref.

[12] with similar assumptions.

1 Expression of solution

In order to get the expression of the solution,
we let x = rcosf, y = rsind, then B, is
[0,7o] X [0,27). For

convenience, the functions u» f»g which have been

transformed into

transformed are still represented byu, f.g . Then
Egs. (1)~(3) become

u, —a(t) l:ia<r?;:)+182 uj =

or r? o0*
FGa0.0), 0<r <rg (6)
ul,—, =0 7
ul—r=gG,0 (8

Assuming u =T ()R ()O(0) , and using the
method of separation of variables, we obtain
0"+ 10 =0,
O +27) =009),

LR 4G =R =0, 0= r < ros
r r-

| R(0) [<+o, R(ry) =0,
and ordinary differential equation
T +2xa()T =0.
By solving the above eigenvalue problem., we

can get the solution of the homogeneous equation:

0. =53 [explwl, (ACT) A ) -

m=0n=1

(A o8 ml+ B sin m0) ], @, | (9
where w,,, is the nth positive root of Bessel function
J o (wrg) and A (¢) :J/ a(s)ds . Using the impulse

0

principle, we can get the solution of Egs. (6) ~

(8).

W) =>> [exp(w,%,,, (ACT) — AW (A, cosmb+B. sinm® ], (w, r) —

m=0 n=1

T
J exp(w?, (A(s) —A @) (C,,, (s)cos md + D,,, (s)sin md) J,, (w,,mr)d.s] (10)
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2

g0 cos ml J,, (w,,r)rdrdd,

0

g, sinmb |, (w,,r)rdrdd,

fG.0,s)cos ml ], (w,,r)rdrdd,

D,,(s)=—; J J fG,0,s)sinml J,, (w,,r)rdrdd,
Tr 0 m ( 1 (wmnro

%5
where
m "o
Amn - J J
T rO m+1 (a)nm 0 0
an = J J
T rO m+l (CUmnVo 0
< m "o
C,.(s)= j J
T rO m}l(wumro
and
1, m =0;
8117 =
29 m > 0.
Let

Vo (o) = (exple, (ACT) — A DA,, —

.
J exp(w?, (A(s) —A)C, ()ds ) T (@,
(1D
B (ro1) = (expla?, (ACT) =AW NB,, —

T
J exp(w?, (A(s) —AND,, ()ds )], (@,

t

12

exp(—w;, A1)

W (ra0) = ZZ[

and
S (o) = D 0, (rat) L
! (13)
G (rat) = D30, () J
n=1
then
w(r0st) = > ¢, (rst)cos ml +
m=0
&, (rst) sin ml aH

Since the solution u is not stable about the
observed data g » we approximate Egs. (6) ~ (8)

by using the regularization problem

(A,,.cos md +B,,sin m0) ], (w,,r) —

m=0 n=1 ﬁ+ eXp(_ w;%y;A(T))
Texp(ws, (A(Gs) —AG@) —A(T)) ‘ N ‘
J T prepab ATy | (CmIcosmIt D ($Isinmd T wmr) ds (15)

where the parameter 8 = 8(¢) > 0 can be chosen

later.

2 Regularization and stability

For clarity, we denote that || « | is the norm

in L2([0,r] X [0,27]) .
solution always exists,
2.1 Main results
Theorem 2. 1 ( Stability of the modified
method) Let u'(g) and u‘(h) be defined by Eq.
(15) corresponding to the final values g and A in
L2([0,r] X [0,27]) , respectively. Then we get
lu (g)Covt) —u () (o) || <

g llg —hll, 0<t <T.

The error estimate between the exact solution

We also assume the

of Egs. (6) ~(8) and the regularized solution is
presented.

Theorem 2.2 (The error estimate) Let ¢ €
(0,T) s go»g € LE([0,ry] X [0,27]) » and u be
the exact solution of Egs. (6)~(8). If

JmZ(Zexp(wmA(T)) |0 o) 1) 4

m=0 n=1

Eexp(w,mA(T)) | B (et ) 7d

n=1

holds for all € [0,T] and | g. —g | <. we

can get

r < B?

lu(g)Covt) —u (g)(out) || <
PGB, 0<st <T.

2.2 Proofs of the main theorems

We need the following two lemmas to get
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Theorems 2. 1 and 2. 2. qt . According to Lemma 2. 1 and the condition

Lemma 2.1
then for all # € N , one has

Let7]>0,0<a<b»b>o,

0 <pB <1, we obtain

Be AW FAMD=AW)
B e tAD =B 148 HACD <
B - BT < i,
Proof of Theorem 2. 1
From Eq. (15), we have

W (@) (raft) = D) ¢ () (rat)cos ml -+

m=0

&5, (g) (rst)sin ml (16)

W D Ga0) = S g0 () et cos mb -+

m=0

o (R (r st ) sin m0 an

where

et _a
1+77€/2/) <77 .
Proof
eka o eka <
T . T =
LHge® ()i (14 pe)th
ka
eia < g,
(1+9e?”)e
Lemma 2.2 Let0<Cp <1, then for allz €
[0,T], we have
BetA® ”
18 + eﬁl’A(’I‘) < IBQT-
Proof From Eq. (4), we have pt <A () <

exp(—w?,A@))
B+ exp(—w?,A(T))

b () (o) = E[

n=1

exp(—w?,A@)) B
B+ exp(— w2, ACT) ™

g (@) (o) = Z[

n=1

A (2) —J

(g)*J

Texplal, (AG) — AW —AT)) .
ATy Cn s |1, @,

"Texplws, (A(s) —A@) —A(T))
‘ B+ exp(—w?,ACT))

Dmn (b)d‘\} ]m (wnmr>-

The ¢, (h) (r»2) and ¢;, (h) (r,t) can be obtained similarly.
According to Lemma 2. 2 and the definition of A,,, and B,,, » we get

(@) Cont) —u (R (o yt) \\2:n283 | go (@) (oat) — g (WD) (oyt) |7+

m=1

2 S 1 g () — g D) = 2SS 83 |

m=0 n=1 m

m=0Ym

- EWIA(
X onAW) |,

") — 2
B+ exp(—al, AT " (g) — A ) P+

exp(—w?, A ()

#2 D)

m=1 n=1

B+ exp(—wi,ACT))

J @, r)(B,,(g)—B,,(h) |*=

]H'I (wﬁl'l‘llr) (A])UI (g) 7 A/Vl” (h )> ‘2 +

J (@, (B,,(g)—B,, (k) |* <

S 2 explal, (ACT) —AM))
nmzzjonz:)] 3]” | 1 +B eXp(CU;ZnnA(T))
S expll, (ACT) — AD))
2 2 | S el A CTY)

Therefore, we obtain

Al

gGED | g—n |

18

lu (@) Cat) —u GG | it g —n |l <pir llg—nll.

The proof of Theorem 2. 1 is complete.
Proof of Theorem 2. 2

Considering the observation value g,

error ¢ , and according to (18), we can obtain

lu(g)Cost) —u(g)Ceu) || <

Bt |l g —g Il <Pt e

According to Egs. (14) and (16), we have
u(r,@,t)—u((r’ﬁ,l‘):

with
D (rat) — ¢ (gD (ryt)) cos mb +

m=0

(o Grot) — ¢, (g) (ryt)) sin ml =
(19
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i(cosm@i P

m=0 n=1 [B—Fexp(iw?nnA(T>)

st ’”5,,21 B+ exp(—aw’ACT))

Oy (rat) +

;,m,(r,l‘)>.

Then
| uCost) —ulost) || 2=

2r (g
JOJ |u(r,<9,t)—u‘(7’,5',l‘) |2d7’d6<

lo—

m=0 n=1 ‘BJFBXP(_(U%;”A(T))

ST A~

B+ exp(—wl ACTH ™

- (r,t)) 2 +

(m))z]drg

B%J:’ E (Eexp(w?m,A(T)) Lo Grat) )+

m=0 n=1

(> exp(wi AT | 5 Grat) |) 2dr.

n=1
Consequently, according to the hypothesis,

we get
| w Cost) —ulost) || < BB (20)
Hence, we have
lu (g )Cost) —ulg)(out) || <
lu(g)H)Cost) —u(g)Cout) || +
| w (g)Cont) —ulg)(ost) || < B« + BB
2D
If we take B =+ , we get the proof of Theorem
2.2.

Therefore, under the condition of the prior
estimate of the solution, we obtain the stable
estimate of the solution. In particular, at the time
of t =0, we get
<
B

We take the regularization parameter 8 = /B to

| u (g )(es0) —ule,0) || <—+BB (22)

obtain the optimal approximation error

| (g )0 —ule,0) || <2/B (23

3 Numerical experiment

Consider Egs. (1) ~(3) with T =1 and r, =
17 and
a(t)=2t+1,

A+20) (@ +y2+3) 24)
exp(t? +1)

f(l' y 1) =
If

g(x,y)=ulx,y,1) =

. 2 2 .2
Loty 1or (o)

€ (S

we can obtain the unique solution
1— (49
exp(t?+1) °
Then we have u(x,y,0) =1— (2?4 y?) .
Consider the measured data
g ) =~0+/6c) glr.O (26)
then we have
lg. —gll =v/6ce’ [ gl = 27
From Egs. (24) and (25), we can find that the

function considered is independent of 8 , so we can

u(‘rvy’t):

get m = 0. Therefore, we have the regularized
solution for the caset =0 from Egs. (15) and (26).
N 1
¢ 76 ) O ==
w (r.0.0) 2 [5 + exp(— 2ws,)

texplws, (s" +5—2)) ‘
JO ‘8 + eXp(— ng” ) (/011 (5 >]0 ((U(),J‘)d.\]

A(On] 0 ((1)0,,7") -

(28)
where
2 1 (2
on *mﬁjo 2.0 Jo(we,r)rdrdd,
2 1 (27
Co,,(b) 7mjojo f(l"yﬁ,.s) ]o(wo,,r)rdrdﬁ.

When we use the numerical method to invert
the value of the momentz =0, we need to truncate

the series. Let B, represent the partial sum of
series B and B =./B, , we can see that
| w(g)Cey0) —u,(g) (0 || < /B, .

From the above inequalities, we can see that
the accuracy || u(g)(+.0) —u, (g )(+,0) || is not
only related to¢ , but also to the truncation degree
n. We also show this phenomenon in the
following figures. We take n =6 on Fig. 1. that is
the sum of the first six terms of a series in Eq.
(28). From Fig. 1 Ca), when ¢ = 0, which
corresponds the case where no regularization
parameter is introduced into Eq. (10), we can see
that the backward problem is seriously ill-posed.
In Fig. 1(b), we take the values of cas 1 X107°,1X
107°,1 X 1077, respectively, and we can find the

effectiveness of the proposed method.
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(b) comparison

Fig.1 Comparison of errors in different values of €

4 Conclusion

In this paper, we discuss the backward

problem of parabolic equations with time-

independent coefficients over two-dimensional
circular domains. In order to solve the problem by
separating variables, we transform the circular
domain into a rectangular region by parameter
transformation, but the following problem is that
we need to introduce the Bessel function, which
makes the problem difficult. However, with the
help of a priori estimate, we still get the
regularized solution. By choosing appropriate
regularization parameters, we obtain relatively
satisfactory results. A numerical example verifies

the effectiveness of the presented method.
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