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0 Introduction C, :i< : ) (D

n\n —1

A planted plane tree is a plane tree whose root
has only one child. In drawings. planted plane
trees ascend from their roots. These trees have no
labeling. It is well-known that the number of such
trees with n edges is the Catalan number (see, for
example, Ref.[1]):
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The model of randomness in the growth of random
planted plane trees induces a uniform distribution
on the trees: All C, planted plane trees with n
edges are generated with equal probability.
Planted plane trees have been considered by
many researchers. For example, The height

problems of planted plane trees have been
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considered by Prodinger** ; Gutjahr™ studied the
variance of level numbers in planted plane trees
and some other families of trees; Chen et al.[®
gave a bijection between planted plane trees with
elevated Dyck paths.

Vertices with degree 1 are referred to as
leaves. But here, for convenience, we exclude the
root of a planted plane tree as a leaf. For any
integer d =1, let X,.;, be the number of (nonroot)
vertices of degree d in a random planted plane tree
with n edges. Note that a rooted tree with n edges
which implies

has a root and n vertices,

n—l
that EX”,({ __n.
d=1

Degree profile (or degree distribution) is an
important topic in the study of random trees and
random networks, Via Poélya urn models,
Mahmoud and Smythe!™, Janson'®' have discussed
the asymptotic normality of the number of vertices
with various degrees in random recursive trees.
The degree profile of m-ary search trees has been
studied in Ref. [9]. Zhang and Mahmoud"'” have
also considered this problem both for Apollonian
network which is a random network model, and
for another random tree model, k-trees. Following
their routes, in this paper we shall study the
degree profile in random planted plane trees, i.e. ,
the asymptotic distribution of X, , for any fixed
Unlike their

approaches, an analytical method is employed

integer d = 1, as n — ©o,
here.

To derive the asymptotic distribution of X, ; »
we shall define a bivariate generating function
B(x,y) . In Section 1, we establish a functional
equation for B(x,y). Based on the functional

equation, the asymptotic formula for the
expectation of X, ., is given in Section 2. In the last
section, we prove the asymptotic normality of a
normalized version of X,.;, » from which one can
easily get the asymptotic formula for the variance
of X,.4.

Throughout this paper, the limits are always to

be taken asn —<< . For functions /() and g (n) , we

write f(n) ~ g(n) if li{pf(f'z)/g(n) = 1. We also

use —> for convergence in distribution.

Our main result is as follows.

Theorem 0.1 For any integerd =1, let X,,.,
be the number of vertices of degree d in a random
planted plane tree of n edges, we have

X, —E[X, 0] 9
JVar[ X, ]

MO,1),

with

2 —(d—2)*—2
n.

1
EI:XH-,d] N?n’var[xll-d] ~ 225”1

1 Functional equation

Let ?be the set of all planted plane trees. For
any tree w € % and any integer d = 1, let N(w)
denote the number of edges and M, (w) be the
number of vertices with degreed inw . We define

a bivariate generating function as follows:

Blx.y):= Zx‘ww)y”’"(’”).

wED
We can rewrite B(x ,y) as
B(z.y) =2 ,Cnsk)x"yt (2)

n.k
where C(n,k) is the number of planted plane trees

with n edges which contain exactly £ vertices of
Clearly, B(x,y) and C(n,k) both
depend on d .
C(nsk) 5 see Ref. [1].

Using the branch decomposition on the family

degree d .

For the explicit formula for

%, it is not hard to show that

P—{c} ={c} X (PF+ PX P+ PXPX P4 +++),
with ¢ being a planted plane tree with no edges and
X being the Cartesian product. For an example of
branch decomposition of planted plane trees, see
Fig. 1 . Then, by the symbolic method (see, for
example, Ref. [11]), one can show that B(x,y)

satisfies the following functional equation:

<

Fig. 1 Branch decomposition of a planted

plane tree with three branches
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B(x,y) =2+ B(x,y)+B*(x,y) 4+
2 xay) FyB N (aay) + B (xay) 400D,
Simplifying this

relation, we obtain the

functional equation as follows:

. — 1 _ d—1¢ .
Bu,ypl(l_B(I’y)jL(y DB (2.y))
(3
ford = 1. This functional equation will play an

essential role in our study of the asymptotic

distribution of X ., .

2 The mean

definition  of

For E[X,.], by the

expectation,

1 n—l1
D RC(n k).
Cukzl

For convenience, we define the following two

E[Xn.d] -

functions:
P(x):=B(x,1), G(x): :éB(x,y) [,-1.
oy
From Eq. (2), we have

P(x)=2,C,x";
n=1
n—l

G(x)—Z(Z/eC(n,k))x

n=1 =

The generating functlon P (x) does not depend
ond , but G(x) does.
P(x) and G(x) , we have the following result.

On the relation between

Proposition 2, 1 For any integerd = 1,

P () —P(x))
G(x)= = 2P (o) 4

Proof Rewrite Eq. (3) as
BA—B)=x0+(y—DB“'(1—B)).
Differentiating with respect to y for both sides of

the above equation, we have
oB
(1—2B) —=xB*'(1—B)+
oy

oB
d—1
dB“ ) oy

Applying y =1 to the above equation and carrying

x(y—1Wd—1)B**?

out some simplifications, one can check easily that
Eq. (4) is valid for any d = 1.
Sincen =1, we have P(x) =2 +0x?) , as

x —> 0. Thus, if we consider x as a complex

variable, P(+) is a conformal mapping in a small
neighborhood of x =0. As a result, P(x) has an
inverse function in this neighborhood. This fact is
very useful for the following manipulation of
integrals. Make use of Cauchy integral formula in

Eq. (4) to get

ZkC(nJe) 4ﬂ€(1(1) =

1 JrPdfl(lr)(l—P(x))ﬁ
2mid ¢ 1—2P(x) e

Here C is a small circle centered at x =0 and lies in

a neighborhood of x =0, in which P(x) has an
inverse function.
If let y =11in Eq. (3), then
P(x)(1—P)) ==x.
Differentiating with respect to P , we have

dx

G5 —1-2P.
Then
E[Xn,d]:;” 271“- ( pe 13112113—(1{3)<1->> jl ~
PP
Cl“ 2’1Ti ffp 1(121)p) (p —1132)"(1_2P>dp:
d=1(7

where C is a small circle centered at p = 0. If
we denote
h(p): :*11'1([) *[)2)’

then the expectation of X, ., can be expressed as

E[X,.]=

p‘“(l pre P dp (5

C‘” 2
Eq. (5) can be treated with the classical saddle
point method (see, for example, Ref. [12] or Ref.
[13D.

and omit the details.

Here we shall briefly sketch the process

The saddle point is the root of equation

d .
@h(p) =0. That is,

1=2p
p—r°
Thus, one can easily get that the saddle point is

=0.

)=8. Then,

Moreover, one can get A’ (

1
p=y-

by the saddle point formula, we have
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Zmﬂg pP (1 — plexp{nh(p)idp =

<1+O(n ))= de/g(wo(i)) (6)
By Stirling’s formula
n! :n”“”/zef"M(l+O<i> ) ,
and Eq. (1), C,

can be expressed as

c, = (1+o(;)) <)

n
Substituting Eq. (6) and Eq. (5) into Eq. (5),

we get the following result.

Let X, be the number of

vertices of degree d in a random planted plane tree

Proposition 2. 2

with n edges. Then

ELX,. =2 (1+0(--)).

3 Asymptotic distribution

In principle, one can continue working out the
variance of X,.;, by following a similar method.
However, it becomes more complicated. To avoid
the difficulty, we introduce the random variable

n

XH-(/ 7?
Yn-,z[? = ’

an
with a being a positive constant, which only
depends on d . If Y,.;, converges to the standard
normal random variable in distribution asn — o,
then the variance of X, ., is asymptotic to a’n . It
will be shown in the following that
a_JZ‘”‘—(d—ZV—Z (8)

22d+1

In the sequel we shall prove the asymptotic
normality of Y, ., under Eq. (8).
3.1 Expression of the characteristic function

The characteristic function of Y,., can be

expressed as

Xw d

E [explitY,,} ]=E {exp{it N;/Zcﬂ _

ot e o 0]

By the definition of expectation, we have

E{exp ti Ld } 1§(exp{ i })kC(n,k).
T T = AN W=
Let
- it
B, (x): —B(x,exp{aﬁ} )
Note that

n—1 3
g(e"p{af}) Clnet) =[a" 1B, () (9

it
Inserting y = exp{i} to Eq. (3), we see that
an

B, (z) satisfies the following functional equation:

1 it
B, (x) = 1(m + (exp{an} — 1) B¢ 1(17)) .
That is,
B, (x)
o

(e
1—B,,<I) expa n

By Lagrange inversion formula (see, for
example, Ref.[11,Appendix A. 6]), we have

— 1) B (x)

(2B, () :%[ww WD Ao

where

) —7+< { }—1))1‘”.
’ Pl
Using Cauchy integral formula in Eq. (9),

we get
n—1

> (exp{ai;;} )kcm,m =

k=1
(it ooz 1))

1 1

n 2mide 2" dz= =
it
. 1+<exp{7}—1)zd "d—=z2) .,
l 1 ( an )d
n 2miJc 2(1—2) =

where C can be taken as a small circle centered at
2 = 0. Divide both sides of the above equation by
C, to get

{ izﬁ}
exp{—
24a

E [exp{itYn.d }:I - nC
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it zero on G . If f has a zero of order m at z, then for
1+(exp 1)2‘171(1*2) . .
1 ( a-n ) d every small enough p > 0 and for sufficiently large
P 2
2mid ¢ z(1—=2) integer n (depending on p ), f, has precisely m

an
Now one can see that the key to our problem
is to find the asymptotic expression of the integral
in Eq. (1D).
3.2 Asymptotic formula for the saddle point

If we denote

1+ (exp{i}*l)z‘kl(lfz)
a~n
2(1—2) )’

h,(2): :1n(

then the integral in Eq. (11) can be simplified as

it
1 ( { }—1 A=z,
. ( -+ expaw7 )z 2 ) "
27114(: 2(1—2) o

iﬂg exp{nh,(2)}dz
2w ¢

2h,l(:z) =0 to find the
oz

Solve the equation

saddle point,

9
oz

it _ d—2 d—1
(exp{af} 1)<<d Dz —dz')

h,(z) =

lJr(exp{af} 1>zd7](1—z)
1—22
Ao
which implies that
(d*2)<exp af} 1) 21— —10—22)=0

12
For any complex number « and real number
r >0, let
Dsr):={z: | z—a |<r}.
For some basic properties of the saddle point,
we shall apply Hurwitz theorem™*, which is
stated as follows.

Let {f,} be a

functions on a connected open set G that converges

sequence of holomorphic

uniformly on compact subsets of G to a

holomorphic function f which is not constantly

zeroes in the disk defined by | = — 2z, |< p
including multiplicity. Furthermore, these zeroes
converge to gy asn —> <2,

Lemma 3.1 For all sufficiently large integer

n , the polynomial equation

(d—Z)( { } 1)“’71(1—‘)2—(1—2)20
exp dr z z 2
) . ) 2

has a unique root r, in the disc D(O0, g).
Furthermore,

1 diit 1

= MT+o(;),
asn — <° , with
d—2
d,= gd+tz

Proof Consider the function

f,,(z): -

(d—Z)(exp{ & }—1) 21— —1—22),

aNn

and the function

it
Since exp{li} — 1 —> 0, f,(2) converges
an

uniformly to f(2) in the disc D(0,—) asn — <,

3

1
It is obvious that — is the unique root of f(2) . By

2
Hurwitz theorem, for all sufficiently large positive
. i . . 2
integern » f,(2) has a unique root r, in D (0, g)

1 :
and r, converges to — . That is, r,

2

For the asymptotic formula for r, , here we

1
—?—f—o(l) .

use the bootstrap method. Let

T :%Jre,, (13)
wheree, = 0(1). Plug Eq. (13) into Eq. (12)
to get
1+O(€,1)
ThUS’
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Comparing the order of both sides of the
d =2

vt PO

This finishes the proof for Lemma 3. 1.

above equation, we have

871 -

If , is expressed as
rn :‘ rn ‘ eXp{i¢n } 2

then, from Lemma 3.1, we have

r \:%+O<%> s _()(j;) (14)

We remark that these two estimations occur

frequently in the subsequent subsections.

3.3 Estimations and convergence

).

. . ) 1 1
Choose a constant € in the interval (3’ >

Now we can expand contour C of the integral in
Eq. (1D to the circle | = |=| r, | . That is, for all

sufficiently large integer n ,

iﬂ; exp{nh,(2)}dz =
271 ¢

%ﬂg expinh, (D idz: =]+ T+ 5,
mid zi=1r |

where

1
]szj exp{nh,(z)}dz, £k =1,2,3,
2rid ¢,

and where
Cl:{z-|z|:| rn" |argzi¢n‘<ni€}7
Co={z: |z |=[r,|sns<]argz—4¢, [<5},

Here 6 > 0 being a sufficiently small constant
depending only ond . Note that C, is a circular arc
symmetrical about the saddle point », and it
subtends an angle of size 2n ° .

We estimate J , J; and J ; in the following. It
will be shown below that J, gives the main
contribution. We start with J ;.

Lemma 3.2 There exists a constant ¢c; € (0,
1) , such that

J: =04 —cs)").
Proof Similar to the convergence of f,(2) to

f(), | explh,(2)} | converges uniformly to

1 2 1
| ———— | inD0,-)\D(0,—) asn—>°°. Let
—2) 3 3

z(1

z :% exp{if} . 0 € (&, 7). It is not hard to see

that the function

g@ .=
- L =2
Eexp{i@}(lf? exp{if}) %fcosﬁ
is strictly decreasing and max g(@) = g(0) = 4.

Thus, by Hurwitz theorem, the proof of LLemma
3. 2 is complete,

Lemma 3.3 There exists a constant ¢ > 0,

such that
- 4” 1—2¢
]2:()(rexp{*c‘n } )
n

Proof Through the transform z=r,exp{i0} ,

one can get

CSZ{Z: ‘ < ‘:‘ "y |’ 8< ‘ argzi¢n |<7T}-
it
‘ 1+ (exp{li} — 1) rd exp{(d —1i0} (1 —r,exp{i0}) ,
b= ( avn ) xpli0)
P 2w i< rpexplif} (1 —r,exp{if}) xp ’
Thus,
1t
N 1+(exp{l—}—1)r;rlexp«d—1>ie}<1—r,,exp{ie}>
r a~n
< n J
RERES 21 W01 1—r,explif} dg (15)
We consider the case n° <C # << 6 in the |1 —r,expl{if} |" =] 1—| r, | expli(p, +D} |"=
following. One can treat the other case — & << 0 A+lr, =217, | cos(¢, +0)) 2=

<—n ® in a similar way. By Eq. (14),
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(2 —costp, +0+0(=)) " =

(%+%w,wv+o@)f,

since 0 is sufficiently small.
large, then | ¢, [<C0/2. Tt follows that

If n is sufficiently

1 n
1—r,explif} <
b L) oft)) -

2%1+y4wﬁ )) =
wa—%m@+§+oe)”.

The relation In(1 +2) = % holds, if x > 01is

sufficiently small. Thus, if § is sufficiently small,

1
1—r,explif}

n

< 2”exp{f %@2 —l—()(l)} =

()<Z“exp{——{%02}> (16)

Let
R, (@) :=r"exp{(d —Dif} (1
Since | R, (@) | is bounded, one can get

\14—(exp{

—r,expl{if}).
a—1

Fa

exp{(d — 10} (1

exp{nln(l—’—(af ( ))R,,(ﬁ))} —

(ﬁm};ﬁmmwnw,

n

—r,explif})

where Im(R,, () ) is the imaginary part of R, (@) .
For R,(8) , we have
R, () =|r, |[“Texp{(d —1)i($, +0)} «
(1—|r, | expli(g,+0)}) =

(W1+{X )) cosl(d — (g, +0)]+
isin[(d —D($, +D]) «
(1—%ﬁmw"+arh%mmw”+ey+o(%))

Then,

Im(R, (D)) =
1

2d71

H1—%ﬂmw”+0ﬁsmﬂd—1x¢f+m]—

iCos[(d — D (¢, +60) Isin(g, +‘9)} +O(i):
2 n

ow>+oQ%)

Thus, there exists a constant ¢; > 0 not depending

onn » such that

‘ 14 (exp{af} 1) r, !
exp{(d — D0} (1

O(exp{clﬁﬂ})
Hence, by Egs. (15) and (16),

2 1=0(2r] 2rexp|— gt 4 ci0h | ) =

411 "ovn
ol cexnl-
n n
4" o
()(/7[ . exp{—*(p — 6cp)? } d/x) .
n n
) 1 1
Recall thate is chosen between — and — .

3 2
integral is of OCexp{— n"*}) ,

n

—r,explif})

So the

which implies
Lemma 3. 3.

Lemma 3.4 For J;, we have

7 747171 itﬁ 2‘”1*(61*2)2*2 2 .
1_/56)( 2d, 221D ';

A+0n"*) an
Proof Recall that
] )
]1—.L‘l<<1—|—(exp{aj;}1> - 1(1fz)>/

271
(Nl—z»yﬁz:iikfmﬁﬁﬂ&)Mz

The following argument acquires its inspiration
1

from Ref. [12]. Note that the function In————

2(1—=2)

1

is analytic at ¥ = and the radius of convergence of

2
) |
its Taylor series 155 . Moreover, h, (z) converges
if ltl;'thd’ D(ii)
umormyonz(l_z)m e disc 50 s
1

n —> oo,

Since the saddle point r, — , by

2
Hurwitz theorem, the following claim holds: For
any sufficiently large integer n , there exists a

constant p > 0 not dependent onn , such that the
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radius of convergence of Taylor series of h,(2)
about the point z =r, is not smaller thanp . Then,

in|z—r,| ¢, we can expand h, (2) as
1 V4
h,(z)=h,(r,) +ZTh7,(r7,)(z —r) 4+ F, (),

where
F,(2)=a,(z—r)"4+a,,(z—r)" 4,
with as., say4., >+ being Taylor coefficients.
that C; C DG, sp)
sufficiently large. Let
M,:= max | h,(z) |.

1= e

Also note if n is

From Cauchy inequality (see, for example, Ref.
[14]), we have

M,
‘ A ‘< s m :374’“.-

m

1

Then, for anyz € C,,

M?l MVI
‘Fn(z)‘g {03 ‘277’” ‘3+{074‘zf;‘” "1+...:

M — ’ 2M
71‘2 7’7,| < 371 ‘Z—T‘”‘S.

p’lo—lz—r, D = o

1
2(1—z2)
there exists a constant M > 0, such that M, << M
Therefore, if z € C,,

Since h, (z) converges uniformly to In

for alln .
2M
| nF, (2) \<{073n | r,Cexplig, ) — 1) |<

2M .
Tn 1—3e > O.

Thu59

I fj exp{n(h”(r,,)+ihx(r“)(z*r,,)2+F,,(z))}dz:
c 2

- 2

exp{nh, (r,) }J
————| exp
2m1 c

<exp{nh” (r,) }J
——| exp
2m1 o

2

Replacing z =r,exp{ifl} . we proceed,

7= <exp{nh,, ),

2

Since

%h:(rn)(z — )’ +nF,,<z>} dz =

lh:f(r,,)(z —r”)z} dz) A4+0n")).

J, (XP {%hﬂmf%(exp{i@} — +i<9} de) A1+0m ).

(expl{if0} —1D*=—0*4+0n*) and exp{if} =1+0 ),

we have
exp{nh, (r,)
2w

-

}r”Ji EEXP{_ %h/;(r,,)r;zﬂz} d6> A+0m ).

Changing again the integral variable  — 0+n , to get that

]1:

1/2—
—n

2mIn

expinh, (r,)}r, (J”l"h { Wy Gr )k
exp\———

T ) O )) =

expi{nh,(r,)}r, (\/T ' explnh, ()
5 T O( 1’“)) A+0n ) =" 1420 3) .
27 /n W Gro)r? " 2k ()

After routine calculations, one can get that

1
Iy () :8+O(f
n

J=8+0G .

A+0G"™ ) (18

Then,
= expi{nh,(r,)}
1 — 4@
Now exp{nh, (r,)} is the only term to be estimated. Recall that
1 dqit
r=y

a

+0(2).
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with d, *% . We have
1+(@m{j%—ﬁr%%1—rg,
exp{nh”(r”)}:( arf(lfr”) ) _
- - L) (-2 o) -
S b2 )
v (1 ™ Zd:;lﬂ o - ;ﬂ(ﬁl)_Z)Z y a[;n +O(n% )” —
4”exp{igf—2dﬂ 7;{;)2)2 —z. 22} A+0G ),

which implies with Eq. (18) that Eq. (17) holds.
The proof of Lemma 3. 4 is complete.
It follows by LLemmas 3. 2 and 3. 3 that. as

n—> 00,

]3:0(]1>9 J2=0(J D).
If a takes value as in Eq. (8), then

n—1 - 2
. {”W’-‘} A+0n"%)).

I, =
Y Pl T 2
Hence, by Egs. (7) and (11), we have
2
E [explitY,. )] ~ exp{*%} ,

which is the characteristic function for the standard
normal distribution. The proof of Theorem 0. 1 is
complete.
Acknowledgements We are grateful to Prof.
William Goh for helpful discussions on this topic.
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