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Abstract: A asymptotic behavior of a stochastic logistic SIR epidemic model was studied, whose
natural death rates are subject to the environmental white noise. First, it was demonstrated that
the model possesses non-negative solutions with probability one. Then, the stochastically
asymptotical constancy of the equilibrium was obtained by means of the stochastic Lyapunov
functional technique, when R, < 1. Additionally, when R, > 1, some asymptotic outcomes
regarding large time behavior were given. When the noise is small and the diseased death rate is
limited, the solution will oscillate around the endemic equilibrium of the deterministic model for a
long time, and the fluctuation decreases with the decrease of white noise, which reflects the
prevalence of the disease.
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0 Introduction

The stochastic epidemic models were advanced
in the early 20th century. Early in 1926, M’Kendr
ick™? presented a stochastic version regarding the
general epidemic model. However, more interest
had been in the discrete-time models, and specially
in binomial models. More arguments on the
continuous time stochastic models have gradually
increased. However, most researchers established
and analysed stochastic epidemic models through
the probabilistic method. The focus was on the
likelihood of extinction of disease, likelihood of
outbreak of disease, likelihood of distribution of
quasistationary, final size distribution as well as
anticipated epidemics duration, see, e.g.Refs.[2-5].

Recently, many scholars have studied the
dynamics of models of epidemics troubled by the
Gaussian white noise. Refs. [ 6-7 ] have considered
the positive equilibrium of the white noise
stochastic pertubation situations.. The approach of
parameters perturbation has been utilized by a
great number of researchers to build stochastic
epidemic models™ ', Ref.[ 8] pointed out that due
to environmental fluctuations, the structures
entailed the system of the model to display
indiscriminate variations. On the other hand, some
other kinds of

researchers have examined

environmental noise, including colour noisel'*'% .
The stochastic SIR models have also been
examined in the recent studies. Tornatore et al.l'*!
suggested a stochastic SIR model with or without
allocated delay in time. The authors presented a
satisfactory situation for the asymptotic constancy
of the disease-free equilibrium. Besides, they only
illustrated that the introduction of noise
customized the inception of the scheme for an
epidemic to take place in view of numerical models.
Lin et al./ referred to a stochastic SIR model that
has perturbed disease transmission coefficient.

They included sufficient conditions in relation to

the disease exponential extinction. Considering
persistence, the authors analysed the long-time
behaviour of densities of the solutions distributions
and affirmed that these solutions densities might
join in L' to an invariant density within
considerable situations. Moreover, they also noted
the sustenance of the invariant density. More
particularly, where the white noise intensities are
comparatively small, they provided a new
inception or threshold for the occurrence of an
epidemic. Ji et al./* further elaborated on a two-
group SIR model with the transmission parameter
dependent on the white noise, whereas Yu et al."'®
examined a two-group SIR model consisting of a
stochastic  perturbation about the positive
equilibrium. They all achieved an in-depth analysis
on asymptotic behaviour of an SIR epidemic model
with an invariable size of the population or
invariable recruitment. Nevertheless, we believe
that there are no outcomes on the stochastic SIR
model with logistic growth. Motivated by these,
we intend to devise our general SIR epidemic
models using the logistic growth through an
introduction of the stochasticity into the
deterministic model, whose natural death rate and
diseased death rate are subject to environmental
white noise, respectively.

This article mainly focuses on investigating
the environmental variations that are set up in the
natural death rate on diseases dynamics by
investigating a logistic SIR model. The other
sections of this paper intend to present the
following: In Section 1, we will develop the
stochastic model and demonstrate the main
findings. Some helpful preliminaries are presented
in Section 2. Then, in Section 3, we will present
the assertions of the main findings in depth. In
Section 4, the numerical models will be conducted.
Lastly, we will present a concise discussion as well

as a summary of the main findings.

1 Model and main results
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1.1 Model derivations

| [17]

Zhang et a mentioned an SIR model with

logistic birth:

ds N
E*(!J*Tﬁ)N*ﬁSI*#S»

dI

E—BSI*(?I, (1)
dR

TR

where N(1)=S )+ 1)+ R () and 3>>0 is the
transmission coefficient, & is the birth rate, p is
the natural death rate, r =56 — 4 is the intrinsic
rate, § =a+y+p and « is a non-negative constant
and represents the diseased death rate, and y >0 is
the rate constant for recovery. They used N as a
variable in place of S, then the SIR model is
described by  the

different equations

following  system  of

dI

& —BI(N—T—R)—al,

dR

E—}’I*#Ra (2)
dN N
E—V(l_E>N_aI

They showed that the region H={(I,R,N)&ER% :1
+R<CN<CK} is the positively invariant set with
respect to (2). The disease-free E, = (0,0, K) of

K
System (2) always exists, and if R, :%<1, E,

is globally asymptotically stable in H. If R,>1,
E, is unstable and there is a unique endemic
equilibrium E* (I*, R*, N*) which is locally
asymptotically stable and globally asymptotically

1
stable when o <Cmin{2yu ,?r}.

Let (2.{F,},~0,P) be a complete probability
space with a filtration {F, },~, satisfying the usual
conditions (i. e. it is right continuous and F,
contains all P-null sets). Statistically, the natural
death rate is not a fixed number, but fluctuates
around a fixed number. And studies have shown
that the diseased rate was affected by a number of
factors, especially medical condition. Hence the

diseased rate was always a certain degree of

AN () =[r(1 —

random variability. So in this article, we assume
that fluctuations in the environment will manifest
themselves mainly as fluctuations in the natural
death rate and the diseased death rate,
respectively. The natural death rate x is subject to
the environmental white noise, that is
—u —>—pu+oB ).

Then, —pdt——pdt +6dB (), where B(¢) is a
standard Brownian motion, ¢*>>0 is the intensity
of environment white noise. Then model
(1) becomes

N (1)
K

dS(o) =[b —r YN () —BS()I(t) —

NZ
pS () Jdt + (S @) —%)d]ﬁ(z),

dI () =[S I () — I (e) Jdt + ol (1)dB (1),
dR () =1 () — pR())dt +6R(1)dB (1)

(3
Use N as a variable in place of S, then
System (3) becomes
dI(¢) =[B(N() —I1(t) —RG)M)I) —
81 () 1dt +ol(1)dB (1),
dR(t) = (yI (1) — puR (1)) dt +6R()dB (1),

4)
NI?)wu)—aI(z)]dw

N
K

o (1 YN (£)dB (1)

1.2 Main results

The goal of the paper is to study the disease
dynamics of the stochastic model (4). Fist we
prove the existence, uniqueness and boundedness
of the positive solution to System (3).

Theorem 1. 1
(S(),I(t),R(t)) of System (3) on t=0 for any
initial value (S (0),I1(0),R(0)) € 2*, and the
solution will still belong to Q2* with probability
one, namely (S(z),I(t),R(t))€ Q™ for all t =0

almost surely.

There is a unique solution

Then we denote a bounded set 2 as follow:

K ‘
Theorem 1.2 (i) If ROZ%QI, o’ <<min{p,

r}, then the solution (0,0, K) of System (4) is

stochastically asymptotically stable in the large.
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(i1) Let (1(z), R (), N(2)) be the solution of
System (4) with any initial value (I1(0),R(0),N

(0)HEQ*. IR, >1, ¢< rl and 6% <
24+ (——
I+y/p
240 s then we have
* 2 2#
llmsup* I:(I I+ (R — SR+
20 — o
; K
(N—N*)Zjdng”, a.s.,
where
1
K _(71*4’7 RA’)+ NA)) 2
2B 4 Zlu*a

1 rN*
M =min{— (s — —o").
mm{y(/j 20) (Ka

and E* = (I*, R*, N* ) 1is the endemic
equilibrium of System (2).

_1)}9

2 Preliminaries

We provide some useful lemmas to prove our

main results. Consider the randomized
logistic equation

J(t)

de (1) =x(D[1— 1(Grdt +6dB)) (5)

where B (¢) is 1-dimensional standard Brownian
motion. The following result can be found in Ref.
[19].

Lemma 2.1")  For any initial value 0z, <C
K, there is a unique solution x (z) to Eq.(5) on ¢

=0 and ¢ (1)<<ax(t)<<K, where
K

(1) = .
! R A

T

Then we can see the following two lemmas in
Ref.[217]. Consider a stochastic different equation
de(t) = f(x (), t)dt + g(x (), t)dB), t =1,

(6)
Assume f(0,2)=0 and g(0,2)=0 for all t1=¢,. So
x(1)=0 is a solution to Eq.(6), called the trivial
solution or equilibrium position.

Lemma 2. 2V If there exists a positive-
definite decrescent radially unbounded function V
(xs0)EC*" (R'X [ty, +20); R,) such that L
Viz,t) 1is

negative-definite, then the trivial

solution of Eq.(6) is stochastically asymptotically
stable in the large.

Lemma 2,3
Let M=

martingale vanishing at t=0. Then

(Strong law of large numbers)

{M, },~, be a real-valued continuous local

M,
hm(M M), = OOas:>IILr? MM, = 0 a.s.
and also
. (M ,M)>, . M,
lim sup — < oo as. = lim P 0 a.s..

At last, We prove a useful lemma.
Lemma 2.4 Assume the endemic equilibrium
E*={U*,R* ,N”) of System (2) exists and a<C

r

1 . Then
2
+<1+)’/)u
rN*
K —1>0 (7
Proof E* =(I*",R*,N*) is the endemic

equilibrium of System (2), according to Ref.[17],
N* is the root of the following equation in the

interval (0,K)

ad N,
a— ﬁN (1+*)(1 E)—O’
le.
ad
*(1+ )N +[a*r(1+*)]N =0.
jZ B
()bVlously,
a—r(1+72)
N* >_r—f (8)
21?(1-1—;)
If a<< rl , then
1+7//4

_a-r(l+}’/#)> a

9
r r/K
2 E(l +}’/;1)

By (8) and (9), we have
N” >r/K
So,
rN*
aK

The proof is thus complete.

—1>0.
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3 Proof of the main results

In this section, by applying results in the
previous section, we provide the detailed proofs of
the main results illustrated in Section 1.2. First we
prove Theorem 1.1.

Proof of Theorem 1.1
equation are locally Lipschitz continuous for any
initial value (S(0),1(0),R(0)) € N”, there is a

unique local solution on t €[ 0,7,), where z, is the
[21]

Since coefficients of the

explosion time-*"!. To show this solution is global,
we need to show that r, =oo a.s.. Let £y, >1 be

sufficiently large so that S(0),1(0),R (0) all lie

1
within the interval [kf,/e()]. For each integer k>
0

k, define the stopping time

z, =inf{z € [0,7z.): S(t) & (%Je) or

1 1

where throughout this paper, we set inf(@ =co (as
unual @ denotes the empty set). Clearly, 7, is

increasing as k—>o0,Set r.. =limz,, whence 7.. <<
h—>oco

7. a.s.. If we can show that r., =oc© a.s. then r, =
oo and (S(z),I(z).R(t))ER’ a.s. for all t==0. In
other words, to complete the proof all we need to
show is that r.. =co a.s.. For if this statement is
false, then there is a pair of constants T >0 and «
€ (0,1) such that
Plz. < T} >

Hence there is an integer k,—=k, such that,

Pl{z, < T} >cforall b =k, (10)

Besides, for t<{r,, we can see

N @)
K

AN () < [r(1— YN () ]dt +

N
K

Consider the following auxiliary equation

o(1 YN ()dB(1).

de(z‘) =[A *Il(g))x(zf)](rdt +odB (1)),

11‘ (0) =N
(1D
From Lemma 2.1, we known that there exists

a unique continuous positive solution x (z) of

System (11) for any positive initial value 0 <N
(0)<<K and x (t) < K. Consequently, by the
comparison theorem of stochastic differential
equation we have

NG <x@) forallt =0 a.s..
Therefore, N (¢t )<<K <oo for all t==0 a.s.. Define a
C?-function VR, =R, by

V(S,I,R)=S —a *alniﬁ—

a

I—1—Inl +R—1—1InR .

The non—negativity of this function can be seen

fromu — 1+ 1Inu >0 V u>0. Using It 0’ s
formula, we compute

N*

K

dV =LVdr +6[(S—a — (1 —%) +

(I—D +(R—D]JdB),

where
a N

2
ao

2S*

N,
(S K)+

(1—%)(,851—61)+%+

1 ol
(I—E)(}/I—#R)Jr?—

N NN
(b—r  ON —pSI—puS —alb—r ) o+

I
aPI -+ pa ST =01 =S +5+y1 —pR —y -+
) a(S—J;Q)Z
o
pt Gt <

bK +0+ (1 +a)u +62<%+1>+[a3—<a+#>]1.

Choose aa;”, such that af— (a+x) =0, then
LV(S.I.R) <
BK +6+ (ta)y +o (5 +1D: =K,
Therefore,

“tk NT
J AV ()R N <
0

e AT a N2
JO a[(S—a—(l—g) K +
(I—1)+ (R —D]dB() +J'Mrkdz.
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This implies that, R, :

E[V(I(T} /\ T)yR(Tk /\ T)aN(Z'k /\ T)):I<

ek AT
VU@%R@%N@D+EJ Rdr <
0
V(I(0),R(0),N(0)) +KT. a2
Set O, =7, <T for k=Fk, and by (10), P(Q,)=.

Note that for every Q €2, , there is at least one of

1
S(Tk ’Q)ql(‘[k 99), R(‘L’k 9.9) equals k or —

, and

hence V(S(z, NT), [ (z;, ANT),R(z; ANT)) is no

1 1 1
less than # —1—1Ink or zflflnz—?f1+lnk.

Consequently,
VS, N D) I(c, N T). Rz, N T)) =

(b—1—1nk) A (%—1+ln/z).

Then it follows from (10) and (12) that

V(S(0).I1(0).R(0)) +KT =
Ellg, VS, N T Iy N T)sR(zy N TH] =

¢ [(B—1—1nk) A (%—lJrlnk)],

where 1,,,, is the indicator function of Q,. Let &

—oco lead to the contradiction

00 > V(S(0),1(0),R(0)) + KT =oo,
Therefore we have r.. =co a.s..

Remark 3.1 From Theorem 1.1, we can
easily see that the region H={(I,R,N)&ER., I
+R<N<CK} is a positively invariant set with
respect to (4).

3.1 Stochastically asymptotical stability

In this subsection, we prove Theorem 1.2 (i)
about the stochastically asymptotical stability in
the large of the disease-free equilibrium for the
stochastic model (4).

Proof of Theorem 1.2(i) Letx=I, y=R, =
=N —K. Then x =0, y=0, <0 and System
(4) becomes
dr =K +z—x —y)x —dx)dt +oxdB(1),
dy =(yax — py)dt +6ydB (),

<%z=(;zﬂf+z)axﬂt;zﬂf+zMBQ)

(13

Define the stochastic Lyapunov function R*—

ot 1,
V(I,y,z)—ﬁl—Fzyy +2a2 .

Obviously, V (x, y, 2 ) is positive-definite,

decrescent and radially unbounded. By Ito’s

formula, we compute

I,V:Kx—i-xZ*xz*xy*gf—ﬁ—xy*ﬁyz—l—
B Y

of LT ) o

yy K2 (K + =) J,z—l—aKZ

2

(K +2) =

1
<K_%>1'_1’2_?(1u_62>y2+

2
o

oK’

zg(K—O—z)*Lzz(K-ﬁ—z)(r*az).
aK

K
Based on the fact that R, :‘%él and K +2>0,

choose ¢ < min {4, r}, then LV is negative

definite. By Lemma 2.2, we conclude that under
the condition of R, :Fél , the trivial solution of

System (13) is stochastically asymptotically stable
in the large, i.e., the solution (0,0,K) of System
(4) 1is stochastically asymptotically stable in the
large.

Remark 3.2 From Theorem 1.2(1), If R, =
‘%{gl, ¢’ <<min{y, r}, then the solution (0,0,
K) of System (4) is stochastically asymptotically
stable in the large. It means that the disease would
die out when the noise meets certain conditions.
3.2 Asymptotic behavior

In this section, we show the asymptotic
behavior around the endemic equilibrium of the
deterministic model.

Proof of Theorem 1.2 (ii) Since E* = (1",
R*, N™*) is the endemic equilibrium of System

(2), we have

ﬁUV*—J*——R*)za,yI*—#R*:w,I
* I* (14)
Define
V({I,R,N) =

1 1 1 )
—(I—I"—I"ln— —(R—R™)?
5 n ) g )
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N N—nN*
[04

*len]\‘;\i)- :V1 +V2 +V3

Obviously, V is positively definite. By It o’s

formula, we compute

dV.=V, +LV,+LV;)ds Jra[%(l 1)+

%)]dB(t),

where

Ilvl :i(l - !
B I

12
I—-R)I 51>+2ﬁ61

1 ,
—(I—T")(B(N—1—R) —
B

 _ 1% _p+ 1,

BNT — 1" = R* )4l =

—(I—=I")Y—U—-1")(R—R*")+

* _ * lz *
(I—I")(N—N )+2,BGI

LV, =1<R —R*)(yl—#R)+io-2R2 =
Y 2y

(15

1 * o o * * iz 2
S (R=ROOT = uR = 71" 4R 4 5-6'R

<1—1*><R—R*>—§(R—R*)2+2i 'R

(16)
ngzNa*u—]\]]J g>—a1]+
]\27:20‘2(1*%)2:
T(N—N*>[r<1—%>—§‘vlj+
]\;;202(1—%)22
N* - %)7%77(17 aI*]Jr
]\;:202(1—%)2:

N*(N N* >[——<N N* >—a<N ]i]—l>j+
Nz*za <1——>7—N: —K+NN*><N N*)?* —
(N—N*>I—1I* >+NW (1—%>2<
N; —K+N+><N—N*>‘~’—

(N—N*>I—1I* >+N“" —%)2 an

where (14) is used in the above equalities. So,

LV=——1*") —%(R—R*)Z—

rN*
aK

12* izz N>
%O‘I +270-R+2a

( —D(N—=N*)* +

ot (1 —

— 17y — AR+ HRR —
Y Y

rN*
aK

1 . 1 ,  N** |
Loepx 0 L ope 2
Zﬂa +2ya + 22 °

(

—1)(N —N*)*+

. 1 1 2
— (=1 — —(p— —o" )R —
v 2 pn—o

ZR* )2 _
rN*
aK

1 po’ N** |

77«} . “’Z
T +y2#_6 o

Note that p

(

—D(N—=N*)*+

1 .
_?GZ>O and from Lemma 2.4,

*

aK

we have

—1>0, therefore,

dVé[—(I—I*)2—7()u——az)-

2

2p 7R*)27(VN

2/,(*0'“ aK

1 N*2

—’ *‘F* SR* 4
2B Y 2/1*0'

(R —

— DN —=N*)*+

a]dt+
o‘[i(I*I*)—F*(R*R*)R—Q—

N*

(N—N* )(lff)de(t)
Then

2y
2u—o

1 L1 1, i
J[<1—1*>2+7<#—?2><R— R+

rN*

(aK

— D(N —=N*)*Jds <

*2
R*Z +N

2
t
2#_6 20(6 .

V(O)ﬁL*BG I~ tTL*

J'GEE<1—1*>+—<R—R*>R+

N‘k

(N—N* )(1—*)]dB(s)

Let

M, J?[%(I—I*)+%<R—R*>R+
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N*

a

(N*N*)(lf%):ldB(z‘),

which is a real-valued continuous local martingale,
M,=0 and
(M.M), 10 , 1
t | ot 5 )+
N*

a

Lr-ror+ Y v-NoHa- N <
Y K

(LK K KT ot < oo,
B v a

Then by Lemma 2.3, we have

lim — =0 a.s..
t

t—>co

Hence
. 1 ! * N2 i _i 2
llrgiupTJO[(I 1) er(/z 20‘)
2/1 * N2
(R——"—=R™")*+
2/,(*0‘“
N (NN ds < K, as.,
aK
_ i * i M %2 i %2y 2
WhereKJ—(Zﬁl +}’2,{1_62R +2aN do”.
Let
1 1, PN *
M:mln{7(#—?a')y(— Ko +Dy,
then
. 1 ! * N2 2/" * N2
hmsup*J [(—I")+(R—-—"5R")*+
{00 t Jo 2/1*0'
K
(N —N*)"]ds < — a.s..

M
The proof is thus complete.
Remark 3.3 From Theorem 1.2(i1), If R,>

1, a<< 4 1 and ¢°< 2y, the solution will
o (=
- <1+7//x
oscillate around the endemic equilibrium of the

and the

fluctuation decreases with the decrease of white

deterministic model for a long time,

noise, which reflects the prevalence of the disease.

4 Numerical simulations

In this section, we make numerical

simulations to illustrate our results by using

Milstein’ s higher order method™’). We get the

simulation figures with the initial value (I (0),R

1
(0),N(0))=1(0.2,0.2,0.6) and time step 3[227,

the parameters in (4) are given by
K=2, r=0.2, #20.4, a =0.05, 720.3.
First, we take 3=0.3, 6, =0.3, 5, =0.8, in

4
this case, R, = €<1, and g = 0.375 such that

R,=1. We find that these lines in Figs.1 and 2 fit
very well, which implies that the disease-free
equilibrium E,=1(0,0,2) of System (4) is globally
asymptotically stable but too large ¢ affects the
stability. This result is consistent with the result of

Theorem 1.2(1).

2.0 ﬁ/— 0.20 0.4
,\LS,f '5045 ,\&3
S Zo.10 02

19 aosk‘ O.IK

0.5 0 0

"0 50 100 0 50 100 0 50 100

t t t
(a) 5=0.3
2.0 7/— 0.20 0.4
1.5 0.15 0.3
— |f _ _
S1.0 Zo.10 o2
0.5 0.05 &IKL
0 ok 0

0 50 100 0 50 100 0 50 100
t t !
(b) 0:=0.8

Fig.1 E,=1(0,0,2) of System (4) is globally

asymptotically stable, when R, <1

2.0 e 0.20 0.4
Lsﬁ 0.15 0.3
s | Z0.10 $02
1.0{f
{ 005 0.1
0.5 AN 0‘L
0 S50 100 0 50 100 0 S0 100
t t {
(a) 6,=0.3
zor7r4*4447 0.20 0.4
Ls(f 0.15 0.3
S1of £0.10 So02
0.5 0.05 Q]K
0 oNL 0

100 0 50 100 0 50 100
! ! t
(b) 0,-0.8

Fig.2 E,=1(0,0,2) of System (4) is globally
asymptotically stable, when R, =1

4
When $=0.5, it is easy to check that R, =€>1.

We choose ¢, =0.1, 6, =0.05, and the solution
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goes around the endemic equilibrium E* for a long
time, and the fluctuation decreases with the
decrease of white noise (see Fig.3. This result is

consistent with the result of Theorem 1.2(i1)).

2.0 — 0.4 0.4

15 0.3 0.3

5&0 S02 Z02
| 0.1} / 0.1
54 0

0.5 0

0 50 100 0 50 100 0 50 100
t t t
(@) 01=0.1
= 0.4
20 T 0.4
15l ( 0.3 03)
s | Soof | o2 |
Lo/ 01 | o1l |
0.5 ol 0oL
0 S0 100 0 50 100 0 50 100
t t !
(b) 3:=0.05

Fig.3 The solution of System (4) is going around

the endemic equilibrium of System (2)

5 Conclusion

Environmental noise can be described to have
a significant effect on the advancement of an
epidemic. For this study, we present the dynamics
of a stochastic logistic SIR model with an overall
force of infection under the noises of environment.
We suppose that the stochastic perturbation is a
white noise sort that disturbs the natural death
rate u.

Compared with the deterministic model (2),
we find that the intensity of the noise level plays a
critical role. We, therefore, summarise our main
results as follows:

(1) From Theorem 1.2(i), if R, <1 under
the small noise intensity case, that is ¢”<<min{yu, r},
the solution (0,0, K ) is found to be stochastically
This

stochastic model (4) has disease extinction with

asymptotically stable. reveals that the
probability one (see Figs.1 and 2). Particularly,
the noise intensity is zero when the models become
the deterministic model (2), thereby the disease is
extinct too.

() From Theorem 1.2 (ii), if Ry, >1, the

solution revolves on the endemic equilibrium E*

for a longer duration, while the variation reduces
due to the declining white noise (Fig. 3). This
means that the stochastic model (4) has endemic
equilibrium. Particularly, the noise intensity is
zero when the models become the deterministic
model (2), thus the disease is endemic, too.
Nevertheless, only the asymptotic behavior of
the model is discussed in this paper. In our
upcoming work, we will further discuss other
properties of the model, such as ergodic property,
the existence of an invariant distribution. And we
would build some model with time delay, age

composition and control item.
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