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0 Introduction

In this article, we study the asymptotic
stability of monotonic shear flows (U (y), 0)
under the linearized 2D p-plane equation in an
infinite periodic channel of periodic 27, T XR.

The B-plane equation is a classical equation in
geophysical fluid physics which describes the
motion of perfect liquid under the influence of
effect. The pB-plane

Coriolis equation in the

momentum formulation is
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where (1,2, y) ER XT XR, u=(u", u’),and
p:(t,x,y) ER XT XR —R are the velocity and
the pressure of the fluid, respectively. Here f:T
XR —>R is the Coriolis force. The strength of the
Coriolis force is usually assumed to be linear on the
latitude, i.e., f=fo TRy — yo).
about how to derive g-plane equation and physical
background can be found in Refs.[1-3].

(D

More details

The 2D p-plane equation in the vorticity
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formulation is

dwtu+Vo=p.¢, 1

U=V (D) et =0 =w,f

Here V' =(—9,,9.)s ¢ =/A 'w, and B is a
constant.

The study of

solutions is an important and active topic in fluid

(2)

linear stability of special
mechanics. It began in the nineteenth century with
Helmholtz,

Rayleigh, Kelvin. Rayleigh™’ studied the linear

the works of Stokes, Reynolds,
stability and instability of planar inviscid shear
flows using what is now referred to as normal
mode methods. In fact Rayleigh’ s argument
showed whether the operator’s spectral instability
or stability depends on whether or not an unstable
Meanwhile, Kelvin™!

eigenvalue exists.

constructed exact solutions to the linearized
problem around the Couette flow. Physically, the
inviscid damping can be understood as the transfer
of enstrophy to small scales Chigh frequencies in
frequency space) which yields the decay of the
velocity by the Biot-Savart law. The transfer to
small scales by mixing is now considered as a
fundamental mechanism intimately connected with
the stability of coherent structures and the theory
of 2D turbulence™ . Recently there has been great
progress on fluid asymptotic stability at the linear
level. Tung'® studied shear flows U (¢, y) which
satisfy U’'(z,y)=U"(¢) for the viscous p-plane
system. Lin and Zeng™ used the explicit solution
to establish inviscid damping in a finite periodic
channel. Zillinger™ applied the ghost weight
method to get inviscid damping in both finite and
infinite periodic channel for monotone shear flows.
And recently Wei et al.l?"'V

methods to establish inviscid damping in the finite

applied spectral

periodic channel for monotone shear flows. The
nonlinear asymptotic stability problem for Couette
flows under the two dimensional Euler equation in
R X T was first proved by Ref.[12] and their
methods were applied to many other models see for
instance Refs. [ 12-14 ]. Bedrossian and Masmoudit'>

pointed out it would be a very interesting question

to prove the decay of the p-plane model at the
nonlinear level. In this paper, we consider the
linear behavior first, which might give some clues
to understanding the nonlinear problem raised by

Ref.[12].

1 Main results

Linearizing the vorticity equation (2) around
the Couette flow yields the following equation:
diw + y9.0 =0, ¢ |
w=Agu=V"' g0t =0 =w,]
For the Couette flow, we have
Theorem 1.1
(3) with initial data w;,, € H* for s =3 satisfying

3

Let w (z) be a solution to Eq.

Ja);,,dxdy =0. Then we have

H Win H Hs

(t

where all implicit constants are independent of ¢

| Pogu ) [+ [ur @) ], =

’

1
and Pﬂ,f:f—ﬂj f(x.y)dx.

For general monotonic shear flows, the
linearized equation for (2) is

M+U@WM—U%w&¢:@Mﬂ

w=Agu=Y" ¢, - WD
w(t=0) =w, J
The main result of this article is
Theorem 1.2 Let « () be a solution of Eq.
(4) with initial data w, € H® for s = 3. If there

—28lpl+D

exists a universal constant ¢, <X —e such

n
that | U (y) — 1 [ ye < ¢» then we have
inviscid damping

| Poyu ) ||+ u ()], =

1
W | Hs )
() H w | H (5
where all implicit constants are independent of ¢
1 :
and P, f=f — fJ‘ f(x,y)dx.
2r

Theorem 1.1 is proved by explicitly solving(3)
via Fourier method. With the ghost weight method
as Refs.[9,15], we will prove Theorem 1.2 by
regarding the 0.4 term as a perturbation for linearized

Euler equation. The key is to construct a suitable
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weight which appropriately compensates the loss of
derivatives in the energy argument.

Notation 1.1  We use the notation f =< g
when there exists a constant C>>0 independent of
the parameters of interest such that f<{Cg. f~g

means there exists some universal constant C > 1
1
such that ?f < g << Cf. The vector norm |

(ks | =Ik| +1]y] is used. For a given scalar or
vector v in R”, we denote
(o) =+ v [PV

The x (or 2) average of a function is denoted by:
1

(f) = ijf(r ,y)da = f,. The nonzero frequency
T

projection is denoted by P, f=f—f,.
2 Proof of Theorem 1.1

By the change of variables
f(t,z,y) =w(t,z +ity,y) =w(t,x,y)
and ¢ (tsz,y)=¢ Utz tty,y)=¢ U, x,y),(3)
can be rewritten as
a.f =ﬁaz¢’}
D=1
where A\ ¢ =0..¢ + (0, —19.)" ¢. Using Fourier

(6)

transformation we obtain f and ¢ in frequency

space as follows:

~ “t 14
(tsksn) =win(k,n) J ,Z—)d
/ ) =w ﬁeXp[ﬁok“—i—lv—fkk 7]
D)
- _ ]?(t 9]€9ZZ)
¢tk B g —tk |’ ()
1
From (7) ~(8) and the bound [ p——
R 7]7
SS}Z; which holds for any non-zero integer %,
L, ‘
er(BIBIHD S

Here we use

’ at(l) <k977>‘ 2 o o 9
Jg / ® (t’k"'?)w(t,k,)?) (1 g )(Za?? E)(E [/Q) ¢([9k9$))d$

) , [ (kL&) ~
s+1 2 2
J“<77 S> (1 g )<Z977 S)(S tk) (fakvé) (t,k,g)sﬁ(l’k’g)ds

% 49 %
we have
‘ f\([yk 777) |2 1z
0 s—2 = ———— 1 d =
s e = (] 37T )
N
(gyz O e
Then Theorem 1.1 follows from
u'=—0,t,x,y) =—0,((t,x —ty,y)) =

((8), *l‘a,,)¢)(l‘r’1‘ *ty»y)»
w (tsxsy) =9, ¢, ,x,y) =
9. ((p(thx —ty,y)) =0, ¢)(xsx —ty,y).

3 Proof of Theorem 1.2

Now we turn to the proof of Theorem 1.2, We
will use the ghost weight method introduced in
Ref.[16].

Before we prove Theorem 1.2, we give two
lemmas.

For [ g =1 [l yees + 116 [ s
sufficiently small, there holds

Lemma 3.1

ow L

w w

ow [

w W

-

Hs

Hs

Proof The key ingredient is the identity:
Arg=f+U—g")@,—1d.)"¢ —b(d, —13.)¢.
Direct calculations yield

dw /AL
w

w

Hs
ow 1 ‘ ‘
‘ [T (1 — g (@, — 10" $)
w w
[B.w 1 w1
‘ @2y +‘ |22 — (o, —t0)¢)
w w Hs w w
L1+‘ |9 if
w w

L, can be estimated as follows

_|_

Hs

Hs

+L,.
Hs

<

L2y

L2 k.y

a[w (t’k 77]) < <7]7$> 4/a[w (t’k 75)’
w w
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1 8181+ Dx 1 Therefore we get
(toksp) (t, k&)
w ’ 977 w ’ 95 8,cu AL(}S =
Then Young’ inequality gives o |m
‘ , o
L, < e || 1— g2 || s g M S | 1 — g% || e ,a) Azgﬁ +
w w Hs
For L, we can get a similar estimate
e SIED | g || diw Az ow
Qiw N\ ¢ e 7](
L, < &80 || b || e . L w
w @l Hs Hence we conclude that
oiw Ar¢ [Qw 1
e ~ T f .2 w(S1f N
w Hs 1 —er@lamy H 1*5,’) H Hs+3 — er@IATD H/J H Hs+3 w

Lemma 3.2 For || g>—1 || s + [ 6 || oss
sufficiently small, there holds

H¢|‘11x2~<>2‘|f”11
Proof Since
1 <772>
= s k 0.
k: | g —tk |* (t)? 7
Hence we deduce
¢l me =l ALglln.

(t >Z
Combining Lemma 3.1, we obtain Lemma 3.2.
Proof of Theorem 1.2
Step one Change of variables
It is natural to introduce the following change
of variables:
z=x—tU(y) (9
v=U(y) (10)
By choosing ¢, small enough, || U —1 | ;s <<
¢ implies U is strictly monotone. Hence by the
implicit theorem, this coordinate transform is
always invertible and we can always solve x,y in
terms of (2,v): x=x(t,2,v), y=y(v). Define
the new variables
f(t,z,v) =w(t,z +tU(y),y) =w(t,x,y),
p(tozyv) =¢,z+tU(y) ) =¢,2,y),
then (4) becomes
9. f—b(v)o.¢ = 0.¢,
Lp =1
where N\ =0..¢ + (g (v))* (8, —td.)"¢ T b
(v)(@,—td. )¢ b(v) =U"(U '(v)) and g(v) =
U (WU '(v)).

Step two

1D

Toy model
As shown in Refs.[9,15], we consider the toy
model for (11)

2,.8=PB—b)d.¢, } (12)

g+ (3, —13.)"¢ =g
for some b,8€ R . The solution to (12) satisfies

- [ B=0b Il k] | -
t W Ry g— s R s <
ol g | Gakap k2+|7]—[/2|2‘g‘(tk77>
; .
‘ 2 ‘ ‘g ‘ (Z‘ak,"])
L el

Back to (11), in order to absorb the increase,

we introduce a multiplier w:

Qw (L k ,77) = (8| B [+ 1D w(t, /”,7]) 1
14+ L —y 2 ‘

k
w0k = 1.k #0 J
(13)

It is easy to see e "8 "V <, 1<1. Therefore

we immediately get
< | f@ | u
(14)

Variable coefficient estimates

I F | u =, f(t)

(t V)

Step three

For the solution to (11), direct calculations show

1d -1 2
e @D I =
*Zj eap® | f 1dy+
(' fow "0, fHu. =CK, + L (15)
where the CK, term is
CK,——| [0« 1
w w Hs
For the L term we aim to get
<2‘ fow 1 (16)
3 w w

If (16) holds, then we can absorb he CK,

term
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H 49 &

and thus obtain

1
7f < H @ in H Hs
w Hs

Il a =,

In order to prove (16), the key point is that one
can approximate A, ¢ with /A;¢ in a rather

specific manner, i.e.,

L [=] ('t V)frw " (o —b(v)D.¢u |<
1‘ 2w Aug|
8 w w Hs
1 Oiw AL
— || 4 g || [ =EE 17
8 | B |+1 H D H H o ® .

where N\ ¢ =09..¢ (0, —19.)°¢.
Combining Lemma 3.1 and (17), we see for

| g?—11 goss + | 6 || 119+ sufficiently small,
TS~ o, VO flln < [l on
Step four Final conclusion
By

u'(t,x,y) =

— U (y») (8, —ta)¢) (1 ax —tU(y) . U(y)),

w (t,x,y) =0.4) (., x —tU(y) ,U(y)),

H U’(y) — 1 HH6 < >

Theorem 1.2 is implied by Lemma 3.2

w2 <o VgS(t) o =< | wall ws s

[w |l = | V(1) [ = @7 | will ns.

Hs «

and the assumption
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