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Features selection for video smoke detection using random forest
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Abstract: Using the random forest algorithm, a video smoke detection method with features
selection was proposed. The method first extracted four original smoke image features including
color features in RGB space, wavelet high frequency sub-images, multi-scale local max
saturation, and multi-scale dark channel to input the random forest (RF). Then it utilized haze
image formation model to make the synthetic smoke images from non-smoke images and
partitions these images into blocks as the samples for RF. Thirdly, it trained RF to get the
selected features from the original features and used support vector machine (SVM) to get a
classifier which recognizes the smoke blocks and the non-smoke blocks. And then the smoke
region candidate can be extracted from video images by the classifier. Finally, the method
analyzed the detected smoke region with the features of the growth rate and the perimeter to area
ratio to make the final decision on video smoke detection. The experimental results show that the
proposed method can detect the smoke timely and give a fire alarm with a lower false-alarm rate.
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0 Introduction

Fire accidents usually cause economic and
ecological damage as well as endangering peoples lives.
So it's very necessary to send a fire alarm before the
fire breaks out. Since smoke is a forecasting sign of
fire, vision smoke detection method are an effective
way to issue fire alarms.

Vision smoke detection methods generally consist
of two steps: Extracting the smoke features and
determining the smoke regions. The first step, the
extracted features are always the static features and
dynamic features in video smoke images. But the in the
second step, most of the conventional smoke region
decisions depend on the empirical preset threshold. For
instance, by extracting the RGB color features and
analyzing the motion characteristics of smoke regions,
Chen et al.l proposed a I-step method to detect
smoke, but the method is excessively dependent on the
smoke color, the set thresholds are dependent on
experimental statistics. Téreyin et al.'”) proposed a
real-time smoke detection method based on smoke
image wavelet transform, and the method also depends
on empirical thresholds. Alejandro, Yuan et al."** used
the block motion orientation model to estimate the
motion orientation of the smoke in video and proposed
a smoke detection method, but the method has a high
complexity by computing the accumulative motion
orientation, and the thresholds of smoke motion
direction estimation are also dependent on experimental
statistics. These smoke detection methods are all
empirical thresholds based, and this leads their lack of
universal applicability. Because of this drawback, more
and more researchers using the machine learning
approaches to detect smoke, and treating the smoke
detection problem as a smoke recognition problem.

Many machine learning approaches based smoke
detection methods have been proposed. By extracting

the static and dynamic features of smoke in video, Xu

et al.”) proposed an automatic fire smoke detection
method by training BP neural network. Yang et al.™™
proposed a visual based smoke detection method using
SVM. They trained the SVM with extracted features
of the

distribution and the changing irregularities of the

changing unevenness of smoke density
smoke contour to get a smoke classifier to detect
smoke. Horng et al.”? used the features of the HSI
components of fire to determine fire pixels and non-fire
pixels with BP neural network to get fire area

1.") proposed a four-stage smoke

candidates, Tung et a
detection algorithm by training the SVM to get a
classifier to detect smoke. The smoke detection
methods mentioned above are all based on the machine
learning methods of BP neural network and SVM. By
training the BP neural network and SVM with
extracted features one can aim to detect smoke and
reduce the dependence of experimental threshold.
However, these methods cannot analyze the extracted
smoke features automatically and need lots of videos to
get smoke and non-smoke samples. Besides, it is
difficult to get the pure smoke samples.

In order to automatically analyze the extracted
smoke features, and reduce the complexity and
difficulty to get training samples, we propose a video
smoke detection method with random forest features
selection. The method consists of five steps: D
Extracting four original features to train RF (random
forest) : RGB components, the wavelet sub-images,
dark-channel and saturation of smoke image.
@ Synthesizing the smoke images with non-smoke
images, and partitioning all the images into blocks as
samples of RE. @ Training the RF to select features
from the original features. @ Training SVM with the
selected features to get a classifier. @ Extracting the
smoke region in video with the classifier, and analyzing
the smoke growth rate and the perimeter to area ratio

to complete smoke detecting and according to the set

sampling termination parameter, we can get a fire
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alarm.

1 Smoke features extracted for RF

1.1 Color features in RGB space

Generally, the color of fire smoke depend on the
fuel categories and combustion adequacy. However,
smoke of many combustible materials usually exhibits
a grayish color, and in RGB color space, the RGB
components of smoke images are approximately close
to each other'”. By analyzing the smoke color and the
transform between RGB color model and HSI color
model, we can roughly determine the smoke pixels
through the rules that follow:

ri:Rta=G+ta= B*+a
ro:L, <<I <L,
ry:Dy <I< D,
if: (r1) and {(,) or (ry))
smoke pixel;
else: o
non-smoke pixel
where R .G . B donates the RGB components in RGB
color space, respectively. I is the intensity of smoke
images. a,L,,L,,D,.D, are the given thresholds.

Chen et al.""" extracted the smoke pixels by using
these rules to detect smoke in video, so the RGB
components of smoke images can be extracted as a
smoke characteristic. And we extract the smoke color
features in v, =[R.G,B].

1.2 The wavelet sub-images

In general, smoke is semi-transparent. It can
obstruct the textures and edges in the background of
an image. Since the edges and textures contribute to
the high frequency information of the image, energies
of the wavelet high frequency sub-images drop due to
smoke in an image sequence. And this can be a feature
for detecting smoke.

In Fig. 1, we get the wavelet sub-images of a
smoke image and a non-smoke image. As shown in the
sub-images, compared to the non-smoke image, the
edges information of the smoke image is decreasing and
the textures and edges of the smoke image are more
smooth and fuzzy because of the smoke. So, we can

utilize the wavelet sub-images to detect the smoke,

and the wavelet coefficients can be a characteristic of

smoke. And we extract the wavelet coefficients as

another smoke feature in v, =[cA .cH ,cV,cD].

ki
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non-smoke image
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the wavelet sub-images of
smoke image

non-smoke image

Fig.1 The wavelet sub-images of smoke
image and non smoke image
1.3 Dark channel features

The dark channel features are a kind of statistics
of outdoor images without smoke and haze. It is based
on a key observation: most local patches (except the
white wall regions and the sky regions in image) in
outdoor non-smoke and non-haze images contain some
pixels whose intensity is very low in at least one color
channel(R .G ,B) , and the intensity is sometimes close
to 0. According to this kind of statistics, we can
extract the dark channel of the smoke image to be a
smoke characteristic,

In order to describe the dark channel clearly, we
first get the smoke and haze image in formation model
as follows:

I(x)= J(t(x) +AN —(x))
()= e™", 1 € 0,

where I is the observed intensity, J is the scene

&)

radiance, x is the pixel of image., A is the global
atmospheric light, and ¢ is the medium transmission.
t(x) donates the portion of the light that is not
scattered and reaches the camera, and is dependent on
the distance of the objects to the camera d (x) and the
scattering coefficient M%7,

In Ref.[ 9], the dark channel of the non-smoke
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image is deflined as [ollows:
Je*(x)= min ( min J°(y))

YEQ) € R.G.B) (3)
J >0

where ¢ donates one of the components of R,G, B,
J®™* is the dark channel, 2 (x) donates a local region
in the image.

As shown in Egs.(2) and (3), we can compute
the dark channel of the smoke image as follows:

[ (x) = J*"*()t(x) +AA —t(x)) D)

In Eq. (4) , J** is close to 0, when there is
smoke in the image, ¢ is decreasing due to the
scattering of the smoke particles, and ¢ will be 0 as the
smoke is very dense. On the other hand, A is almost
environment lighting and it is approximately close to
[1, 1, 1] Cassuming the image is normalized).
Therefore, the dark channel of smoke image I%™ is
brighter than the dark channel of non-smoke
image J %%,

According to Egs. (2), (3) and (4), the dark

non-smoke image Multi-scale dark channel D1

of non-smoke image
smoke image Multi-scale dark channel D]

of smoke image

channel of the smoke image is generally brighter than

the dark channel of the non-smoke image. We can

define the multi-scale dark channel as follows:
D,(x;I)= min min I°(y)) (5)

vEQ,(2) c€{R,G,B}
where 2, () denotes the » X7 region of the image, ¢

denotes one of the components of R,G,B.
In Fig. 2,

channel D,, D,, Dy, of the non-smoke image and the

we calculate the multi-scale dark

smoke image respectively. We find that the multi-scale
dark channel of the non-smoke image is darkes than
the smoke image and this becomes more obvious as the
scale increases. So, the multi-scale dark channel can be
used as a feature of the smoke image, and we extracted
the multi-scale dark channel feature in vs=[D,,D, |.
1.4 Saturation features

The saturation of smoke images can be defined as
follows:

min I°(x)
¢€(R.G.B)

Slas;l)=1—

Multi-scale dark channel D4
of non-smoke image

Multi-scale dark channel D4
of smoke image

max [°(x) )
cE(R.G.B)

Multi-scale dark channel D10
of non-smoke image

Multi-scale dark channel D10
of smoke image

Fig.2 The multi-scale dark channel of smoke image and non smoke image

As shown in Eq.(2), we can get Eq.(7) by both

sides of differential of equation:

MIvIG | =
i vl < Iviwel ™

Therefore, compared to the saturation of the non-
smoke image, the saturation of the smoke image is
decreasing. We define the multi-scale local max

saturation as follows:

min I°(y)
S, (x3;]) = max (1_WJ (8

y&hr o max [°(y)
c€(R.C.B)

where 2, (x) donates the » X region of the image.
In Fig.3, we calculate the multi-scale local max
saturation S;, S;, S), of the non-smoke image and
the smoke image respectively. We find that the multi-
scale local max saturation of the non-smoke image is
more white than that of the smoke image and this
becomes more obvious as the scale increases. So, the
multi-scale local max saturation can be used as a
feature of the smoke image, and we extracted the

multi-scale local max saturation feature in v, =[S, ,

S, .
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non-smoke image Multi-scale local max saturation S1

of non-smoke image

Multi-scale local max saturation S4 Multi-scale local max sawration S10

of non-smoke image of non-smoke image

smoke image Multi-scale local max saturation S1

of smoke image

Multi-scale local max saturation 84 Multi-scale local max saturation 810

of smoke image of smoke image

Fig.3 The multi-scale local max saturation of smoke image and non smoke image

non-smoke video image 1

partitioning blocks from

image | image 2

non-smoke video image 2

partitioning blocks from

partitioning blocks from

image 3

Fig.4 The non-smoke block samples in partitioned non-smoke video images

2 Sample preparation. feature selection
and SVM training

Although we have extracted the smoke features,
we do not yet know which feature is important or not
really important. To determine the smoke [eatures we
need, we analyze the extracted smoke features with
RF. find the necessary features and discard the
redundant features. As with the found necessary
features, we can train the SVM to get a classifier.

2.1 Preparing training samples

The purpose of training the samples is to get the
smoke region in video smoke images. In this paper, we
extract the smoke regions by the block-matching
method. Therefore, the samples we prepare to get are

the blocks in video images, i.e. the samples are smoke

block samples and non-smoke block samples.

For non-smoke block samples, we can get the
samples by partitioning the non-smoke images into
blocks. As shown in Fig. 4, the non-smoke block
samples are the partitioning blocks [rom video non-
smoke images.

For smoke block samples, it is difficult and
impractical to get the samples from the video images
directly. In this paper, we acquire the smoke block
samples by synthesizing and partitioning smoke images
from non-smoke images. And the synthetic smoke
images can be obtained by using Eq.(2) based on two
assumptions: (Dimage content is independent of scene
depth or medium transmission, i.e. the same image
content can appear at different depths in different

images; @depth is locally constant, i.e., image pixels
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in one small patch tend to have similar depth values. smoke images as shown in Eq.(2).
With these two assumptions, assuming A =[1,1,1] In Fig.5(a) and (b), the synthetic smoke images
(the image is normalized) and selecting the random at different values of ¢ are given.

values of + (+ € (0,1)), we can get a series synthetic

non-smoke image 1=0.05 =000

1=0.20 t=0.30 t=10.40
() = {0.05,0.1,0.2,0.3,0.4)

non-smoke mage =0.50

1=0.70 =080
(b} =10.5,0.6.0.7.0.8,0.9}

Fig.5 The synthetic smoke images in different ¢

As shown in Fig.6. the synthetic smoke images regions-'?. So we can get the smoke block samples by
are more uniform than the real smoke images. This is partitioning the synthetic smoke images into blocks.
because we assume the local regions have the same In Fig. 7, the smoke block samples are the

depth and the same medium coefficient ¢. This L . .
partitioning blocks from synthetic smoke images.

evenness of smoke cannot reflect the characteristic of

) ) 2.2 Features selection using random forest
real smoke images. However, if the values of ¢ are

randomly selected and ensure a certain quantity of ¢ With the block samples got from partitioning
values, the synthetic smoke images could reflect the images and the features in Eq. (9), the necessary

features of real smoke images in small block features can be selected by training the RF.
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the real simoke image

the synthetic smoke image
in=0.20

the synthetic smoke image
in=0.05

the sy'ntizet.ic smoke .image
in =030

the synthetic smoke image
in =010

the synthetic smoke image
in =040

(a) =10.05,0.1,0.2,0.3,0.4}

real smoke image

the synthetic smoke image

the synthetic smoke image
inf=0.50

the synthetic smoke imuge

the synthetic smoke image
in =060

-—

the synthetic smoke image

in=0.70 in7=0.80 i 1=0.90
(b) =10.5,0.6,0.7,0.8.0.9}
Fig.6 The synthetic smoke images and the real smoke image
v, = [R,G,B] blocks, and finally get 40 000 pieces of 8 X8 blocks as
v, = [cA,cH,cV,cD] the smoke block samples as well as positive samples.
v, = [D,.D,] ) The features input RF are v = [v,s vss vss vy |
v, = [S1:S,] (Adjusting the feature sequence for a better analysis).

In Eq.9 the wavelet features v, are extracted from
the wavelet transform of luminance (Y) images. and
the filters used are LPF=[0.25,0.5,0.25] and HPF=
[—0.25,0.5,—0.25].

To train the RF", we capture non-smoke
images from 10 videos, and partition the images into
120 000 blocks for the non-smoke block samples, each
block size being 8 X8 and marked as negative samples.
Simultaneously, we synthesize 100 frames of the

smoke images and also partition the images into

Inputting the marked samples to RF for training and

the feature selection process is as follows? ;
Step 1 Inputing the training samples: N and the

extracted features: M ;

Step 2 Using GINI by coefficient to make a
decision tree by random sampling N and M ;
Step 3 Repeating step 1 to make K trees to

constitute the forest;
Step 4 Calculating the classification error of out-

of-bag data for each tree:
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Fig.7 The smoke block samples in partitioned synthetic smoke images images

error OBB, ,error OBB, ,+**,error OBBx

Step 5 Randomly changing the values of x; (x;
donates the " attribute of M), re-calculating the
classification error of out-of-bag data:

error OBB; ,error OBB; ,+++,error OBBj

Step 6

attribute x; :

Calculating the importance of feature

o error OBB;j- error OBB;
Imp™ = Z K

step 7 Repeating step 6 to get the importance of
all attributes and sorting in Imp, then outputing the
most important features of the first m. The selected
feature is in Fig.8.

As shown in Fig.8, by training the RF with the
samples and the extracted features, we get the sorted
features with feature importance. And in our
experiment, we select the first m most important

features to be the needed feature. Here, m is the

values of [ /M | and M is the number of feature
attributes.
2.3 Training SVM classifier

Training SVM with the partitioned block samples
and the selected features from RF, we can get a
classifier to recognize the smoke blocks and non-smoke
blocks.

To train SVM, we select 30 000 non-smoke block
samples (negative samples) and 10 000 smoke block

samples(positive) as the training samples, and select

90 000 negative samples and 30 000 positive samples
as the testing samples. In addition, we choose the

function ( RBF). K,

radial basis (xs x;)

exp(—w) as the kernel function of SVM.

26°
Then, we train the SVM and get the block classifier by

N
Fla) = sgn(Za;Kr(r,x,-) —0) (10)

i=1
where x; are the support vectors, a, is the parameter
of hyperplane.

The training and testing results are in Tab.1. As
shown in Tab.1, the detection rate of training smoke
samples is 91.3% and the detection rate of testing

is 75. 8%. Because of the two

assumptions in synthesizing,

smoke samples
the synthetic smoke
images cannot completely reflect the information of
real smoke images, and this leads the overfitting
phenomenon in training SVM,

Tab.1 ‘Training and testing results of SVM

Training Testing
Samples Samples

Positive samples/
10 000 30 000

smoke samples

Detection numbers 9 130 22 740
Detection rate 91.3% 75.8%

Negative samples/
30 000 90 000

non-smoke sample
Elimination numbers 24 480 69 495
False rate 18.4% 22.8%
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Fig.8 The features selected by Random Forest

3 The smoke regions extracted by classifier

According to the classifier obtained from training
SVM, we can detect the smoke regions in video

images. And the extracted smoke regions are shown in
Fig.9.

CarLights]:1 CarLightsl:2

CarLighis1:3

Carlighisl:4 CarLighis]:3

CarLights]:1 CarLights1:2 CarLights1:3 Carlights]:4 Carlights]:5

sWastcBasket:2

sWastcRaskel:2

i

Fig.9 Smoke regions extracted by SVM classifier

sWasteBasket: | sWasteBasket:3

sWasteBaskel: | sWasteBasker:3

As shown in Fig. 9, for non-smoke video
CarLightsl, hardly any none smoke regions are
extracted, and the classifier shows good performance
on this video smoke detection. But for the smoke video
sWasteBasket, although the smoke regions can be
extracted by the classifier in some way, some non-
smoke regions in the video are also extracted as smoke
regions, and there are always the white-wall areas

being misjudged in the video. Actually, there are two

reasons for the misjudgement between smoke regions
and white walls, The first one is in training SVM, the
Dark Channel features are involved to get the
classifier, and the smoke regions and white walls have
similar characteristics in video images about dark
channel. The second one is that the smoke block
samples used in training are synthesized under a very
strong assumption which assumes the parameter A =
[1,1,1], and this makes the smoke block samples
seem to be as white as the white wall areas in the video
Therefore, the hardly

avoidable. Fortunately, we can solve this problem

images. misjudgement is
below by analyzing the Convex Degrees and Growth

Rate of extracted smoke regions.

4 The convex degrees and growth rate of

the smoke regions

Airflows make the smoke diffused and disorder
the smoke motion, which leads to the irregularity and
the growth of smoke regions. We can define two
parameters to describe these two characteristics.
According to the Iso-perimetric Theorem. when the
perimetric is given, the circle has the maximum area of
all shapes. So, we can define the convex degrees in Eq.
(11) to describe the contours of the smoke region. And

obviously, the growth rate deflined in Eq. (12) can
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reflect the growth of the smoke region.

»?
dra’

Pt = pe =1 an

where p* is Convex Degrees, p is the perimetric, a is
the area, i.e. p“ is the square of perimetric to area
ratio, and obviously, p“=1. We can utilize p*.

) s, +At —s,

T Uran—i a»
where g” denotes the smoke growth rate, s,,s,4, 1S
the area of the smoke region in time ¢ and ¢ + Az,
respectively.

Utilizing the classifier training from SVM, we can
extract the smoke region M,, (x,y) [rom the (z,)™
frame image. And with the dilation operation of
M, (x,y), we can easily get the outer boundary of
the corresponding smoke region. Using M{" to denote
the outer boundary, defining N, as the number of
smoke pixels of smoke region M,, (x,y), and N{* as
the number of smoke pixels of the outer boundary
M (x.y), we can calculate the convex degrees and
the smoke growth rate as follows:

(N2

pu = 47_er7

1
gn = X (N, —N,»)

ti —U;

(13)

where p¢ denotes the Convex Degrees of the (z;)™
frame smoke regions. g;, is the smoke growth rate
from the (¢;,)" frame to the (z,.,)"™ {rame, and
LSt <ty <, .

A single frame Convex Degrees and two
successive sampling frames growth rate of the smoke
region is haphazard for smoke detection, and we
cannot confirm the existence of smoke in the video just
with the results of p¢ and g}, , To detect the smoke
accurately, we sample the video frames in a certain
sampling period, i.e. we sample the (z;)™, (z,)™,+,
(t,)™ frames in the video. Here, the value of n is

depended on the frequency of p§, >th,, and g, >th, ,

the process is shown as follows:

sl: ¢, = count(ps, >th,), i= (1,2,++,n)
s2: ¢, = count(g;, >thy), i= (1,2,++,m)
if (¢, >¢) and (¢, > ¢) and (¢, <1.,40)
3 save £, ,» stop sampling, smoke exist;
b else
no smokes t, = fqideo
as
where th,, , thy, , ¢ are threshold values and depend on
the statistical data of experiments. 7.y, is the duration
of the video. ¢, is the frequency of p{, >th,,, and ¢, is
the frequency of g/, >th,,.

In Eq. (14), we define ¢, as the sampling
termination parameter ( or sampling termination
frame). When there is smoke in the video, getting ¢,
means the end of sampling, and correct detection of
smoke. When there is no smoke in the video, ¢, lasts
until the video is over. The deflined sampling
termination parameter is an important parameter for
giving a fire alarm, especially in real-time situations.

Detecting smoke successfully doesn't mean getting
a fire alarm. A sudden disappear once smoke or flashes
of artificial light may cause false alarms. So we can use

t, obtained in Eq.(14) to calculate the average convex

degrees and the average growth rate as follows:
1 n—1
X 2
1 n—1
as = T X Zizlgz

where a, and a, are the average of convex degrees and

a, =

~
~
|
—

15

growth rate, respectively.

if: (a, > th) and (a, > thp)

get fire-alarm;

16>

else

no alarm.
where th. and th;, are threshold values and depend on
the statistical data of experiments, Based on the above

conditions in Eqs.(13)~(16), we can detect smoke in

the video and get a fire alarm.

S Experimental results

The proposed method was implemented on a

personal computer with an Intel(R) Core(TM)i3-3220,
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3.30 GHz processor and detected smoke in offline video
from http://signal. ee. bilkent. edu. tr/ VisiFire/ Demo/
SampleClips. html. In our experiment, the threshold
values of ¢, th, and th;, range from 4 to 10, 2 to 8 and
0.5 to 0.8, respectively. And the smoke detection and
fire-alarm results are in Tab.2 and Tab.3.

In Tabs.2 and 3 where ¢, denotes the sampling
termination parameters, a, is the average of convex
degrees, a, is the average of growth rate, f ke
denotes detecting smoke or not, f. denotes fire-alarm

or not, and .., is the time(or frame) getting fire-

alarm.
Tab.2 The values of the parameters in
smoke detection and fire alarming
Video No.  Video Names a, a, 1,
1 CarLightsl 0.0289  0.001 0 155
2 CarLights2 0.0131  0.000 8 160
3 sBehindtheFence  3.277 1 0.62 50 32
4 sBtFence2 4.990 3 0.663 6 11
5 sEmptyR1 3.2771  0.778 6 81
6 sEmptyR2 2.0929  0.530 6 98

7 ShorterlsyamNight 0.628 6  0.026 0 255

8 sMoky 8.2201 —0.062 9 5
9 sWasteBasket 2.462 0  0.749 6 14
10 sWindow 2.117 6 0.561 5 20

Tab.3 The results of smoke detection and

fire alarming of video images

Video No.  Video Names S smoke Sie t dlarm
1 Carlightsl no no ——
2 CarLights2 no no ——
3 sBehindtheFence yes yes 32
4 sBtFence2 yes yes 11
5 sEmptyR1 yes yes 81
6 sEmptyR2 yes yes 98
7 ShorterlsyamNight no no ——
8 sMoky yes no ——
9 sWasteBasket yes yes 14
10 sWindow yes yes 20

As shown in Tabs.2 and 3: @ The detection

results of videos of CarLightsl, CarLights2 and
ShorterlsyamNight show no smoke detected in the
videos, as is the case of the actual situation. And the
sampling termination parameters of these videos are
either their total number of frames or the maximum of
the sampling frame(In our smoke detection, we set the
maximum sampling frame at 255 for a real time
detecting situation and when this maximum is
exceeded, the sampling frame is re-initiated and smoke
detection is restarted). Theoretically, the values of a,
and a, are 0 for these non-smoke videos, but because
of the assumption in A =[1,1, 1] results in some
errors in the classifier and renders a, and a, close to 0
but not exactly 0. Fortunately, this has no big impact
on the video smoke detection. @ The smoke dection
result of the sWoky video shows that there is smoke in
the video but no fire-alarm is given. Because there is
smoke existing in the video at the very being, smoke is
detected in the 5th frame(at about 0.33 s, the frame
rate of the video being 15 frames per second), but
since the value a, is so close to zero and also a negative
value, this indicates that the smoke regions are not
growing but shrinking, so there is no fire-alarm given
in the video smoke detection. @ The videos that give
both smoke and fire alarms include videos to 6 and 9 to
10. In these videos, smoke is detected and a fire-alarm
is issued timely, the fire-alarm sampling frame being
the same as the sampling termination parameters ¢,.
For instance, the video of sWasteBasket detects smoke
in the 14th frame(about 1.4 s, the frame rate of the
video being 10 frames per second) and issues a fire
alarm. This well meets the requirements for real-time
smoke detection.

In addition, in offline video smoke detection, the
sampling termination parameters ¢, is the sign of early
fire alarm. The smaller the value of ¢, , the earlier a
fire-alarm is issued in the videos. In real time video
smoke detection, ¢, could be the sign to initialize
sampling time. If ¢, is too large, there could not be
smoke in the videos from time O to ¢, , and then, we
initialize the original sampling time to 0 and restart

smoke detection,
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6 Conclusion

In this paper, a video smoke detection method
with RF features selection was proposed. By selecting
the features and analyzing the convex degrees and
growth rate, we were finally obtained the smoke
detection and fire-alarm results. And the experimental
results show that: (D The proposed method can detect
smoke in video images and get a fire alarm in an
effective way, and the defined sampling termination
parameter can reduce the false-alarm rate and provide
support for real-time video smoke detection; @ The
method of synthesizing smoke images decreases the
difficulty of getting smoke samples; @ Analyzing the
original extracted features automatically by training RF
simplifies the SVM training process. However, the
method we used to synthesize smoke images has two
strong assumptions and this leads to the overfitting
phenomenon in SVM training. And we cannot
completely get rid of the dependence on experimental
statistics because of the pre-set thresholds in analyzing
smoke region Convex Degrees and growth rate.
Therefore, the future work we should do is to find a
better synthesized smoke image model and use the
adaptive method to analyze the Convex Degrees and

growth rate.
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