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Abstract: Let R =F,ulul/ <<u' >, where p/' +1 <k << p’ and u* =0 for some positive
prime number p and positive integer j . A new Gray map from R .., to F,. * is defined. It is
proved that the Gray image of a linear (1 +u -+ +++ 4+ u""") constacyclic code of an arbitrary length
N over R(,..» is a distance invariant linear cyclic code of length p’N over F,. . Moreover, the
generator polynomial of the Gray image of such a constacyclic code is determined, and some
optimal linear cyclic codes over F4, F; and F; are constructed via the Gray map.
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0 Introducti correcting performance is easy to be analyzed. The
ntroauction . . . . .
codes used in practice like BCH codes and quadratic

It is well-known that constacyclic codes have residue codes can all be attributed to constacyclic

rigorous algebraic structure and their error- codes. In addition, their encoding and decoding
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circuits, especially encoding circuits, are easy to be
designed. So constacyclic codes are a kind of
important class of linear codes from both a
theoretical and a practical perspective. The ring F, +
uF, is interesting because it shares some good
properties of both the ring Z, and the Galois field
F,. In 2006, Qian et al defined the (1 =+ u«)
constacyclic codes over F, +uF, in Ref. [17] and
obtained that the Gray image of a linear single-root
(1 + u) constacyclic code over this ring was a
binary distance invariant linear cyclic code. From
then on, the construction of the Gray map over
such rings have been a topic of study. Amarra et
alt?1 discussed the Gray image of a single-root (1—
u) constacyclic code over F . +uF , » which was a
quasi-cyclic code over F . . Sobhani et al'*! studied
(1 + u'>
constacyclic codes over F,[u]/ < u'™ >, which

the Gray image of a single-root

was a quasi-cyclic code over F,. Abular et al"*"
showed that the Gray image of a linear (1 -+ u)
constacyclic code of an arbitrary length over F, +
uF, was a binary distance invariant linear cyclic
code and got the generator polynomial of the Gray
image. Later, the results in Ref. [4] was extended
to (1+u) and (1+u—++++—+u""") constacyclic codes
over Fo.[u]/ << u* > in Refs. [5] and [6], while

and F,
1[8]

some optimal codes over F, were

constructed. Kai et al’’!and Ding et a showed
that the Gray image of a linear (1 + Au)
constacyclic code with an arbitrary length over
F,+uF, was a distance invariant linear code over

F, , but the of the

corresponding Gray images were not acquired.

generator polynomials

In this paper, we study the Gray image of a
(1+wu—+-++u""") constacyclic code of an arbitrary
length over R(,..,, and obtain the generator
polynomials of the corresponding Gray images.
Furthermore, some optimal codes are given. This
paper is organized as follows. Section 2 gives some
results about constacyclic codes over the ring

R (,» .., and some operations mod p . In Section 3,

we investigate the properties of a kind of matrix

A,; over F,. . In Section 4, using the matrix in

Section 3, we define a new distance-preserving
( R(pm,}g) I:l] ) Lee

(F,.[x], Hamming distance). In Section 5, we

map [rom distance ) to
study the structure and generator polynomial of
the Gray image of a (1 + u + - + u'7")
constacyclic code over R(yu..» . DBesides, some
optimal linear cyclic codes over F3, F5 and F; are

constructed by meuns of this Gray map in Section 6.

1 Preliminaries

Let R (yu .1 denote the polynomial residue ring
F,.lul/<u">, where p/ ' +1 <k < p’ andu* =
0 for some positive prime number p and positive
integer j . Let n and p be relatively prime, il " —
1=/f1fsf. is the factorization of (z” —1) into a
product of monic basic irreducible pairwise coprime
polynomials in F,.[x ] . then this factorization is
unique and can be directly carried over R (,n 5, from
over F,,. . Let C be a code of length N = p‘n over
R(u.> » where ¢ is a non-negative integer. For
some fixed unit @ of R,. s » the a constacyclic
shift 7, on R (,u .5y ¥ is the shift 7, (coscy st scnay) =
(ACN—_1sCosC1 s sCn—s) . The code C is said to be
an a constacyclic code if 7, (C) = C. Now, we
identify a codeword ¢ = (cyscys*yc,—1) with its
polynomial representation ¢ (x) =c, +c,x + -+
cy—1 N7, then xc (x) corresponds to an «a
constacyclic shift of ¢ (x) in the ring R (., L2 ]/ <<
¥ —a > . Thus « constacyclic codes of length N
over R(,u 1 can be identified as ideals in the ring
R uwla]/ <2 —a > . In the [ollowing, we let
p’ '+ 1<k << p’ for some positive prime number
p and positive integer j .

rl
- st (r —s)!

integer 0 <{ s << r , then we have the following

Let C; for some positive

propositions.
Proposition 1.1 C;,—, 7 0(mod p) .
(p—D!

st (p—s—D!

Cy, = 0(mod p) for positive

Proof C,_,= # 0(mod p) .

Proposition 1.2
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integer 1<Cs<Kp —1. 0 0 0 CriA i
‘ ! (» —D! 0 0 C3A, - C5A A

P f Cs = — o =14 pj =24 pj

roo Posl (p—s)! P sl (p—3$)! : :
= 0(mod p) . 0 CLLA, CiA,. ClA,.
g s _ R — s el
Proposition 1.3 C;,, —C; C; for positive CoAy COLA, CIA, A

integer 1 s < r .

Proof 1f1<Cs<Cr, then
_ r+ D!
~s ol ! o
Cn —C; A Ere———
rl B
(s—D! r—s+D1!
a SR
sl (r—s+ 1)1 r+1 .s)—s! P =C;.

Proposition 1.4 C;., = ZC;‘Iﬁ for positive
[=0

integer 0 <_ s << r and r = 1.
Proof If s =0andr > 1
straightforward.
If1 << s <<r ., by Proposition 1.3,

, then the result is

e —co+ Zc_l —C) +

=0 =0

Z (C,‘ 1 T
Cl. +Zc, ZC*’ :
2 T =

ZC—/+1 -
=1

0 _ (s
Cr*.\ + (/1'+1 - (/rﬂﬂ - C:~+1 .

Crih =

=C +

2 A kind of matrix A ,; over F ,.

Definition 2.1 I{ j =1, then A,, = A, =

0 0 e 0 Cio
0 0 cr= Ch3

. . . If] > 29 then
0 Cj, - C C
N, e U1

B/,JIH [R(l)]A/)Jl+l :(17"'71717"'917"'919"'71)

pil ones pil ones pJlones

From the definition of matrix A,; , we see
that A,; is a p’ X p’ matrix. Let A,; [R(i)] and
A,; (i) be the i th row and the i th column of A
for 1 << i << p’ respectively, then A,;[R(1)] =
(0,+++,0,1) and A, (p’) =1, -,l)T

(pJ—1) zeros pJ ones

Lemma 2.1 A, is an invertible matrix
inF,.

Proof From Definition 2.1 and Proposition

1.1, we see that A, is a lower triangular matrix
and each element of its secondary diagonal is not
zero mod p » so A, is invertible in F',. . Suppose
A,;i is an invertible matrix for some positive
integer j, in F,., then C,_,A,;i is also invertible
in F,. for positive integer 0 <{s << p —1, so A 10

is invertible in F,. , which gives the proof.

1 e 1
Lemma 2.2 letB, =|: i | bea
1 e 1
p’ X p’ matrix, where each element of B, is one,
thenB,; A, = (A, (p’), 0,:+,0) in F .,
(pi—1) zeros

Proof By Proposition 1.4, B,[R(1DJA, =
p—1

0 [—1
(CP—l’E T s 2(‘1)—11’"* 2 ) = (1

=0 =0

C,,Ch, =, Co ), Accordmg to Proposition 1.2,

B,[R(DJA, =, 0,:+,0) in F), » so B,A, =
(p—1) zeros
(A, (p)s O, +,0) . Suppose B, A, =
(p—1) zeros
(A, (p'D), 0,-+,0) in F,. for some positive

(pil—1) zeros

integer j,. By Propositions 1.2 and 1.4, we have

0 0 cee 0 ‘P 114/)71

0 0 CIiA,,  CI3A,,

0 C}zflApjl CéA/;jl C}A/,/l
CiA,n ChoALn CYA 1 A



The Gray Image of A Class of Constacyclic Codes Overthe ring F,,, [u]/<<u*>1 613

(1, 0,-++,0 »

(pil —1) zeros

j})(l?O;

(pil—1) zeros

1
bOBP;1+1AP/1+l = (ANHI p“+ ) s 09

induction, the desired result follows.

000,05 (s 0,0

(pil+1—=1) zeros

/_9/0 )“'9C£71(17 (%‘.'/._yi) )) :(17 O;”,.—,/O )7

(pil —1) zeros (pil —1) zeros (pil+1—=1) zeros

in F
2<Li<p, then

»n . According to Propositions 1.2 and 1.4, if

H/,A/) (l) H/, (07 b 90 (:lp 11 7(11725 b 9C},71+1 ’(.‘/(/),7[)[ —
Theorem 2.1 Let H, = i s
1 1 b 1 1 (Ci;la"'9C§;ly 2:_219"'3(/‘},_,4& 9Cg— )T:
0 1 A 1 1 p—it+1
E ElIlCl (O,'",O (/p 19"‘9(:1,—;+29C(/))_,'+1)T :AP(Z_I).
0 0 11 Pt
Besides, H,A, (1)—(1, <, DT=A,(p), So
0 0 0 1
b ones
o 1 0 0 HA,=A,(p), A, (1),A,(2),, A, (p—1)=
o o0 1 0 A,D,).
D, =|: : : > where H,; and D, Suppose H,1A,n = A,iD,: {for some
O 0 0 -« 1 positive integer j, in F,. , then
1 O O o O H/;JlApJI :(Apjl (le)’Apjl(1)7
are both p’ X p’ matrices, then H,;A,, =A,; D, A ()0 AL (p7t — 1))
in F . and
Proof We prove the result by induction on j
H/ul B/}]l Bpjl B/ul 0 0 0 ng}Ale
0 Hp}l Bpﬂ Bp,rl O 0 CﬁiﬁApﬂ C,/Z.:i pil
Hpjl+1A/)j1+1 - : . : H . 5 .
0 0 H,, B, 0 Cr—1A i CiA i CiA,,
0 0 . 0 Hpil Ci—lAp.H Ci—zApﬂ C(l)Apzl Apﬂ
By Lemma 2.2,
0 B, A, A (p7) 0 0 e 0
Hoo : _ : : : : : : _
0 B, A, A (p’h) 0 0 0
CH A, H, A, A (PP A (1) AL (2) = Ay (p' — 1)

(Ap_i]+l ([leJrl ) 9Apj]+l (l) 9Ap11+1 (2) [

¢ 9Apj]+l (pjl - ].))

According to Propositions 1.2 to 1.4, if 2<{i <C p . then

0

0
i—1
H C’/zflA pil
pil+l s
Ci%A,,
1
cp—;ﬂA pil
~0
Ch—iA i

i—1
Clp Bpjl Ap]]

CiiprflApjl
CI ! Hp,]Ap/l +C1_?B[;]]APJ1
/)_OH/)/1A1,1+C B/ylA/]l

~1 Y
(/177,«#1 prl Ap/l + (/PfH»prjl Ap/l
0
C/)—i+1 Hp.fl Apjl
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0 0 0
0 0 0

C,'Aun (p7') ClhiA L (D) CyiA L (2) e
CiiAp (P CiaA,n (1) CiA, (2) v

Ci—,HAml (Pj] ) C})—H»lA/ul (D C})—iJrlAle (2) ==
C?,71’+1A/,j1 (p”) (jg,f,‘«HA/)j] (1) C(/),71+1A/)j1 (2) b

0 0 0
0 0 0
0 CitA,, (1) CitA,, (2) o

Ci A, (p) CitA,, (1D Ci4A,, (2)

CCELA L (p — D)

0
CVA, (p7 — 1)
Cj;zz i1 (P — 1

C;)—H»lA/ul (j)’” - 1)
C?f*zFHA/le (pt =D
0

0
fﬂil]Apjl (p’t — 1)

Chrien Ay (") Chii Ay (1) Chii Ay (2) - Clii Ay (p7' — 1)
CointAuin (p71) ChriiApii (1) ChH Ay (2) = CHoi Ay (p7t — D)

(Ap]l+l (1 — l)pjl)aApjl+l (1 — l)pjl + 1) 9Ap]l+l (1 — l)pjl +2),"'9Ap_,'1+1 (ij)jl — 1)).

So H1)11+1 A/;j1+1 :Apj1+1 D,,Jlﬂ . this gives the

proof.

3 A new Gray map

Leta.b be two elements in R,y » thena,b

k—1 k—1
can be written asa = >, u'r, (a) and b= > u'r,(b)
i=0 i=0

respectively, wherer;(a).r;(b) € F,. for positive
integer 0 <7 < bk — 1. It is easy to check that r; (a
+bo)=r;(a)+r; () for 0 <i <k —1.

Definition 3.1

Rn.> » a new Gray map @,n.,y from R to

For an arbitrary element a in

F,. *" is defined as follows: @, .1 (a)=( O’R—’Q ,
(pi—Fk) zeros
I"o(a)971((1)9"'9rk71(a)>A1,, .

Note that @, is linear, since

@@,,,,k)(aer):(O "70 97’0((1 +b)9

.
b

AR,

(pi—h) zeros

71(61 +b)9"‘97k—1(d +b))APJ -
[(Ov"'ao 91"0(61)97‘1(6{)7"'77}—1(&)) +

(pi—k) zeros

(Oy"'yo 97‘0(/))77’1 ({))7"'7rk71 (/7)):|Ap, ==

(pi—Fk) zeros

@(pm,k) (a) + @(/}/n‘k) (b).
Furthermore, @ .., is a bijection from

R pu.1» to F,. ?" because of the invertibility of A ,;

by Lemma 2.1. we identify a codeword ¢ = (¢ ,c
€ Rgww Y with its

representation ¢ (x)=c,+c,x+ - Fcy_ 2™

e CN—1) polynomial

' and

N—1

denote P;[c(x)]= 2 ri(c,)a" for positive integer

=0

k—1
0<<i<k—1, thenC(J:)ZZu,lPi[c(lr)] . Thus,

im0
the Gray map @,. ., can be extended to R (,u .4 [ x ]
in an obvious way.

Definition 3.2 For an arbitrary codeword ¢ =
(coscrattscn) € Riws Yo its polynomial
representation isc(x) =co+cix+ ey 2V E
R 4.y [x]. The polynomial Gray map ®@,. ., [rom
Rpw.lx]toF,.[x]is delined as follows:

Dy Le(a)]=( u ,Pole(x) ],

(pi—k) zeros
1
N

Pl[(;(l'):ly'” 9Pk71 [(‘(1‘)])14[,]
o @i=DN

Obviously, @, .. is not only linear, but also
a bijection from R (. s, (2] to F,.[x].

Definition 3.3 Let W, be the Lee weight of
the element of R(,u» and Wj be the Hamming
weight of the element of F,. ” . We define that
W, (a) =Wy[®,n. (a)] for an arbitrary element
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a in R,u . The Lee weight of a codeword in
R ,n.y[x] is the rational integer sum of the Lee
weight of its coefficients. The Lee distance
between two codewords ¢ and ¢’ is defined as the
Lee weight of (¢ —¢).

Theorem 3. 1 The polynomial Gray map
D (u 1) is not only a linear bijection from R (. .4 [x ]
to F,.[x] . but also a distance-preserving map
from (R . x], Lee distance) to ( F,.[x],

Hamming distance).

4 The Gray image of a (1+u—+---+
u*~") constacyclic code over R, ;)

Lemma 4.1 InR . ,[x]/ <x¥V—O4+u+
ety ) > 2PV =landu =N (Y — 1) .

Proof InR . lx]/ <z¥—O+u+ -+
u ) >,V =14u++u"" yut =0and p’" +

1 < & < p/y so u” = 0 and 2V =
A+u—+-4+u"")" =1 Since (1—u)zV=1—u"
:l_fp/.\l s then u:l_r(pjfl)N:x(/:J'f])N(xN_
.

Theorem 4.1 If C is a (1 +u + =+ + ™)
constacyclic code of length N over R(,u.., » then
D (., (C) is a linear cyclic code of length p/N
over F . .

Proof One only needs to prove @, .4, [xc ()]
=2®P pn .1y Lc(x) ] for an arbitrary codeword ¢ (x) of
C.Infact, 2V =1+u—+-+u""" and 2V =11in
Rowwlal/ <2V — A+ u+ 4+ u"") > by
Lemma 5.1. For an arbitrary codeword ¢ (x) =c, +
c1x Fcyx’ e Foya N € C, it can be written

k—1
in the form ¢(x) = ZuiPi[C(x):l. Then, we

i=0
have xe () =0 +u+ 4+ u"Denay Heox e 2t
k—1
+ ooyl = Zu’P,[IC(Jc)] ,where

i=0

Plzc()]=r [Q+u+ ~4+u"Dexs |+

N—2
27; (Cl )xl+l :[70 ((‘N—l) _'_ 1 (C;\J-]) + A +
=0

rilen) ]+ aPilc(a)]—aVr (o)
andi =0,1, *=+,k — 1. Therefore

N

o [2c ()] = (0,000,0 , Py[e (@) TPy [we (@) oo, Py [we O DAL |7, |=

(pi—k) zeros

1
(O,‘“,O ’ro(cf\lfl)’zri(cNfl)v

i=0
(pi—k) zeros

( 09 b 90 ,x‘\"ro ((';\"71 ) 9$N7‘1 ((‘Nfl ) L
R

(pi—h) zeros

(0,0, 2P [c(a)]saP [c(x) ],

-

(pJi—Fk) zeros

(09\”29 9}"1)(CN71)77'1(CN71)’“’9ka1(C,\rfl))(H,,/APj

(pi—k) zeros

4 Pi=DN

k=1 T
"‘,27”7’(6';\771))14/)/ . -

i=0

(pi—1ON
x '’

1

N
X

'qurkfl(CNfl))Apj . +
4 I—DN

1

N
X

9«TP/?_1 [(('I’)])Ap/ . -

(pJ—DN
x

1
N

—A,D,>) + 2@, [c(x)].

(pi—1IN
x ¥




