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Abstract; Let « =2 be an integer, p, and p, be odd prime numbers with p, <p,. By using
elementary methods and techniques, it was proved that there are no near-perfect numbers of the
form 2°7 ! pip} with the redundant divisor d € {1, pi. pi, pipss p1pss pip.), and then an
equivalent condition for near-perfect numbers of the form 2°7' pip} with the redundant divisor
d€{p,,p,} was obtained. Furthermore, for a fixed positive integer 2= 2, by generalizing the
definition of near-perfect numbers to be k-weakly-near-perfect numbers, it was proved that there
are no k-weakly-near-perfect numbers of the form n=2"'pip3 when k= 3.
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WE. REEHKa =2, p1p AFRBE p, < p,  FRAMF A T kA BN T RAEN 2 pipi 8y
Vhd € {1,piapispipaspipispip.) A TAEF W nearperfect &, HL B HEH 4w 2 pips 9k d €
{prsp2) A TNA BT near-perfect KW —ANFM 2 & % fm, LT EEH L >2,18id 3] near-perfect £ 49
Z X E k 5 near-perfect £, iEA T K b =30, RAEH 4w 2 ' pipi 09k d € {pi,pi} ATAEBEFHE 5B
near-perfect #k.

X HEA . perfect 4&; near-perfect #; TA B F; £ 33 near-perfect £

D={d:d|n,1<d<n} and 6 (n) =2 cpd.

0 Introduction @D If 6 (n)=2n, then n is called a perfect

Definition 0.1"0  Let n be a positive integer, number.
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@ 1f there exists some S&D — {n} such that
n = 24esd, then n is called a pseudoperfect
number,

@ If there exists some d € D — {n} such that
c(n)=2nt+d, then n is called a near-perfect
number with the redundant divisor d.

As early as 300 BC, Euclid gave a sufficient
condition for perfect numbers in his great work
Euclid’s Elements as follows.

If p and 2 — 1 are both

primes, then 2271(2? —1) is a perfect number.

Proposition 0. 1

In 1747, Euler proved that the above condition
is also necessary for any even perfect number.
Since the prime of the form 2” — 1 is the well-
known Mersenne prime, so the number of
Mersenne primes depends on the number of even
perfect numbers. It is still an open problem
whether there are infinite Mersenne primes. So
far, all known perfect numbers are even numbers.,
which naturally lead to the following.

Question  Whether there is an odd perfect
number?

Euler gave a necessary condition for odd
perfect numbers as follows.

If n

Proposition 0. 2 is an odd perfect

number, then n = p° H[qfﬁ » where p=a=1
(mod 4), p.q, are distinct odd primes, and f3; are
positive integers (i =1,2,++,5).

In the last few decades, many problems on
such as determining the

number of distinet prime factors'”

odd perfect numbers,
or the lower
bound of an odd perfect number'™, have been
studied. But the existence of an odd perfect number
is still open, which makes people discuss near-
perfect numbers closely related to perfect numbers.
some good results have been
in 2012, Pollack and

classes of even near-perfect

In recent years,
obtained. For example,
Shevelev gave 3
numbers which are all in the form 2°p?, where «,
B are both integers, and p is an odd prime"’. And
then Ren and Chen completely determined all near-

[10]

perfect numbers with two prime factors In

2015, Li and Liao gave an equivalent condition for

near-perfect numbers of the form 2°p® or 2°p, p,,
where @ and 8 are both positive integers, p. p,,
P are odd primes and p, 7 p,"". Recently, Li, et
al. discussed near-perfect numbers of the form n=
271 pit pi? and proved that there is no near-
perfect numbers of the form 2°7! pipi with the
redundant divisor pip3, where &, and &, are both
positive integers™-.

On the other hand, it is easy to see that all
distinct positive factors of 27! pip3 form the set
A= {1s prs bos brbos bls bis bibos prbis PIDE)S
which also includes the possible redundant factors
when 2°p, p, is near-perfect. Based on this fact,

the present paper continues to study the issue.

1 Main results

For any fixed positive integer k£, by using
elementary techniques and methods, the present
paper generalizes the definition of the near-perfect
number to be the k-weakly-near-perfect number
and proves that there are no k(= 3)-weakly-near-
perfect numbers of the form n = 2°7' pipi. We
improve the corresponding results given by Refs.
[1,4] and prove the following main results.

Definition 1.1 Let n and £ =2 be two
positive integers, D ={d:d |n, 1<<d <n} and
cn)=2,epd. Ho(n)=kn—+d, then n is called a
k-weakly-near-perfect number with the redundant
divisor d. Obviously, any 2-weakly-near-perfect
number is near-perfect.

Theorem 1.1
be both odd primes with p,<p,. Then there is no

Let «==2 be an integer, p,.p,

near-perfect numbers of the form n = 2*7! pip3
with the redundant divisor d € {p,p,.p.1p5.1,p},
pispibey.

Theorem 1.2 Let =2 be an integer, p,,p,
be two odd primes with p; << p,. Then n =

227 tpip} is a near-perfect number with the
bips
redundant divisor d € {p, . p,} il and only if 7

klkz_k39 Where
@ if d=p,, then
kipr=pi+p,+1, ky=pi+p +1,
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ks =D =pipit1 M 3=(2 —Dpi+p + DG} +p,+ D=

@ if d=p,, then
ky=p5+ po+1s kopy=pi+pr+1,
ks (20— 1) =pip, +1 2
Theorem 1.3 Let « =2, k= 3 be two
integers, p,,p. be both odd primes with p,<p,.
Then there are no k-weakly-near-perfect numbers

of the form n=2“""p?p}.
2 Proofs of the main results

For convenience, throughout this section, a=
2 is an integer, p, and p, are both odd primes with
p1 << p.. Before proving our main results, the
following three lemmas are needed.

Lemma 2.1"  Suppose that n=2"'p2plis a
near-perfect number with the redundant divisor d.

O If 2« — 1 is
ged(p,py 2°—1)=1.

@ If 2* —1 is a composite number and d #
pips, then ged(p,p,.2°—1)=1.

Lemma 2,2

(@=2,p,<prsnisn, € 2NT) is a near-perfect

a prime number, then

Suppose that n =2"" p} p¥

number with the redundant divisor d = pi' pi?,
where k, and k, are both positive integers and
(ky k) (nysny). Then ptilo(pi) with 1<< i #
J 2, 1< k< n,(i=1,2).

Lemma 2,3
integers with a<<b. f a |b*+b+1 and b |a*+a+
1, then 3a<< h<<5a.

Proof for Theorem 1.1

Let a and b be two positive

Suppose that n = 27! pip} is a near-perfect
number with the redundant divisor d € {p,p,,
pipislapispiapipsts theno(n)=2n+d, ie.,

@ —=Dpi+p +DOGi+p+ D =
2°pipi+d (3
(1) Ford=p,p,, from (3) we have
@2 —DOpi4+p,+DOpi+p.+ 1) =
2 pipi +pipe )

Note that p, and p, are both odd primes,
namely, p;=p,=1,3(mod 4). Hence there are
four cases as the following.

Casel If p,=p,=1(mod 4), then from (4)

we can get

2 pips + pip. = 1(mod 1),
which is a contradiction.

Case2 If p,=p,=3(mod 4), then from (4)
we have

3=@ —DOi+p +DOi+p.+ 1D =
2 pipi+pip, =1(mod 4),
which is impossible.
Case3 If p,=1(mod 4) and p,=3(mod 4),
then from (4) we know that
1=@ —Di+p+DOpi+p,+1) =
2 pips+pip, =3(mod 1),
which is a contradiction.
Case4 If p,=3(mod4) and p,=1(mod 4),
then from (4) we can get
1=@ —=DQi+p +DGi+p,+1) =
2¢ pipi+ pip, =3(mod 4),
which is also a contradiction.
(Il) Ford=p,p5, from (3) we have
Q =Dl +pr DO+ p,+ 1) =
2 pipi+pipi.

Thus from Lemma 2.2, we can get p3 | pi -+
p1t 1. Note that p, and p, are both odd primes
and p,<p,, hence (p, +1)*<p}, thus

(pr +D2<<ps <pi+p 1< (p,+D7*,
which is impossible.

(Il For d=1, from (3) we can get
@ =D pi+pi +D(pi+p,+ 1) =2 pip: + 1,
and then (2° =1 |2° pTipi+1, le., (2—D | pip3
+1, which means that

pipi=(pip.)' =—1(mod2° =1 (5

Note that « == 2, thus 2°* —1=3(mod 4), and

—1

2¢—1

This is a contradiction with the identity (5).

so ( )=—1, where ( ¥ ) is the Jacobi symbol.

(V) For d =p?%, from (3) we can get
@ —=Dpi+p +DOGi+p.+D =
2 pipi +pi.
While from Lemmas 2.1 and 2.2 and d = p} we
know that ged(p,, (2 — 1) (pi+p, +1)) =1,
and so

2
‘ 7 1 ‘
(2 — D (pi +p, +1><%) =2p3 + 1,

1
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which means that (2° —1)[2°p%+1, equivalently,
22— pi+1, ie, p;=—1(mod 2°—1). By
the same proof of ([, we can get a contradiction.

(V) For d =p%, by the same proof of (IV),
we can also get a contradiction.

(VD) If n=2"""p7p% is a near-perfect number
with the redundant divisor d = pip,, then from
(3) we know that

@ —=Dpi+pi +DOGi+p.+ D =
2 pipt +pip: (6)

Thus by Lemmas 2.1 and 2.2 we have p} |
pi+p.+1 and p, | pi+p, +1. This means that
there are some positive integers k2, and £, such that

kipi=ps+p,+1, kyp,=pi+p +1.

Now from Lemma 2.3 we have 3p, << p, <<
5p1» and so

kipt=pi+p,+1<<25pt+5p, +1<27pt,
kipt=pi+p,+1>9pi,
hence 10 <X b, <C26. Note that ki k,p, =k p? +
kipi+thki=pi+p.+1+tkip,+ki, thus
(kvky —ps— D py=1"+Fkip, +Fki,
and so bk, p1=—1—k,(mod p,). Therefore
Rikyp, =kipi +kip, +hi=(—1—k)"+
ki (—1—Fk) + kT =Fki+k +1(mod p,),
e, polkitk +1.

Case 1 From b, =10 we have ki +k, +1=
111=3 X 37. While p,>p, =3, and so p, =37.
Thus from £, p? = pi+ p, +1 we can get 10p? =
37 +37+1=1407. This is impossible.

Case 2 From k£, =11 we have k! +k, +1=
133=7X19. While p,>p, =3, and so p, =7 or
19. Form p, =7 and bk, pi=pi+p,+1, we know
that 11p} =7 +7+1=57, which is impossible.
Hence p, = 19, similarly we can also get a
contradiction.

»26, in

the same way as for cases 1 and 2, we also have a

For other cases, namely, £=12,13,---

contradiction.

Now from ( I )~(V[), we complete the proof
of Theorem 1.1.

Proof for Theorem 1.2

(1) M n=2""pip%is a near-perfect number

with the redundant divisor d = p,, then from (3)
we know that

@ —=Dpi+p +DOi+p+ D =

2°pipi +p (D

Thus by Lemmas 2.1 and 2.2 we have p, | p5 +
p,+1 and (2 —1) | p,ps + 1. This means that
there are some positive integers k,., bk, and k;
such that

kipr=p;+p,+ 1, ky=pi+p +1,

and
ky(2°—1) =p,ps+1.
Therefore
2 1
klszh:m.
28
pi+1
pitp 4+ DL
20 —1
1
e (29 —1) .
2 —1p, ) b
pi+p.+1 , b1
( y (pi+p1 +D 1 |
1

(p5+po+ 1D —pipi—pi],s
thus by (7) we can obtain

1 ‘
kiky —khy=——"—@Q2pipi —pipi) =
1R : (Zafl)Pl( pip: — pipz)
i
pip: = s

d
which means that (1) is true.
On the other hand, if (1) is true, then
we have
cn) —2n=Q2*—D(pi4+p,+1) -
(3 +po+ 1) —29pipi =
(2° = Dkikopr —2° piph =
P2 —Dkik, — 22— D p,ps— pipi]=
P2 =D (kiks —prp3) —prpi] =
pi[@2° = Dks —pipil=pi=d,
thus from Definition 0.1, n =2°"' p}p} is a near-
perfect number with the redundant divisor d =p,.
Thus we complete the proof of ( ).
() If n=2"""pip% is a near-perfect number
with the redundant divisor d = p,, by the same
proof of (1), we can get (II).

From the above we complete the proof of
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Theorem 1.2.
Proof for Theorem 1.3
Suppose that a =2, k=3 are both positive
integers and n = 2* 'pip; is a k-weakly-near-
perfect number with the redundant divisor d .,

where p,, p, are both odd primes and p, << p,.
Then ¢ (n)=kn-+d , namely,

=k + — (8)
n n
thus we have
1 2 1
2 a1><1+plf ya4 et
2 b1 f)z
d
—— 9
k+2"’lpﬁp§ (€D)

Note that the left side of (9) reaches the
maximum value if and only if p, =3 and p, =5.

Equivalently, for a==2 we have

Lyar e thg 2ot o
2 Pl Y2

13
2><?><7<4 (10)

(2 —

Now from O<%<1 and (9)~(10) we know

that £ =2 or 3, and so £ =3 from the assumption
that £= 3. In this case, if p; >3, then from (10)

we have
1 ,+1
(2 ]><1+ + ><1+pzf ) <
2” | V2
31 57
ZX%X* 2.88-- (1D

which is a contradiction with (9). Hence p, = 3.

On the other hand, if p, =29, then from (10)

we have
1 P 1
(2 ])(lJr J; )(ler“T ) <<
2” 2 y2r
2
g B IEEII 919, (12)

9 29°
which is also a contradiction with (9). Hence p,<<
23, namely, p,€{5,7,11,13,17,19,23}.

Note that n = 2" pips and 6 (n) =kn +d
with the odd redundant divisor d. Hence d | pip%,
thus we have the following 7 cases.

Casel If p,=3 and p,=7, then
Q2 —DA+3+3DA+T7+7)=27"374+4d,

thus 159 « 2 '=741+d, and so a=4. Therefore
741+d =159 « 2°°' >1272, namely, d =>531>
327%, which a contradiction.

Case2 If p,=3 and p,=11, then
(2 —DA+34+3HA+11+11") = 2o'3°11* +d,
thus 191 « 2 '=1729+d, and so a=5. Therefore
1729+d =191 + 27! >=3056, namely, d =>1327>
3711”7, which a contradiction.

Case3 If p,=3 and p,=13, then
2 —DA4+34+3UA+134+13*) = 2'3°13° +d,
thus 195 « 2°7'=2379+d , and so a=5. For a =5
we have 2379-+d =195 « 2 ' =3120, namely, d =
741=3X13X 19, this is a contradiction. Hence «a
=6, in this case, 2379 +d =195 « 27! =>6240,

namely, d = 3861 > 3?13*, which also a
contradiction.
Cased4 If p,=3 and p,=17, then

(2 —DA+343A+174+17) = 22 '3°17" +d,
and so 179 « 2°7'=3991+d , hence a=6. For a =6
we have 3991+d =179 « 2 ' =5728, namely, d =
1737=3" X193, which a contradiction. Hence a =
7, in this case, 3991+d =179 « 27! >11456, thus
d=>7465>>3%17%, which also a contradiction.

Case 5 If p,=3 and p,=19, then
(2 —DA+343)A 419419 = 22 '3°19* +d,
thus 159 « 2 '=4953+d, and so a=6. For a =6
we have 4953+d =159 « 2° ' =5088, namely, d =
135=3° X5, which a contradiction. Therefore a =
7, thus we have 4953 +d =159 « 27! =>10176,
namely, d =>5223>>3%19%, which is a contradiction.

Case 6 If p,=3 and p,=23, then
(2 —DA+343)A+23423) = 22'3°23" +d,
thus 95« 2°7'=7189+d, and so a=8. Therefore
7189+d =95 « 2 ' >>12160, namely, d =>4971>
323", which a contradiction.

Case7 If p,=3 and p,=5, then
2 —=DA+3+3)U+5+5) = 2735 +d,
and so 131 » 2°7' =403+d. Note that 1< d <3%5°
=225, hence 404<C131 « 27 ' =403+d <628, and
so a = 3. Therefore d =131 + 27! —403=121=
117, which a contradiction.

Thus we complete the proof of Theorem 1.3.

Remark The present paper mainly discusses
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near-perfect numbers of the form 2°7! pip}. The

issue is an extension of some classical number

theory problems, such as perfect numbers or odd
perfect numbers, which are not easy. The main

related studies can be seen in Refs.[3, 5, 8, 11,

12].
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