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0 Introduction

In 1948, Shannon published a landmark paper
A mathematical theory of communication that

signified the beginning of both information theory
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and encoding. Among all types of codes, linear
codes are widely studied, because of their algebraic
structures, they are easy to be described, encoded,
and decoded than nonlinear codes.

The aim of this paper is to introduce and study
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linear codes, and their Gray map over the ring R =
F, +uF, +vF, +uvF, , where u’=u, v’ =v, uv=
vu and p is a prime. The ring R has been used as
an alphabet to study linear codes and skew-cyclic

codes

. Recently linear codes and their extensions
are considered over various kinds of rings. For
example, LCD codes have attracted the attention
of more and more researchers, e.g., LCD codes
over finite field were first studied by Massey in
19921, Esmaeili and Yari studied complementary
dual quasi-cyclic codes™ and Sendrier showed the
Gilbert-Varshamov bound of such codes™. Also
weight enumerators are an important direction of
research. Gao gave some results on linear codes
over F, +uF ,+u’F ,'*. Since the ring R can be
seen as the direct product F , XF , XF , XF ,, in
the present paper we can combine the results and
methods of the above papers to discuss the linear
codes over R.

The remainder of this paper is organized as
follows. In Section 1, we introduce some
preliminary results about the ring R and linear
codes over the finite field F ,. Section 2 considers
the weight of the element of R and introduces a
Gray map, which leads to some useful results on
linear codes over R. Section 3 is devoted to the
investigation of some kinds of weight enumerators
of linear codes over R together with their
relationships. Section 4 is the conclusion of the

paper.
1 Preliminary results

Let C be a linear code of length n and
dimension £ over F, and P (C) be its polynomial

representation, i.e.,

P(CY={2]" cix’ | Ccoueysnn

0

957171) € C} .

Let 6 and 7, be maps from E,” to F,” given by

cCagsarsya,1)="Ca,—1sa¢s**sa,»), and
T/<C'09<'1 s "ty C,,fl) =T (CO | ¢! ‘ ‘ ¢t ) =
(6 (¢Dlo (¢ |lo (")), where ¢/ = (¢, »
Cimi19° sCitimo1)s 1=0,1,+,/—1, and n=ml.

Then C is said to be cyclic if ¢ (C)=C, and C is

called a quasi-cyclic code of index [ if 7,(C)= C.
It is easy to see that R=F, +uF, +vF, +uvF,
is a ring of characteristic p, containing four
maximal ideals:
mi, ={u,v), m, =<u—1,v—1),
my;=<{u—1,v), my =Cu,v—1).
Let
¥.R—>R/m XR/my; XR/ms XR/m,
be the canonical homomorphism defined by x —
(x+mysx+m,,x2+ms.2x+m,). By the Chinese
Remainder Theorem, the map is an isomorphism,
from this we can see that R is a principal ideal
ring. It is convenient to write the decomposition
given in the following formula using orthogonal
idempotents in R,
R=aR ®a:R Da;R PDa,R=
aF,@ a,F,® a;F,@ a,F, (D
where e, =1—u—v+uv, ay =uv, a3 =u —uv,
a,=v—uv. It is easy to verily that o," =a,, a;a; =
0and >, e =1, withi,j=1,2,3,4, i7#j and
a,R L F,. Any element of R can be expressed
uniquely as: r=a t+ub+vc t+uvd =a,a +a, (a +
b+c+d)+a;(a+b)+a,(atc), witha,b,c,
delF ,.
The dual code C+ of C with respect to the

Euclidean inner product is defined as

n—l1

Ct= {x ER" |xsy= 2[:011}/1‘:

where x = (x¢, 215 ***

OyVyGC} ’

s XTa1 ) ¥y =C(ygsyrs e,
V1)

A code C is self-orthogonal if CE=C*,
is self-dual if C=C".

A, (i=1,2,3,4) are codes over R, we
denote their direct sum by
AlDA, DA DA, =

{a1+a,+as+a, | a, € A:vi =1,2,3,4}.

For a linear code C of length n over R,

and C

define as
Ci=lacFy| dbsc.d € F,
aa+ ab+as;c+ad € CH,
C.={beF,| dasc.d € F},

ara + ayb+azc+a,d € Ch,
C.={c €F| Jasb,d € F1,
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ara + ab+ asc +ad € C},
Ci,={deF;| Ja.b,c € F},
ara+ ab+ asc+ a,d € C.

It is easy to check that C,, C,, C; and C, are
linear codes of length n over F,. By the ring
decomposition of R in (1) a linear code C over R
can be uniquely expressed as

C=a,C,®a,C, Pa;C; Da,C, (2)

Furthermore, a linear code C is self-dual over

R if and only if C,,C,,C, and C, are self-dual over
F,.

2 Linear codes over R and their Gray map

Definition 2.1
F," is defined by
@an_)F/)rm,

The Gray map @ from R" to

(rFosrysessr, ) —
(agsao+by+cotdosag+bosag+coseees
ay1sa, 1 +b, 1 te, 0 t+d,oas
anr t+b,15a,0+c)s
where r,=a, +ub, +vc, +uvd, €R and i =0,1,

ce,n—1.
For any element r =a +ub+vc +uvd ER, we
define the Lee weight, denoted by w, , as
wi (a +ub + ve +uvd) =
wylasa+b+c+d,at+b,atc),
where wy denotes the ordinary Hamming weight
for p-ary codes. The Lee weight of a codeword r

,7,1) € R" is defined to be the

- (7'0 s Vs
n—1

rational sum asw,; (r) = Ew,‘ (r;) and for r.r' €
i=0

R", the Lee distance is defined as d, (r.r’) =
w; (r—7"). The minimum Lee distance of a linear
code over R is defined as min{d; (r.+")| r.r €C,
r7#r’}. We denote the Hamming distance of a
p-ary code C by dy (C).

Now, we give some results which can be
found in Ref.[12].

Theorem 2.1"'*  The Gray map @ is also F,-
linear. The map @ is a weight-preserving map from

in

(R", Lee weight ) to (F,", Hamming weight ),

1.e.,

wy (x) =wy (@(x)), forall x € R",

and @ is also a distance-preserving map from (R",
Lee distance ) to (F,", Hamming distance ), i.e.,
di(x,y) =dy(D(x),®(y)), forall x,y € R".
Theorem 2.2"'*  Let C be an (n,M,d) linear
code over R, then @ (C) is an [4n, log,M, d ]
linear code over F,.
Lemma 2.1"Y  If G, are generator matrices of
p-ary linear codes C; (i =1,2,3,4) in Eq.(2),
respectively, then the generator matrix of C is
a, Gy
a,Gy
;G
a,G,
From Lemma 2.1 we can easily derive the
following results.
Theorem 2.3
over R with generator matrice G, then

P(aGy) G, 0 0 0

If C is a linear code of length n

@(02G2> 0 (}2 0 0
P(G) = ) = 9]

D(a;Gy) 0 0 G; 0

@(04(}4) 0 0 0 G,1

Proof Keep the above notations. Let a € C,,
beC,, ceCy, d€C,. Since
b(aja) =P(a —ua —va +uva) =0 ,0,0,0),
D(arb) =D(ub + uvb) =0,0,0,0),
O (asc) =D (uc —uvec) =00,0,c¢,0),
O (a,d) =P(vd —uvd) =(0,0,0,d)
then the proof is completed.

An important connection that we want to
investigate is the relation between the dual and the
Gray image of a code. We have the following
theorem.

Theorem 2.4
Then @ (C)*+ =& (C*). Moreover, if C is self-
dual, so is @(C) over F,.

Proof

Let C be a linear code over R.

Without loss of generality, for
arbitrary v, = (rygsry1s = sr1.,—1) € C and r, =
(rogsrorssssry, 1) €CH, where r;; =aj;; +ub; +
ve; tuvd;;, €ERsa;505¢;i»d;; €F,,j =1,2 and
i=0,1,-=,n—1. Then r, * r, =0, which implies
E:i aias; =0, 2::} (aiby +tasbyi+010:)=0,

n—1
Z}.:O(allfzz‘ + asci +cey) =0 and
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n—1

i:()(andzz' +byco Hbudy Fbocy +oudy +
asdy; +bydy; +cudy; +didy) =0.

Therefore,

2

n—1

D(ry) - @(7’2):2[:0“1#21‘4’ 2:;(a1i+bh

n—1

eyt didCan +by + ey +do) + D (an +

bidCas + b0 + 207 (an 4 e asn + o) =
4237,

237" anew + anen + cuc) + 200 Gandy +
biico +b1do 4 bociy + cudy + avndy; + budy 4
Codyi T dydy) =0.

Thus @(CH) S@(C)*.

From Theorem 2. 2, can verify that
[®(C)|=|®(CL) |, which implies that & (C)"
=d(C*). f C=C", then ®(C)=D (C+) =
®d(C)*, which implies ®(C) is self-dual.

Next, we give an example to illustrate the

aq;da; + 221::)(611;[72,' + az;bli + bnbz,') +

we

above results.

Example 2.1 (i) Let C be a linear code of
length 4 generated by the matrix G over R=F;+

uF,+vF;+uvF;, where

(XlGl
G|,
a;G
Q4G4
and
1 0 2 0 1 0 0 2
G, = » Gy = ’
0 1 0 3 0 1 2 0
1 0 3 0 1 0 0 3
G;g — ] Gr] — .
0 1 0 2 0 1 3 0

Then C is a self-dual code over R. Moreover, by
Theorem 2.2, @(C) is a self-dual code of length 16
over F:. Itis a[16,8,2] self-dual code. And after
some row elementary operations on the matrix

@ (C), the self-dual code @ (C) has the following

generator matrix

10 0 000 00 2 00 O0O0 0 O0 O
o1 0 0 0 0 0 0O 0 0 0 0 0 2 0 0
G, 0 0 0 o0 1 0 0 0 0O O O0OO0O 3 0 0 0 0 O
0 G, O 0 oo o 1 o o0 0 00 0 O0O O0O 0O 0 0 3
OOG3090000100000003000
0 0 0 G, o0 0o o1 0 0 0 2 0 0 0 0 0 O
O 0 000001 00 0 0 OO0 O0 2 0
(10 0 0 00 00 1 0 0 0 3 0 0 0 0]
(i) If we let C be a linear code of length 2 generated by the matrix G over R=F ; +uF ;+v F;+tuv F;, where

BE

3 4 1 1

o Do)

1 2 3 4

It is easy to deduce that the generator matrix of @(C) is as follows

(1 2 0 0 0 0 0 O]

3 4 0 0 0 0 O

O 0 4 1 0 0 0 O

001 1 0 0 0 O

0000 2 3 0 0f

00 00 1 2 0 0

0O 000 0 0 1 2

000 0 0 0 3 4]
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@ (C) is an [ 8,8,1] cyclic linear code over
F .. and it is universe code of length 8 and MDS
code at the same time.

(iii) Similarily, if we take n =2 and let C be a
cyclic code of length 3 generated by g (x) =
(v—uv)x+1 over R=F ,+uF ,+vF ,+uvF ,.
Then ®(C) is a suboptimal [8,7,1] linear code
over F ,.

Lemma 2.2"""  There exists at least one self-
dual cyclic code of length n over F , if and only if p
is a power of 2 and n is even.

Theorem 2.5

code of length n over R if and only if p is power of

There exists a self-dual cyclic

2 and n is even.

Proof We know that C=a,C,Pa,C,Pa,C,
@a,C,. From Lemma 2.2, we have that C, ,C,,C,
and C, are self-dual cyclic codes over F, if and only
if p is power of 2 and n is even.

Lemma 2.3 Let C=a,C,Pa,C,Pa,C,;P
a,C, be a cyclic code of length n over R. Then C=
(arg1 (x)sargs (x)sasgs (x)sasgy (x)), where
g:(x) is a generator polynomial of cyclic code C; ,
1<{i<{4. Furthermore, | C |= p* Zi-ideateion

Lemma 2.4"Y Let C=a,C Da,C,Pa;C;P
a,C, be a cyclic code of length n over R, such that
C=(a1g,(x)sasg:(x),asg:(x),a,g, (x)) and
Ct is its dual. Let h;, (z) € F,[x] such that
g:(x)h; (x)=zx"—1. Then C+ =a,C;+Pa,C,*
Pa,C;" Pa,C,", where C; " is the dual of the
cyclic ct =
Ca1hi () sashy (x)sazhs (x)sahy (x)), where
hi(x)=x% . (1/2).

Theorem 2.6''%

code over F ,. Furthermore,

If C is a cyclic code of length
n over R, then @ (C) is a 4-quasi cyclic code of
length 4n over F,.

Armed with Theorems 2.4~2.6, we can easily
obtain the following results. Here we omit the
proof.

Theorem 2.7 C=a,C,Da,C,Da;C;Da,C,
be a self-dual cyclic code over R, =F,, +uF,, +
v Fon +uvFy, . Then @ (C) is a self-dual 4-quasi-

cyclic code over F 5, .

3 Weight enumerators of linear codes
over R

Let C be a linear code of length n over R.
Suppose that e is an element of R, i.e., e=a +ub
+vc+uvd witha, b, co d€F ,. For all x=(x,,
Tistsx,—1) €R", define the weight of x at e
to be

w, (x)=[ {i | z;,=e} |.

Definition 3.1 The complete weight enumerator
of R is defined to be the homogeneous polynomial
of degree n in p' indeterminates X,,X,.X,,X.,,
s X o Ddup—D4up— D w1 s that is,

ewee (X, X1, X, . X, 00,

X(p D+uCp—D+v(p—D+uv(p 1>) -

EXZ)”OMX}““) X X wolo L,
ceC
X Gy a1 D b - -
Definition 3.2 Let A, be the number of
elements of the Lee weight i in C. Then the set

{Ags Al Ay o0 Ay} is called the Lee weight

distribution of C. Define the Lee weight
enumerator of C as
4n
Leec (X,Y) = > A, X" 'Y (5)
i=0
or
Leec (X,Y) = ZX-lrt*w,(()Y'w,(t) %)

ceC

For any codeword ¢ of C, define T,,T,, T,
T,,T, to be the numbers of components of ¢ with
Lee weight 0,1,2,3 and 4, respectively. Then the
Lee weight of ¢ is

wy (c)=T,+2T, +3T; +4T,.

The Hamming weight wy (¢) of ¢ € C is

defined to be
wp(c) =T, +T,+T,+T,.
Define the symmetrized weight enumerator of
C as
swee (X0, X1,X,,X;3,X,) =
ewee (X X1 X, s s XD iutr oo D tun(p1) ) =
SIXI X XTXTX] ™
ceC
Define thee Hamming weight enumerator of

Q

as
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Hame (X ,Y) = DXy (8)

ceC

For the above weight enumerators we have the
following results.

Theorem 3.1
n over R. Then

(i) Leec (X,Y) =swe: (X', XY, X°Y?,
XY?, YY)

(i) Hame (X,Y) =swec (X,Y,Y,Y,Y);

(i) Leec (X,Y)=Hamgc, (X,Y);

Let C be a linear code of length

) 1
(iv) Leec (X ,Y):mllee(;(XJr(/)*l)Ya
X—Y).

Proof ( i) From the definition of the

symmetrized weight enumerator, we have

SVVe('()(4 9X3Y9X2Y2 9XY5 7Y4) -
2 (XOHT(XPY)T(XAPYDH T (XYH (YD) ™ =
ceC

anwsrwnﬁmYT1+2T2+373+4T; —

ceC

DX OYE© = Leeo (X LY.

ceC

(il ) From the definition of symmetrized

weight enumerator, we have

swee (XL,Y,Y,Y,Y) = DXy iy Ty sy —

ceC
ZXY‘(? Y’I'l FT2+T3+Te
cec
anfw,,(c)ym,,(c) — Ham@ (X ’Y).
ceC
( ii > From the definition of weight

enumerator, we obtain that

Leec (X ,Y) = D X @y © —

ceC

§ lerl*w,,(lp(r))Yw,,(lil(r)) — Ham@((‘) (X ’Y) .

P(c)EDC)

(iv) From Theorem 2.4, ®(Ct) = (C)"!
and they are both F,-linear according to Theorem
2.1. By Proposition 2.6 in Ref.[ 9] and case Ciii ),
we have

Leec: (X,Y) =Hamge , (X,Y) =
Hamge, (X,Y) =

1
WHHHLP((‘)(X + (/) - 1)Y,X *Y) -
1
WH&D’I@((‘)(X + (p - l)Y7X *Y) -
%Lee(:(X +(p—DY,X—Y).

Example 3.1 Let C be a linear code of length
n=2 over R, = F,+ uF,+ vF,+ uvF, with

generator matrix

(u+v 0 ]
G = .
0 14+u-+wv

Then | C| =16 and C consists of the following

sixteen codewords:

(0,00, (wu+v,0), (w+uv,0),(v—+uv,0),
0,1 +u+v)s(u+wv,l +u-+t+v),
(utwuv,l+u+v)s (vtuv,l+u+t+v),
Osuv)y (u +vsuv), (u+wuv,uv),

(v +wuv,uv), (0,1 +u-+v+uv),
(ut+vsl14+u+v+tuv),

(u +uv,1+u-+v+uv),

(v tuvsl+u-+v+uv.

Therefore,

o) =1{0,0,0,0,0,0,0,0),00,0,1,1,0,0,0,0),
(0,0,1,0,0,0,0,0),¢0,0,0,1,0,0,0,0),
(0,0,0,0,1,1,0,0),¢0,0,1,1,1,1,0,0),
(0,0,1,0,1,1,0,0),¢0,0,0,1,1,1,0,0),
,0,0,0,0,1,0,0>,¢0,0,1,1,0,1,0,0),
0,0,1,0,0,1,0,0),(0,0,0,1,0,1,0,0),
,0,0,0,1,0,0,0),¢0,0,1,1,1,0,0,0),
(0,0,1,0,1,0,0,0),(0,0,0,1,1,0,0,0)}.

It is easy to compute that C*+ has 16

codewords with generator matrix

[ 0 u+vj
H = .
l14+u-+wv 0

SE=1{00,0), (0Osu+v)s (Osu +uv)s (00 4 uv),
A+u+v,0),d+u+v,u+v),
A+4+u+vutuv), I+u+v,v+uv),
(uv,0), (wv,u+v), (uv,u +uv),
(uv,sv+wuv), A+u-+v+uv,0),
A+u+vtuvsu+v),
A+u+v+uvsu+tuv),
(1+u+tv+uvsv+uv)}.

From Definition 3.2, we have that
Leec (X,Y) =A XY +A XY+
A XY +A XY +A, XY =
=X +4XY +6XY +4X°Y + XY (9
From Eq.(7), we have that
swee (X0 X1, X0. X, X)) =X0 +4XX 1, +
2X, X, +4X7 + X5 +4XX,,.
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Hence
swee (X', XYL, XY . XY?, YY) =
(X)) +4(X « XPY) +2(X* « XPY®) +
4(XPY)" + (XY +4(XPY « XPYP) =
X +4XY +6X°Y H4X°Y + XYY (10
From (9) and (10), the part (i) of Theorem
3.1 is valid.
swee (X,Y,Y,.Y,Y) =X*4+4(X - Y) +
20X «Y) H4Y  + Y +4(Y YY) =
X*+6XY +9Y7,
and Eq. (8) implies Ham (X,Y)=X*+6XY +
9Y?, which is in accordance with the part Cii ) of
Theorem 3.1.
In terms of the

D(C),

elements of
we calculate
Hamge, (X, Y) =X°* +4X7Y +
6X°Y? +4X°Y® + X*'Y* an
The part (i ) of Theorem 3.1 is deduced by
(9) and (11).
On account of
Leec (X, Y)=X*4+4X"Y +
6X°Y? +4X°Y + X'Y",
and
Leee (X 4+Y), (X —Y) =(X+Y)*+
IX+FY) X =Y +6(X+'(X —-Y) +
AXFY)X YY)+ X+'"(X - =
16X° +64X'Y +96X°Y" +64X°Y* +16X"Y".
Thus Leec: (X ,Y)Z%Leeg(XJf(p—l)Y,
X —Y), the part (iV) is satisfied.

4 Conclusion

In this paper we study some properties of
linear codes over the ring R =F, + uF,+ vF,+

2

uv F, . where u’=u, v*=v, uv=wu, and p is a
prime. A kind of Gray map is introduced, which is
a weight-preserving map from R" to F'}" and can be

used to derive some useful results. Some weight

enumerators and the relationships between them
are discussed. We plan to discuss some other codes
over the ring R in the future.
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