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0 Introduction

In this paper, for every i € N = {1, 2, -},
we denote a real-valued random variable X, the
insurance company’s net loss (the total amount of

claims less premiums) within period i and a
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positive random variable Y, the stochastic
compound interest factor over the same time
period. Then the stochastic values by time n of
aggregate net losses of the insurance company are
defined to be

Tn:Xn—'—T”—lY”vn GN (l)
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with T, being an arbitrarily random variable. In
the existing literature, {X,, i €N} and {Y,, i €
N } are actually called the insurance risk and the
financial risk, respectively. At the same time, T
had been studied in insurance mathematics under
the name perpetuity. Since schemes like relation
(1) are ubiquitous in many areas of applied
mathematics, the properties of T have attracted a
considerable interest. From the application point of
view, the key information is the behavior of the
tail of T,, that is P (T >x), as x —>°°, This
problem was investigated by various authors, for

1.1, and in a similar

example, by Goldie et a
setting by Hitczenko and Wesolowski'!. The first
result indicates that if X is bounded, P(YE&[0,1]) =
1 and the distribution of Y behaves like the
uniform distribution in the neighborhood of 1,
then T has thin tail.

Ruin probabilities of such a discrete-time risk
model have been extensively studied by many
authors. However, most of the researches assumed
that the sequences {X;, i €N} and {Y;,, i €N}
are mutually independent. Such an independence
assumption was proposed mainly for the
mathematical tractability rather than the practical
relevance. Therefore, in recent years, more and
more researchers have started to improve the
model through introducing suitable dependence
structures between the insurance risk and the

] studied a model

financial risk. Yang and Wang
with ( X, Y) following a bivariate Sarmonov
and Qu and Chen'

another type of dependence structure assuming

distribution, considered
that (X,,,X,,Y,,,Y,) follows a multivariate
Samanow distribution.

Motivated by Chen'' and Yang and Wang''*,
in this paper, we shall assume that (X,,Y,), n€
N is a positive random pair with the generic vector
(X.,Y) following a certain dependence structure,
and, X follows a subexponential distribution with
a nonzero lower Karamata index. Besides, we also
assume that EY? <1 with 0<{f8<{J ;. In order to

make Y not necessarily bounded, we should

consider the product

Z=XY (2)
in which X and Y are independent random
variables and distributed by F and G respectively.
Denote H  the distribution of Z. The
subexponentiality of (2) was first studied by Cline

[10]

and Samorodnitsky"', and then was extended by

Tang ™.

The rest of this paper is organized as follows.
In Section 1 we will briefly recall basic notations
and properties of subexponential distributions, and
introduce the dependence structure that we will use
in this paper. In Section 2, we will present a
precise statement of our main results. Finally, we

will give the full proof of the three results in

Section 3, Section 4 and Section 5, respectively.

1 Preliminaries

1.1 Notational conventions

Throughout  this  paper, all  limiting
relationships hold for x — ©© unless otherwise
stated. For two positive functions f (x ) and
g (x) satisfying

:;(i; < lim sup :’Ejﬁ;
we write f(x)=0(g(x)) il b<oo, write f(x)=
o(g(x)) if a=b=0, write f(.r)ig(x) ifo=1,
write f(x) =g (x) if @ =1, and write f(z)~
g(x) ifa=b=1.

1.2 Subexponential distributions

a < lim inf <b,

Due to important applications to real-world
problems., we restrict our interest to the case of
heavy-tailed distributions, as has recently been
done by many researchers in applied probability
and related fields. Specifically, we shall assume
that the innovation X, in Eq. (1) follows a
subexponential distribution. By definition, a
distribution function F on (0, ©°) is said to be
subexponential Chence, heavy-tailed), denoted by
Fe& S, if the right tail of F is infinite (that is

F(x)>0), and the relation

F* (2) ~ 2F(x) (3)

holds, where F?** (x) denotes the 2-fold
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convolution of F. The authoritative narration
about subexponential distributions can be found in
the monographs by Embrechts et al.''! and Foss
et al.k*.

It is well-known that, if F € S, then it is
long-tailed, denoted by F & ¥,

the relation

which means

. F(x—01)
lim ——— =
= F(x)

holds uniformly on compact z-sets of (0,°°); see

1 D

Ref.[1, Lemma 1.3.5] for more details.

For two distribution functions F; and F, on
(0, =), denote F =F, * F,, that is F is the
convolution of Fy and F,. If F,&€ % F,& ¥, and
F,(x)=O0F, (2), then FE ¥and

F(x) ~ F () + Fy(2) (5)

For details, see Refs.[5,6,11].

In this paper, a distribution F on (—oo, +oo)
is still said to be subexponential if the distribution
F. (x)=F()I(x=0) is subexponential. In this
more general sense, the subexponentiality still
implies relation (3), for details, see Ref.[18,
Lemma 2.2 ].

1.3 The Karamata index

To establish exact asymptotic formulas for the
tails of T, in (1), we need to impose a technical
assumption on the tail of X,. For a positive
function f(x), its lower Karamata index J i is the

supremum of those a for which, for every A>1,

fQx)
f(x)
holds uniformly in A € [1,A ], for x —>oo. For a
distribution function F with an infinite right tail,

that is F (x) >0, write f= 1/F. we simply call

=[1+o0(D " (6)

J » the lower Karamata index of F. For details,
see Ref.[3, Subsection 2.1].

According to Ref.[ 3, Subsection 2.1, there is
index Matuszewska index,

a closely related

denoted by My , the definition of which is as
follows: For a positive function f(x) (f:1/f for
F>>0 as stated above), the M} is the supremum
of those 8, for which for some D=D () >0 and
all A>>1, the relation

fQx)
f(x)

holds uniformly in A€ [1,A ], for x—>co,

=D{1+o(D)}A* D

There are some properties for these two
indexes. First, for any distribution function F with
an infinite tail, we have 0<CJ ; << oo due to the
monotonicity of f. Second, if two distribution

functions F'; and F, have equivalent tail, that is,

Fl(l')NC E(I) for some ¢ >0, then their lower
Karamata indexs are equal. Third, according to the
definitions, it is clear that J ; <M . For the class
of all subexponential distributions with a nonzero
lower Matuszewska index, which Tang'’ named
the class /. Similarly, for the class of all
subexponential distributions with a nonzero lower
Karamata index, we can use the class /" to name
it, then class &/° is marginally smaller than the
class /.

In this if we want

paper, to prove a

distribution function belongs to class % we just

have to prove the relation F * F (x) ~ 2F (1)

holds. If we want to prove the distribution also

belongs to class /", we just have to prove
the relation

lim in[f(l)

= FQa)

holds, which is the result of the definition of the

>1lfora>1 &

lower Karamata index and class /" .
1.4 A dependence structure

Definition 1.1 A random pair (X ,Y) with X
unbounded is said to satisfy the dependence
structure # if there is some positive and eventually
bounded measurable function A (x): (0,o0)—=>(0,
o), such that the asymptotic relation

P(X>zx|Y=y) ~h(y)P(X>x) (9
holds uniformly for all y € R(Y), where R(Y) is
the range of Y, consisting of all possible values
of Y.

When y is not a possible value of Y, that is
y& R (Y), the conditional probability can simply
be understood as unconditional, therefore h (y) =
1. This dependence structure was first proposed by

Asimit and Badescu'™, and was further studied
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and extended by Li et al. ) and Yuen"-.

2 Main results

According to Ref. [ 4, Theorem 2. 1 and
Corollary 2.1], we have

Theorem 2.1  Consider the relation Z = XY
with F on (—oo,+°) and G on (0, +<2). We
have that H € /" if FE /" and G (vx) =0 (H (2))
for each v > 0, where X and Y fulfill the
dependence structure #.

The result of Theorem 2.1 is the foundation of
the following two results, and the core of the
following result is the tail behavior of T,.

Theorem 2.2 Consider the recursive equation (1)
starting with T (=0, in which the innovation pairs

(X1,Y, ),

necessarily identically distributed. Assume that,

,(X,,Y,) are independent, but not
for each i=1,2,++-,n, there is

@ P(X,>x)~c¢;F(x) for some distribution
function F € &/ with a Karamata index 0<]J 5 <<
oo, and some ¢; >0;

@ Y.>0 and is not necessarily bounded, and
there is 5,» (vx) = o (E(l‘)) and a(vx) =
0(?,(1‘)) for each v=>0;

@ (X;.Y,) fulfills the dependence structure #

with auxiliary function h;.
Then

P(T,>ax)~ >, P(X, [][Y, >2) Q0
i=1

j=it1

The proof of Theorem 2.2 jwill be built on the
recursive equation (1). The following result,
interesting in its own right, describes the tail
behavior of T, given by (1) and will be used to
establish the finite-term version of Theorem 2.2.

Theorem 2.3 Consider the recursive equation
(1) starting with T, =0, in which the innovation
pairs (X,.Y,).n € N are i.i.d. copies of a positive
pair (X,Y). Assume the following:

D X is distributed by F € «&/* with a lower
Karamata index 0<J j < oo

@ EYF<1 for 0<<B<{J; and its distribution

function satisfies G (vr) =0 (H (2)) and G (vx) =

o(F(2)) for each v=>0;
@ (X,Y) fulfills the dependence structure .
Then the relation

n i—1
P(T, >z)~ >, P(X,[]Y, >

i=1 i=1

holds uniformly for n € N . Particularly, when n=
oo, the relation

oo i—1
P(T.>a2)~ > P(X, []y, > QD

i=1 j=1

holds.

3 Proof of Theorem 2.1

3.1 Lemmas

Similarly with Ref.[4, Lemmas 3.1, 3.2], we
can prove the following lemma:
Let X, and X, be i.i.d random

variables with common distribution F € &/ , then

Lemma 3.1

we have

1. P(X1+TX2>T)
S P X S ) PGX, > 1)

The following lemma will play crucial roles in

=1 12

the proof of Theorem 2.2.

Lemma 3. 2 Consider two distribution
functions F and G mentioned above, and assume
X and Y satisfy the dependence structure #. If we
have G (va) =0 (H (2)) for each v >0, then we

can have the relation

P(XY > z) ~th(y>P<X = Py € dy)
0 y

(13)
Proof Since Y is nonnegative, we have that
P(XY>a2)=PX"Y>2x) 14

holds for all 2>>0, where X " =XI(X>0).
According to Ref. [4, Lemma 3.27] , thereis a
function a (x) :[0,20)—>[0,°0) satisfying:
@ a(ax) Moo
@ a(x)/x 403
® Gla(x))=0(H ().
Hence, we have

P(XY > x) =

falax) oo x
(J +J )P<X>—\Y:y>G<dy>:
ata) y

0

a(x) _
J P(X > f Y =G dy) +0(Ga(x))) ~

0
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a(x)
j h(y)P(X > ?)G(dy) +o(P(XY > 1)) =

(-1)

th(y)P(X>i)G(dy).
0 y

h(y)P(X > i)G(dy) +o(H(x)) =
y

The last step is driven by that A(y) is

eventually bounded for y &€ R(Y), so we have
J..

This ends the proof.

h()OF (G (dy) =0 (H (1)),
y

We can find a random variable Y which is
independent of X and distributed by
P € dy) =h(y)PY € dy)
where Y € (0,907, By the uniformity required in
the dependence structure #, integrating both sides
of Eq.(9) with respect to G(dy) over range of (0,

o) leads to

GG y) =1,

0

E(h(y)):J

then we have

P(XY>zx) ~PXY" >x) (15

At the same time, we can also have G* (vx)

—o (H" (x)) for all v >0, where G" is the

distribution function of Y*, and H* is the
distribution function of the product of XY,
3.2 Proof of Theorem 2.1

Herealter, we write x " =z, =max{zx,0} for

every real number x. We prove that H € ¥ By
definition, it suffices to prove the relation

muﬂme(I) (16)

Since the reverse relation is automatic for

every distribution on [0,92). By Ref. [4, Lemma

3.2], there exists a function a (x) satisfying the

three conditions mentioned above. Let X; and Y, ,

i= 1, 2, be independent copies of X and Y

+J< )P(X > 2/y | Y=3)Gdy)
a(x)

respectively. We have
H. *H (x)=PXTY, + XY, >z,

Y, >a(x) U X, >alx)))+
PXTY, +X3Y, > 2,0<Y, <Y, <alx))+
PXTY, +X7Y, > 2,0<<Y, <Y, <<a(x)) =

Ji(x) + T () + J3(a) an
It is clear that J, (2)<<2G (a (x)), so we have
Ji(a)=0(H (),

By Lemma 3.1, we have

|

0<y.<y <a(x)

Y, =y,)G(dy )G (dy,) <

|

J
0<y, <y <a(a)

Vs )
J. = P(XT4+=X{ > Y, =y,
Vi Vi

(P(X, >yi Y, =y.) +
1

P(X, >yi Y, = v, )Gy DG (dy,) ~
2

(h(y)P(X, >;—‘>+
1

0<y, <y, <a(x)

h(y )P (X, > NGy )G (dy,) =
Y2

P(X\Y >2,0<Y, <Y <alx))+
P(X,Y, >x,0<<Y, <Y, <a(x)).
Similarly we have
Ji(x) < P(X,Y) > 2.0 <Y, <Y, <a(x)) +
P(X,Y, >x,0<<Y, <Y, <a(x)).
Then we have
Hy xH (x)=](x)+J.(x)+T:(x) <
o(H(x) +2H" (2) ~2H. ().

This proves relation (16).

Then similarly with relation (14), we have
H* H(x)~2H (x). Next we prove H € &/~
There is some constant A >>1 such that relation (8)
. Then, with
this constant A and the function a (x) defined in

Ref. [4, Lemma 3.2, we have

holds with F belonging to class

0

— =
HQAx)

alx) —
J FCz/y)G™ (dy)

FQx/y)G" (dy) +

J

co

a(x)

P(X >Ax/y | Y=3)G(dy)
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alx) —
J F(x/y)G" (dy)

0

lim inf

alx)
o J FQa/v)G* (dy) +o0(H* Qa))
0

lim inf inf

=lim inf

F(x/y) .

alx) —

J F(x/y)G" (dy)

0 o >
(1+o(1))J

>0

FQx/y)G" (dy)

x>0 0<<y=ta(x) F(Al /y)

So we have A& /.
Theorem 2.1.

This ends the proof of

4 Proof of Theorem 2.2

We use the mathematical induction device.

Proof Forn=1, T,=X,. the relation (10)
holds trivially and the distribution function of T,
belongs to class /" .

Forn=2, T,=X,+T,Y,=X,+X,Y,.

According to Theorem 2.1, we have the
distribution function of X,Y, belonging to class «/*

under the conditions above, and we can find a

function a (), so that

0

a(x) o — i
P(X1Y2>x):(J +J( )Fl(;)(}z(dyg):
alx) 2

a(x) P
J 9, (—)G (dy,) + O, (a(z))) ~

0 Ca

7P(X Y, >ax, 0<Y, <al)+o(H;(x)) =
th (yz)

(O +0(1)) Hy(x).

According to Lemma A3.15 (closure of ¥

under tail equivalence) of Embrechts et al."*!, the
distribution function of X,Y, belongs to class %,
that is, the distribution function of T,Y, belongs
to class % At the same time, we can also find that
il Y, <1, then P(X Y, >2)=0(DP(X,>zx);
and if Y,>1, then P(X,>x)=0((1)P (X Y, >
x). According to relation (5), we have the
distribution of T, belonging to class % and the
relation (10) holds.

Next, we prove the distribution function of
T, belongs to class «/" .

P(T, > x)
P(T, >/11)

P(X, >x)+PX\Y, >2x)
P(X, >Ax) +P(X, Y, >2Ax)

the last step is driven by

hm mf

>1,

hm 1nf

hm f P(X,Y, > ) L

~ P(X,Y, > Ax)
Note that

P(X\Y, > x)
hm inf

T PXY, =
We proceed by induction on n:
1. T\Y,e%

(1:2) T, e

(1:3) the relation (10) holds for n=2.

Now we assume that:

(m: )T, .Y, €%

(m:2) T,€dd ;

(m :3) the relation (10) holds for n=m

We aim to prove that:

m+1:D) T,Y,, €%

(m+1:2) T, €

(m +1:3) the relation (10) holds for n =
m—+1.

First, we prove (n+1:1):

For each v>0,

lim sup P(Y,. > vx) _
2o P(T, >x)
11rn  sup P(Y, .1 > vx)
rPX, +T,.Y, > )
lim  sup P(Y, 1 > vx)
P(X, >x)+P(T, Y, >z)
lim supM90 (18)

e P(X,, > 2)

According to Theorem 2.1, and let h (x)=1,
that is T,, and Y,,+, are independent, we have the
distribution function of T,Y,+, belonging to
class /"

Next, we prove (m—+1:2):

When Y,,+,<<1., we can prove that

P(T,~Y,Y, . >x)=00PX,Y,n>2),

then we have
l. 5 P(Tm Y;71+1 > -T) o
1r§l>§up P(X,,7+1 > T) o
P(XMY,,JH >I> P(T,,, 1Y,V,Y,,,+] >l)] <OO’
PX,n >a) P(X, >x)

lim sup{

o
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that is,
PT, Y = 2) =0 P X0 > 2.
WhenY, . =1
lim sup PiXon =) -
ewe - P(T, Y, >x)
lim sup B =
e POXL,Y i + T Y Yo > )
P(X, . > x)

< co,
P(X,Y, . >x)

then we have
P(X,.. >2)=0)P(T, Y, > 2x).
Thus the distribution function of T,, belongs to
class ¥, and it is easy to check that the distribution
function of the sum X, .1 +71,Y,.. 1, which is the
distribution function of T,,+, belongs to class &/*.
Finally, we prove (m+1:3):
P(T,ss >a) ~P(X, 1 >a)+
X
Y m+1
P(X, 1 >x)+

a(x) o
(J +J ) YP(T,, > )G i (dy,,,+1) =
alz)

0

. .
alzx)

(1+U(1))J ZP(Q‘,HY] >L)Gm+l(dym+l):

0 = =it Yt
m—+1 m+1
A+oN 2 PX, [[ Y, = o).
i=1 j=itl

The second step is due to the relation (18).
Hence, relation (10) holds for n=m +1.
This ends the proof of Theorem 2.2.

5 Proof of Theorem 2.3

5.1 Lemmas

The lemma below describes an important
property of distributions with a nonzero lower
Karamata index.

Lemma 5.1 Let F be a distribution function
with a lower Karamata index 0<J » <<, and the
second statement of Ref.[ 3, Proposition 2.23] tells
us that for each 0<<g<J;, and A€ (0,1), there

exists xy =x,(A,B) such that the inequality

f(x/y) _
TV Ay
&) Y
holds uniformly for x/y = x = x,, or
equivalently, that the inequality
Fla/y) 19

F(x)

holds with @ =1/A uniformly for x/y= 2= z,.

Plugging in inequality (19) x=x,, y=x,/t
for large t, we see that, for some constant ¢>0,

F() <et”

Another immediate consequence of Lemma 5.1
is as follows:

Lemma 5.2 Let X be a random variable
distributed by F with a lower Karamata index 0<C
J ¢ <<, Then for every 0<f<J; and every a >
1, there is some ¢ =x,(a,f) >0, such that, for
all x>z, and Y is independent of X,

P(XY > 1)
7< 1?‘
P(X =) —9FY

Proof

P(XY >ax)
P(X >2)

alx) ©o
(J +J )P(X>§>P<Y6 dy)
a(x)

0

<
P(X > )

e
J ay’P(Y € dy) << aEY®.

0
For two random variables X and Y, we use
the notation X < ,Y to denote that X is
stochastically dominated by Y, that is, P(X>x)<C
P(Y>z) for all real x. Motivated by Ref.[ 127,
we establish the following lemma, which will play
a crucial role in the proof of Theorem 2.3.
(X, Y)
dependence structure #, and let F € </ with a
lower Karamata index 0<J ; <<co, Let EY#<1 for
0<<pB<<Jr; and its distribution function satisfy
G(vx)=o0(H (x)) for each v=>0. Then there is
some positive random variable Z independent of
(X,Y) with P(Z>z)~a F(x) for some large a0,
such that

Lemma 5. 3 Let satisfy the

X+2Y <, Z (20)
Proof For some 6 >0 to be specified later,
we choose some random variable Z, independent of
(X,Y) such that

P(Z, > x) ~ bF () 2D
Then the distribution function of Z, also belongs
to class /" and has the same lower Karamata index

J i, then
P(X+Z,Y >ax) ~
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P(X >a2)+PZ,Y >x) <
(1+abEY?)F (2)

where we choose a small enough and 6 >0 large
enough such that a EY?<{1 and 1+abEY*<(h. The
first step is due to Ref.[4] and the relation (21),
so we can conclude that there is some x, >0 such
that the inequality
PX+Z,Y>z2) <P(Z, >z (22)
holds for x>x,.
Finally, we construct the random variable Z
as follows:
P(Z>x)=PZ,>x|Z,>x,) =
1, 2 < a0
P(Z, >x)/P(Z, > x4), x > x0.
By inequality (22), it is easy to check that
inequality (20) holds. This ends the proof.
5.2 Proof of Theorem 2.3
Keep in mind that the limit T..
to T,.
specified in Lemma 5.3 and independent of {(X;,
Y).i=1,2,}. If T, is indentified as Z, then

applying Lemma 5.3 to the recursive equation (1)

is irrespective

LLet Z be a positive random variable

we have
T, <.,Z for everyn € N U {0} (23)
Now let the recursive equation (1) start with
T,=0<,Z, so that (23) is still valid. For every
n€N , since {(X,,Y,),(X,.Y,)} and {(X,,

Y,), - (X,,Y,)} are equal in distribution,
we have
T“—ZX HY —ZX HY =T, 24

j=itl

For arb1trar1ly fixed N 6 N, by Theorem 2.2

we have

N N
P(T,>x)~ >, P(X, [[Y)=

i=1 j=it+1

N i—1
Dpx, [ly, = 2.
i=1 i=1
For every n > N, first we aim at a uniform

upper bound for the tail probability of T,. For this

purpose, split T, in (24) into two parts as

EX HY +<ZX HY)HY

i=N-+1  j=N+1

(25)

Note that

n i—1
2 X’ H Y] :dTan :dTan gdZ-

i=N+1  j=N+1

Thus,

N i—1 N
T, <.2.x. [ly, +z]]v, (26)
i=1 j=1 j=1
It follows (26) that
P(T, >2)=P(T, >2)<

N i—1 N
POOX Iy, +z]]y, =) ~
i=1 ji=1 ji=1
n i—1 N
2P Y, = +Pz]ly, = <
i=1 ji=1 ji=1

n i—1 N
2P ly, = +pPz]ly, > @D
i=1 ji=1 i=1

By Lemma 5.2, for every 0<f<{J  and every
a>>1, there is some x,=x,(a,fB) >0 irrespective

to N such that, for all x>z,

N N
PZ|lY, > <«E[[]Y,PP(Z > 2) ~
i=1 i=1

(ea | [EYPT)F (2)
where the last step holds for some large constant
K >0. For arbitrarily given small 6>>0, since EY”

<1, we can choose some N =N, sufficiently large

such that the prefactor of F(2) is not greater than
0. It follows (27) that, for all n>N,,

n i—1
P(T, > <A+ 2 PX, [[Y, > ) @28
i=1 j=1

Next we derive a uniform lower bound for the
tail probability of T,. Still starting form Eqgs. (24)
and (25), we have for all n >N,

Ex HY

Applying Theorem 2.2, it follows that

EP(X HY =)=

j=itl

<E Z )P (X, HY > z) (29)

i=N+1

T, =T, <

P(T, >x) =PIy >x) ~

Simllar to the above, by Lemma 5.2, for
every 0<B<J; and every a >1, there is some
xo=x0(a,B) >0, such that for all x>z, and all
n>N,

E P(X, HY > 2) < aF(2) E [EY# ] =

i=N+1 i=N+1
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Thus, for arbitrarily given small §>0, we can
find some N = N, sufficiently large such that the
prefactor of P (XY >x) above is not greater than
0. It follows (29) that, for all N>N,,

n i—1
P(T, >2) >0 =2 PX, [][Y, >

i=1 j=1

(30)
Since, by Theorem 2.2, both relation (28)
and (30) hold for 1<<n<<{N, V N,, so we complete
the proof.
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