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Abstract ; After briefly discussing the importance of the precise measurement of the weak mixing angle,

the implication of the dark Z on the low-Q° parity tests is discussed. The dark Z is a very light ( roughly,

MeV-GeV scale) gauge boson, which couples to the electromagnetic current as well as the weak neutral

current.
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0 Introduction

In this article, we emphasize the importance of
the low-Q” parity test for the new physics searches. We
illustrate our point with a specific example called the

41 which means the parity

dark parity violation
violation induced by a dark gauge boson. This
presentation shares some parts with Ref. [ 5], although
updates and complementary descriptions are provided.
Let us briefly look back on the history of the
sin’@,, physics. It is well documented in the review'®

and we will go over only some part of it very briefly. In
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1961, Glashow introduced the SU (2), x U (1),
symmetry, which has a mixing between two neutral
gauge bosons'”'. In 1967, Weinberg added the Higgs
mechanism with a Higgs doublet and a vacuum
expectation value, establishing the mass relation my, =

31 He also

m,cos @, with the weak mixing angle 6,
predicted the weak neutral current mediated by the Z
boson. In 1973, the neutral current was discovered in
the neutrino scattering experiments at the CERN
Gargamelle detector'®’. Whether the SU(2) L xU(l),

is a correct theory to describe this neutral current was

not clear then though. One of the features of the
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SU(2),x U(1l), was the mixing term in the weak
neutral current interaction, proportional to sin’6,,, and
the parity test measuring this sin’@,, can possibly test
the standard model (SM).

In 1978, SLAC EI122 experiment using the
polarized electron beam and the deuteron target
measured the parity violation asymmetry, which gave
sin’f, =~ 0. 22 (2), agreeing to the SM'*'. Tt is
noticeable that this establishment of the SU(2), x
U(1), by the SLAC parity test in 1978 occurred much
earlier than the direct discovery of the W/Z boson
resonances at the CERN SPS
19832/ In 1979, after only one year of the SLAC

parity test, Glashow, Salam, and Weinberg received

experiments  in

the Nobel prize in physics.

The lessons we can learn from this history
include; (D the parity test( by the precise measurement
of sin’@,) can be a critical way to search for a new
gauge interaction; (2) its finding may precede the direct
discovery of a gauge boson by the bump search.

Fig. 1 taken from Ref. [ 4] shows the running of
the sin’@, in the SM and the current experimental
constraints. While the current data are more or less
consistent with the SM prediction with the given error
bars, more precise measurements in the future
experiments ( red bars) may reveal potential new
physics effects that were elusive for the current

constraints.
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Fig.1 The running of the sin’@,,

In Fig. 1, the running of the sin’@, with the
momentum transfer () in the SM and the current
The red

bars show the anticipated sensitivities in the future

experimental constraints taken from Ref. [4].

parity tests.
1 Dark Photon vs. Dark Z

The dark gauge boson (we use Z' for its notation )
is a hypothetical particle with a very small mass and a
small coupling to the SM particles. While the heavy Z’
(typically TeV scale) has been a traditional target of
discovery '’ | the light Z' (typically MeV-GeV scale )
is a recently highlighted subject with a growing

interest '’ .

For such a light particle to survive all
experimental constraints, it should have extremely
small couplings to the SM particles.

There are number of dark force models in the
literature, but we consider only two of them. Both
models commonly assume the kinetic mixing between
the U(1), and the U(1) ,,'"'. The SM particles
have zero charges under the new gauge group U (1)
4k » yet the gauge boson Z' of the U(1) ,,, can still
couple to the SM fermions through the mixing with the
SM gauge bosons.

One model is the dark photon''®" | which couples
only to the electromagnetic current at the leading
order. Another is a relatively new model, the dark Z
') which couples to the electromagnetic current as
well as the weak neutral current. Their interactions are
given by
Ly =~ 8y, (1)

Loz == Leelpy + Ez(g/zcosew)«mc]zru (2)

with [} = Q,fy, fand J“ = (T - 2 Qsin’0,)f -
Yof = (Ty) fy,vs) & and g, are the parametrization
of the effective y-Z' mixing and Z-Z' mixing,
respectively.

The difference of the two models comes from how
the Z' gets a mass or the details of the Higgs sector.
Because of the Z coupling, the Z’ in the dark Z model
inherits some properties of the Z boson such as the
parity violating nature. In a rough sense, the dark
photon is a heavier version of the photon, and the dark
Z is a lighter version of the Z boson.

Because of the new coupling, some experiments
that are irrelevant to the dark photon searches are

[14, 17-20]

relevant to the dark Z searches . They include
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the low — Q° parity test, which will be discussed later

in this article.

2 Bump hunt

There are many ongoing and proposed searches for
the dark force in the labs around the world'™/. A
particularly attractive feature about the dark force is
that it is one of the rare new physics scenarios that can
be tested/discovered at the low-energy experiments,
which are typically built for nuclear or hadronic
physics. Of course, it is possible because the dark force
carrier Z' is very light (MeV-GeV scale) .

Fig.2 in Ref. [21 ] shows the parameter space of
the dark photon with the current bounds. The bounds

[2223 [2426]
anomalous

. : [2728]
fixed target experiments ,

[29] 30-35]
9’

come from the electron " and muon
magnetic moments,

and
[36-37]

beam dump experiments'”’ | meson decays'
e*e” collision (e"e”—y +1717) experiments
Except for the anomalous magnetic moments, the
searches are all based on the dilepton searches from the

Z', that is the bump hunt.

L U NI LSS
PR
d, ‘\_

Fig.2 Dark force searches all around the world

If we put some of these experimental efforts on the
map( Fig. 2), we can see the search is practically a
global activity. Quite obviously, we are going through
a very exciting time with so many contemporary

searches to find a new fundamental force of nature.

3 Low-energy parity test

Now, we discuss the low — energy parity test''™

as another means to search for the dark force. The
presence of the dark Z modifies the effective lagrangian

of the weak neutral current scattering,

! 4G,
Ly == /Z—ﬁ HNC(Sinzaw)JEC(Sinzew> (3)

G —(1+5 ! J: (4)

1+ Q*/m,
sin’g,, — (1 Y 2 c?sﬁw 12 2
my sinfy 1 + Q°/my,

)sinZHW

(5)
where () is the momentum transfer between the two
neutral currents, and § is a reparametrization of the g,
with ¢, = (m,/ m,) 8. One salient feature is that
these shifts are sensitive only to the low-Q° ( low
momentum transfer ). Thus, the dark Z effectively
changes the weak neutral current scattering, including
the effective sin’6,, which describes the parity
violation, but only for the low momentum transfer.

Fig. 3(from Ref. [ 3] with a slight modification )
shows an example of how the effective sin’f, changes
with Q in the presence of a dark Z for m, =100 Mev,
200 Mev cases. Although there are some details in the
figure, the important point is that the deviations appear
only in the low Q values, roughly 9 <m,. They never
appear in the high Q values relevant to the high-energy
experiments, which tells us that we need low-energy
experiments to see the dark Z mediated scattering

effects.
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Fig.3 Effective sin’@,, running taken from Ref. [ 3]

In Fig. 3, dark Z of 100 MeV and 200 MeV were

taken. Note that the deviations appear only in the low-
Q’ regime( Q°<m}).

In  this region,  non-perturbative  QCD

contributions to the SM value become important. They

have traditionally been determined utilizing dispersion

[38-39]

relations Recently, first-principle lattice QCD
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determinations of the leading-order hadronic effects
have also become available ***! .
For the low-Q° parity tests, one can use the

[4244) Ra‘i o l4546]

atomic parity violation in Cs i0 or the

low-Q” polarized electron scattering experiments SLAC
E158'47)  JLAB Qweak'®’, JLAB Mgller™®’ and
Mainz P2 °°'. The possible deviations due to the dark
Z can be large enough to be observed with the future
experiments.

For the intermediate scale Z' of m, =~ ©'(10)
Gev, the deep inelastic scattering experiments such as
JLAB PVDIS"" and JLAB SOLID“? may also be
sensitive. In fact, as Fig. 4 ( The NuTeV anomaly can
be addressed by this intermediate scale dark Z) taken
from Ref. [4] shows, the intermediate scale Z' can

address the NuTeV ( < Q > =5 Gev) anomalym].
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Fig.4 The 15 GeV dark Z case taken from Ref. [4 ]

4 Conclusion

The parity test by precise measurement of the
sin’@, has been important in studying new gauge
helped
establishing the SU(2), x U(1), electroweak theory.

There is a growing interest in the dark gauge interaction

interactions.  Especially, it  critically

( mediated by a light Z' gauge boson) around the world
partly because many existing low-energy facilities can
join the searches. While most searches of the light Z’
are based on the direct bump searches, the parity tests
in the low-Q* (‘such as the atomic parity violation,
polarized electron scattering, deep inelastic scattering)
are important and complementary searches for the dark
force. The latter are also independent of the Z' decay
branching ratios.

If the history may repeat, the dark force evidence

from the low-Q° parity test might precede the discovery
of a new resonance just like what happened in the

electroweak interaction case.
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