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Abstract: The compound Poisson risk model was considered in which taxes were paid according to

a loss-carry forward system and dividends were paid under a threshold strategy. For this model,

the ruin quantities were discussed by defining an expected discounted penalty function at ruin and

the analytical integro-differential equation satisfied by the expected discounted penalty function

was derived. Finally, in the case where the individual claims follow an exponential distribution,

explicit expressions for the ruin probability were given.
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0 Introduction

The compound Poisson risk model (or the
classical Cramér-Lundberg risk model) describes
the surplus process of an insurance portfolio by a
stochastic process U= {U(1),t=0} with

R(t) = u+ o — S(») (D

where u=0 is the initial capital, the constant ¢=>0
NE)

1= ZX" 1s

n=1

is the premium rate, and S(1)

aggregate amounts of claims with the innovation
number process { N(t), t=0} being a Poisson
process (with jump intensity A=>0) denoting the
number of claims up to time ¢, and { X,, n=1}
( representing the amounts of claims and
independent of { N(t), t=0}) being a sequence of
independent and identically distributed nonnegative
random variables with a common distribution
function F.

Due to its practical importance, the surplus
process with certain dividend strategies has been
receiving remarkable attention. In his original
paper, De Finetti'? laid the foundations of what
would become an increasingly popular branch of
risk theory: dividend strategies. Gerber et al. [
considered the compound Poisson risk model with a
constant dividend barrier and obtained the optimal
constant dividend barrier level. In the well cited

.B1, the so-called expected

paper of Gerber et a
discounted penalty function (also called Gerber-
Shiu function) is introduced and in which an
obvious direction is to turn one’s attention to the
the joint distribution of the time of ruin, the deficit
at ruin and the wealth prior to ruin. Lin et al. [
also considered the compound Poisson risk model
with constant dividend barrier, and analyzed the

. considered the

Gerber-Shiu function. Lin et a
compound Poisson risk model with the threshold
strategy and discussed the Gerber-Shiu function as
well. More results on dividend strategies can be
found in Refs. [6-12].

In recent papers, the loss-carry forward tax

system (the amount of tax payments should not

extensively. Albrecher et al. ™* discussed how tax
payments affect the behavior of a compound
Poisson surplus process, a remarkably simple
relationship between the ruin probabilities of the
and without tax was

surplus process with

established. More recent papers-*+?-

on this topic
can be found.

In our model, we consider a compound
Poisson risk model with taxes paid according to the
loss-carry forward tax system and dividends paid
under a threshold strategy. The loss-carry forward
tax system is as follows: taxes are paid at a fixed
rate Y€ [0,1) of the insurer’s income, whenever
the surplus is at a running maximum (or, the
portfolio is in a profitable situation): R,.,(t) =

max { R,., (s): s << t}.

surplus reaches a barrier of constant level b,

Meanwhile, when the

dividends are distributed at a constant rate a<<
c(1—79), where ¢>0 is the premium rate in the
classical compound Poisson risk model. The
dynamics of the surplus process {R,.,(t),t=0}
thus are determined by
dRy,.0 (D =

( cC— a— Cyliliy‘u_b(z) o‘"’méwR

o Lig, L o=ndit

Y.a-b(

Ce—arlig, 0 (s Ry (9] Yk, o=ndt—

N

dOTX),

n o1

Ry.a.h(o) —u

(2)
where u=0 is the initial capital, >0 the constant
premium rate, a the threshold dividend rate, 1, the
indicator function of a set A, {N(t),t=0} a
Poisson process with intensity A=>0 denoting the
number of claims up to time ¢, and { X,, n=1},
representing the amounts of claims and being
independent of { N(t), t=0}, a sequence of
independent and identically distributed nonnegative
random variables with a common distribution

function F(x) which has a positive mean

= J‘V:F(I>dx< -
Q0
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Here, F(x) =1— F(x) is the tail function of
F(o.
We denote the time of ruin by T,..,. that is
Tyws = inf{t: Ry, () < 0} (3)
and T,,,,=<° if R,...,(t)=0 for all ==0. Clearly,
Ryoo(Tyer—) and | R,,.,(Ty.o,) | are the surplus
immediately prior to ruin and the deficit at ruin.
We define the Gerber-Shiu function by
@, (w) = Ele Mrerw(Ry on(Tyos —) s
| Ryar (Troa) Dlir, o | Ry (0) = ]

4

where w( x5 25) 5 21220, 2, >0, is a nonnegative

b

function which denotes the penalty due at ruin, =0
can be viewed as the argument for the Laplace
transform of T,,., or an interest force for the
calculation of the present value of the penalty. It is
clear that the ruin probability for the process
{R,,.,(D),t=0}, denoted by
W, () = P(Th0p <o | Ryoy(0) = w) 1=
P.(T,., <<%,
is obtained from @, ., (u) by letting & v 0 and
w=1.
We write
D, . (w = (D)1 (W,
Vo () = (Wy o)1 (w)
for 0=<X u<{b and
Do () = (D) )2 (W
Uy Cw) = (9,02 (w
for u=b. We shall drop the subscripts ¥ and «
whenever Y and a are zero, respectively, and drop
the subscript b whenever b tends to infinity.
Throughout this paper, we assume that the
safety loading factor defined by
— oA (5)
Ap
is positive. We also assume that llfn Dy o, () =0,
which holds naturally when w(a;, a;) is a bounded
function.
The rest of the paper is organized as follows.
In Section 1, analytic expressions for the expected
discounted penalty function at ruin, that is,
(D,,,,)1(w) and (D,,,),(w) are

Section 2, for the case that individual claims follow

derived. In

an exponential distribution, explicit expressions

for the ruin probability are given.

1 Analytical expressions for the expected

discounted penalty function

In this section, we derive the analytical
expressions for (@, .,) (u) and ( Dy .0, Cuw). It
will turn out that ®,., (u) is related to @, (u)
which is extensively investigated in Ref. [5].
Let

B,(uswy) 1= E[e ¥ ] (6)
denote the Laplace-stieltjes transform of the upper
exit time 7, (u, u; ) which is the time until the
surplus process { R,(1),t=0} (with premium rate ¢
and tax rate y) starting with initial surplus u<<u,
reaches u, without leading to ruin before that
event,

In the following Proposition 1.1 we derive the
analytical expression of By,(u, u,). which plays an
instrumental role in analyzing the expected
discounted penalty function.

Proposition 1. 1 The resulting Laplace-
Stieltjes transform of the upper exit time 7, Cu, u)
is a power of that of the upper exit time Cu, uy) »

that is

1

h(w |77
h(ll(;)J

where h (u) is the solution of the integro-

1 (
ByCusw) = (BCusw))i v = { )

differential equation
h' () — (ot DR + 3 bz — dF(y) =0
Q0
(&)

Proof It follows for instance from Gerber et
al. B1 that the second equality in (7) holds. Now,
if we condition on the time and the amount of the
first claim when 0<C «u<T w,, contingent on this
time, there are two options: the first claim occurs
before the surplus has attained the level u, or it
occurs after the surplus attained the level w,. For
the amount of the first claim, there are two
possibilities as well: after the claim the process
{R,(),t=0} still operates or the first claim leads

to ruin. Implementing these considerations and
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using the conditioning technique we obtain
E[e*b\zu/(u.uu):l —

uy—u PR
e Xy E|:e75r‘/(“'“0) T] > Uy u :|+

c(1—7v

y—u
o1 N
j e (Xt-0) tdt .

0

Cul (1=t
—0r, Cus uy )
J EI: El:e A | {Rywill attain the level ) belore ruin) ‘
0

t+Cutcl—Pit— xsutcl—y0] |
X1 — Xy Tl - t]dF(I) -

=7

uy uy .
eﬂ\(a—w eioi((lfy) + )\ef(h o)ldt R
[

w1 )t
j "Blut (1 — Pi— zout c1—Po -

0
B,(u+ (1 —Pt,u)dF(x)
Changing variables s= u+ ¢(1— ¥) t and applying
h( [25] )

the well known identity B(w , w) = hCw) Oy <<
u; » we have
_ Mo M Ao A
B,(usuy) = e A OT=H | e m .

S h(s— x)
LGy dF(xo) (9)

(9) with

differentiating it with respect to u leads to

W ae
J e <@ 7'B,(s, Uo)dSJ

+0
Multiplying Eq. e @ 7 then

J
B, Cus uy)
Ju

By( U, u{;)

f— 1 1 .
c(l—v h(w

(At O h(w) — AJ“h(u— DdF(o).
0

Applying (8) and using the boundary condition
B,(w,u,)=1 leads to (7). Proposition 1. 1 is
proved. ]
Let

B (u,wy) 1= E[e Far‘®%’] (10)
denote the Laplace-stieltjes transform of the upper
exit time t,, (u, u,) which is the time until the
surplus process {R,,,(t),1=0} (with premium rate
¢, dividend rate « and threshold b) starting with
initial surplus u<u, reaches w,=b without leading
to ruin before that event. Clearly, if we let §¥ 0 in
B*" Cuy uy) 5 it 1s reduced to the probability that the
surplus process {R,,(1), =0} starting from initial
surplus u<u, reaches w,=>b before ruin, which is

denoted by (B*")qCu,u;). We write

B Cusuy) = B Cuy ug)
(B*") Cusug) = (B Cus ug)
for 0<<u<{b and
B*"Cusuy) = B5"Cuy ) »
(B*") o Cusug) = (B8 o Cuy )
for u=».

Now we provide integro-differential equations
for the function B*" Cu, u, ) in the following
Proposition 1. 2 (proved by Ref.[19]), which will
help us to prove Theorem 1. 1.

Proposition 1. 2 The function B*" Cus u)
satisfies the following integro-differential equations.

When 0<C u<lb,

%B?'b(u, uy) = A+8B?’b(u, Uy) —

du C
%J Bi?Cu— o ) dFC) (1D
- 0

and, when w=b,

S usuy) = —— Cus uy) —

f)u C

iBa.I; }\+ 8Bg.b
— o -

~ =D
A (J B (u— ) dF() +

C— ¢
J“ B Cu— 2 ) dEF() (12)
u b

Now, we derive the expressions of (®,,,), (u)
and (@, ;)2 (w as follows.
Theorem 1.1 When 0<u<b,

((Py.a.h)l(u) -
h(w | ™ h(w |
D, (w) — [h(b)} D,(b) + Wb (D, 02 (D)
(13)
and, when u=b,
((Dy,a,b)z(u) —
T a I © S
(1= 7 — o Per2(W =

exp{fM( t)dt}fw(@l,[,)g(s)M( 9 .

u

expl— | M(ndi}ds (14)
where
M =
b
é{}\‘k(%*)\(J By (t— xo)dF(x) +
(11— —a o
JI B (t— 2 0 dF())) (15)
b

®,(w is given by Ref. [18,Eq. (10)], that is
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1 J"V (s)ds} Proof When 0<Xu<lb, let A := {the process
1 (8 S)e

_ 1 o
@, (w) = c<1—y>eXp{ «(1—7)

0

{Ry...,(s), s=0} will attain level b before ruin} and

JNVg(t)exp{ Vl(s)ds}dt, A the complement of A. Clearly, if the process

al
(1 —7lo
with {Ry..,(1),t=0} does not attain the level b until

: ruin, then the trajectories (until ruin) of the
Vi(o = A BG— 2, 0dF(o — Gt ),

0 process {R,,.,() .20} is identical to those of the
V() = process {R,(t),1=0}. Implementing the

(A4 o6— /\J[ B(t— 2, )dF(2)) () — D' (1). considerations above we have
Q0

((P%a,h)l (bl) - Eul:Eu[eim‘y‘u'hw(R%a,h( TV-a-/) 7) s ‘ RV-a-h( T%a,b) ‘ >1{'1‘)’.a < l'A;‘ ‘ TY( Us b)]] +

<
ELe™ w(Ry(T, =)y | RyCTy) DLy ooy 1 ever avtins tevel b before riny ] =
B,(u, ) (D,,..,):(b) + E e Trw(R,(T,—), | R,(T,) | )1'T7<~~i:\'»“>:| —
EleMrw(R,(T,—), | R,(T, D1. T, <00} 1 R, will atain b before iy ] =
ByCusb) (P, 01) (b)) + &, (w) — By(u, b) D, (D).
Applying Proposition 1.1, one can arrive at (13).
When u=0b, by considering whether or not there is a claim during the infinitesimal time interval from

0 to dt and using the conditioning idea of Ref.[17 ], we have
(D, (w) = (1 —MdDe™ (D, (ut (c(1— P —dp) +

Adie ‘{J wlut (1 — 9 —dtsz— u— (1 — 7 — DdDdF(2) +

w1l 7 odt

w1 Y wdi
J ' (Bf"(u4(c(1 =) —dt— 2, u+ (c(1 =Y — DdD) (D)) (u+ (c(1— ) —dD) +

ul Cell=N—a)di—b

(&, ) (ut+(c(1l—Y) —dt— ) — Bf'(u+ (c(1—9) —ddt— xsu+ (c(1 — ) —a)dt) »

w1 Y dt b

(D) (ut (c(1—7) —add)dF(2) +J (D) (u+ (1 =) —ddt— ) —

0

Be'(u+ (c(l— ) —adi— xsu+ (c(1— ) — DdD) (@, ) (u+ (c(1— ) —a)dD) +
By (u+ (el — ) —dt— xsut+ (el — ) — DdD) (D)) (ut (c(1— ) — dt))dF(x) | + o(do).
Taylor expansion and collection of terms of order dt yield

(B0} (0 = A (B, (0 —

_ats S -
c(1—7p { wlu, x— wdF(x) +

c(1—7) —all.

J“ (BY"(u— 25w (Dy,0)2 () + (D)1 (u— 2) — By (u— 2o w) (D, (w)dF(x) +

u—h

u b
j (D)o (u— ) — B (u— 2, ) (D) (w) + BE"Cu— 25 w) (Dy,,.) 2 (w))dF( x)} (16)
Q0
In addition, from Ref.[5] we know that
, - )\+ 8 )\ “u—h tu
(@000 =100, (0 = AT (@) (e DdF() + | (80 (e AP + AGw |
- - Q0 u b

an

where
Alw) — wa(u,x* WdF (D).

Plugging (17) into (16), we have
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1

(Do)} (W) = g

w b

{k+3*A(J P (u— s wdF(x) +
Q

J“ B u— 2 WdFC) | (@) () —

1

b
[ _ abo o
(,(177)70({A+3 }\(JO By’ (u— x, wdF(x) +

J“ B Cu— 1. WdF () | (@, (w +

c—

W(@ e (w) =
MCw (D, ,.,), (w) — M(w (D), (w) +
c— a
cd—7 —a (®,,)5(w.
Thus,

(@) (1) = exp{J:M(t)dt} .
(C—J:I(M(s)((h_b)g(s) —

__ ¢~ a
e (@) -

eXp{*Jé}M(t)dt}dS) :

where C is some constant.

0

. T
Noting that M(t)/c(lf}’)*a (>0) and
1im‘(®y.a.1,)g(u):0, we have
_ [ : (o c—a reol.
c=| {M(§><q>ﬂ,,,>g(>> Fee s T

exp{*JNM(t)dL}ds.
b
Hence

(D) (1) — exp{j”Mumt} .
b

- C— /
J” <M(s)(<I)a.b)g(s) *m(dﬁ'&.[,)g(s)) .
exp(— | M(dt)ds (18)
b
Furthermore,
Ci — J—
c(l*)’) ((D )2 ()

c—a ! .
g — aexp{JhM( dt}

J‘V:M(s)(@],/,)g(s)exp{ff\M(t)dt}ds —
u b

o c— «a “ .
c(1—7 — aexp{J,,M(‘)d‘}

f?(@u_b)é(s)exp{*J)M(t)dt}ds (19)
u b

Plugging (19) into (18), we arrive at (14). The
proof of Theorem 1.1 is completed. L]

We remark that the Eq. (14) for (&, .,); (w)
is independent of (&, ;) (w. However, (d, ;) (w)
is involved with (®,.,.,); (u) by the boundary
condition (P, ;)1 (b—)= (D, . ;), (b), which can
be obtained by letting u* b in Eq. (13).

Remark 1.1 Letting 8y 0 and w= 1, (14)
can be rewritten as
(\Ify_u_/,)z(u) -
cC— (94
— (¥, S S
(d—p o ez =

expl | "M (Ddi | (. (oM -

exp{—J’M<><t>dt}ds 20
0
where
S S
M@ = 05—,

w b
(=" B w2y wdF) +

J" B, (u— w0 dFD) | @D

Note that
llfn( B?’h)o ( uU— X u) ==
ay 0

P, .(R(1) reaches the level u
without leading to ruin) =

1 — ¥(u—
1 — W( )

and lim (¥, ,,); (w) =¥, (), 0L u<b,i=1,2,

ay 0

,O < ui=1,2,

we have
v, (uw) =

777J ' I S
(w liyu‘lf(s)exp{ d—7
Ty [l —=vG— )
L[A AJO 1— ¥ dF("‘)]dt}ds

X{ 1 JM[Ai Jtlf‘l’(t*x)
HPla=—plo 01— WD

1 “(1—= )
W(u)iexp{(lf}’)Jo 1— ¥ d}.

- Y ’ 1 J
J“’ T, V‘I’ (s)exp{ d—»

dF(ﬁ]dt} -

(1—w(p)’
1— (o) d’}d
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W) — (1 — W)

J Y (1 — W) Tids —
u 1* }’

1—(1— w(w)Ts
the

integro-differential equation for ¥(uw) ;

(22)
the

where second equation follows from

AT W (W) - AJH‘I’( u— 2 dF(2) +
Q

AF(w) = 0.
Obviously, Eq. (22) coincides with Ref. [ 13,
Eq. (1) ].

2 Probability of under

exponential distribution

ruin

In this section, we assume that the individual
claim amount is exponentially distributed with
parameter 3>0. Our objective is to calculate the
closed-form expressions of probability of ruin, that is,
the expressions of (¥, . ,); (w) and (¥, ;) (w.
Following from (12), (21), and the results (16),
(17) in Ref. [19], one can get that

c— « A A A
— L L Q= Pt — Pl
M, (1) = U= c—a e (23)
A=) (e D= e LD 4 ((e— B D (Be(Tr P — Lol D)
which implies that
. (=@ LeEemu gy |77
expl | My (ndi) := - (24
’ (A— @ 7e<:ﬂ'*>" + g (b
where
G (D) =— G— @ Al D 4 ((em wp— ) (e D1 — Aoy,
C C
In addition, from in Ref. [5,Example 6. 1], we have
(W0 () = —2—(1— QU + Qe Dy (Zrman =y, (25)
(c— B
where
Qb — Ac'ﬁ((c*@(),@*)&) (26)
Bre T+ B((c— DB— N
Therefore, by Egs. (14) and (19) we have
T,y — A= QD) + QeI (apyan
(c— B
c1— Qb + Qe ) (o p)b[ L) Al D ]%
Cc— @ Gh— @B e A= . © + ¢ (D)
@) A i e
(|G @ Le D 4 g — (g () @) 27

By (13) and the classical ruin probability identity

A (2P
«In,<u>:1—[1—_—3etﬁ)] .

when 0<Cu<{b, we have

A 2 8) . | 1T
(o)1 (w) =1— I*Cfpe(t #) J _

N B—Ae(% B

C

17

C o 7& (%7{3)17]' 7]
[1 [1 C.Be +

g— A o

C
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LA )T )

p—ce [A(l—Q(b)+Q(l))e(f*’3)”)7

b Ao (=0

(1 — Qb + Qe My (ﬁ,p)b[ oA (A Ji

C— D — @ e A— @ c© + g (D
A (l ‘?)b ‘(1(7; 1 I
(|= @ 2eGs0rt g — (g ()= | (28)

We point out that when 0 << u << b, the
probability of a drop below the initial level is
(¥,..s—.)1(0) under the present model. When u=
b, the probability of a drop below the initial level is

reduced to the same probability under the

compound Poisson model with tax rate ¥ and
premium rate ¢ — a considered by Ref. [13],

which equals

1
YT
;ﬁ)uJ‘ !

N R S =
e Y
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