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Abstract: Multifractal extension of detrended cross-correlation analysis (DCCA) usually involves
the trouble that the computation of arbitrary powers of the negative cross-covariances leads to
complex values. However, a commonly adopted modulus processing method MFDXA often
indicates significant multifractal cross-correlation signal when actually no fractality exists.
Mulitfractal cross-correlation analysis (MFCCA) proposed by Oswiecimka preserves the sign of
the cross-covariances and settles the trouble above. MFCCA is a natural general extension of
MFDFA and DCCA. Here it was demonstrated that MFCCA performs more effectively and
powerfully than MFDXA from the view of the general two-component ARFIMA processes model.
MFCCA can correctly identify the signal of multifractality behavior and show sensitivity to the
varying of the weight parameter W.
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0 Introduction

Correlation is an eternal topic in the academia
and industry. For stationary series {a;} of i=1,
-+, N, correlations between the elements of this
series separated by t steps are defined by the auto-
correlation function? ;

Clo) = xiaiy.) =
N N

1 1 1
Niﬂ;(l"zfﬁz ) (x; ,*NZ i)

i=1

(D

If {x:} is uncorrelated, then E[ C(7)] is zero

for ©>0. If short-range correlated, E[ C(1)]cc
exp{—1t/7« } with a time decay t«. If long-range
correlated, E[C(op)Joc ¢ 7, 0<y<1l. However,
empirical data are often demonstrated non-
stationary series, which are superimposed by noise
or due to underlying trends of unknown origin.
Eq. (1) can not be directly used for non-stationary

1.1 was the first to propose a

series. Hurst et a
rescaled range analysis applied in non-stationary
situations. Detrended fluctuation analysis (DFA),
first introduced by Peng et al.'™ in 1990s, is a
powerful tool to discover the scaling behavior of
noisy data in the presence of trends without
knowing their origin and shape. DFA describes the
mono-fractal properties. However, many records
do not exhibit this simple mono-fractal scaling

L5 Multifractal detrending fluctuation

behavior
analysis (MF-DFA)™ is a natural generalization of
DFA and works better than wavelet transform
modulus maxima (WTMM),

Cross-correlation is widely used when involved
ingredients.  Detrended

( DCCA ) is proposed to

long-range

with  several Cross-
correlation analysis
investigate  the cross-correlations

between two non-stationary time series, which is

introduced by Podobnik et al.™ and based on
DFA. Subsequently, the multifractal extension of
(MF-DCCA) of DCCA method was proposed by
Zhout",

However, one problem arises, that is,
complex value is obtained with the computation of
the arbitrary powers of the negative cross-
covariance. So far, a large quantity of previous
research has employed the method of taking the
absolute of the detrended cross-covariance, called
MFDXAM O s weicimka et al. ™ argued that
the method of taking modulus so far available in
the literature seriously distorts or amplifies the
multifractal cross-correlation measures. Osweicimka
took into account the sign of detrended cross-
covariance of each box, eliminating the complexity
of computing of arbitrary powers of the negative
called
MFCCA, which is a natural generalization of
DCCA and performs better than MFDXA.

To support MFCCA, Osweicimka verified the
reliability of MFCCA from the analysis of special
form ARFIMA processest '™ and MSM (Markov-
switching modeD! "™, showing that MFCCA is a

robust and effective tool.

cross-covariances. The method was

As we know, two-
component ARFIMA processes usually have a
general form with the parameter W, which weights
the strength of the correlation of the two
processes. With the introduction of W, we verify
the advantage of MFCCA over MFDXA.

Our paper is arranged as follows. In Section
2, the algorithms of MFCCA and MFDXA are
described. In Section 3, we verify the effectiveness
and advantage of the MFCCA algorithm over
MFDXA from the general
ARFIMA processes. In Section 4, the tool of

MFCCA algorithm is employed in investigating the

two-component
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correlation between the price and volume of
Chinese CSI 300 index market, and the MFDXA
algorithm is conducted to compare the results. In

Section 5, we draw some conclusions.

1 Description of the MFCCA algorithm
and the MFDXA algorithm

In this section, we will restate the MFCCA
algorithm and the modulus version of MFDXA
algorithm. Since the main procedures are the same
for both algorithms, and the only differences are
displayed in Step 3, we present them all together.

Consider two time series {x;}, {y;}, where

i: 1 PR N.
Step 1 Determine the “profile”

X(j) =D [a— (], 1
:jl L (2)
Y(]):Z[‘y17<"y>]’]:17'”9NJ
i1

Here ( ¢ ) denotes the whole average of the
corresponding time series.

Step 2 Divide the profile { X(j)}, {Y(j)}
into N,=<(N/s) nonoverlapping segments of equal
length s. We repeat this process from the opposite
end since N/sis not always an integrate. Calculate
the local trend of the 2N, segments by a
polynomial of order m (PY", for X, P{" for Y).
Then

determine the detrended cross-covariance for each

m=1 will be conducted in this paper.

segment v,

Fiy (vy5) =

LS TUXE o s KD — PR
S =1

(Y[Co—D s+ k] — Py (R}, v=1,N;

Fy (v, s) =
LS UXIN= (o N s+ 1) — PR
ko1

(YIN— (v— N)s+ kD — Py (R},
v=14+ N,, 2 N,

(&)
Step 3 Compute the ¢-th order covariance.
In the general case, F., (v, s) can take both
In the MFCCA

positive and negative values.

algorithm, the sign of the covariance should be
taken into account when calculating the g¢-th order

covariance function as follows:

2N

FL(o = — S sign(FL (o, 9) | FL (ono) | £
2 N-\v 1

4)

The parameter g can take any real number
except zero. However,when ¢=0, the L."Hospital
law can be employed, and we can then obtain the

following logarithmic version,

2N

F (o =

2 s))ln\FQ(v,s)‘

2\1

(5)
In the MFDXA algorithm, the absolute of the
covariance of each segment v is directly computed

without any other manipulations as follows:

2N,
_ LN e ,
_ZN,; ‘Fly('v,.

When ¢ = 0, the analogous version to the
MFCCA algorithm is exhibited as follows:

FL,(9) (6

F;()——Zlnm\(v,s)\ )

From Eqgs. (4) and (6) we can see that, for
the negative ¢, small values of F% (v, s) are
amplified, while for large ¢>>0, its large values
dominate. We repeat the above procedures for
different values of s. In practice, it is reasonable to
take $m.< N/5.

Step 4 If the obtained FY, (s) fluctuates
around zero, there is no fractal cross-correlation
between the time series for the considered value of
q. I the g¢th order covariance obeys the power
law, simultaneously. depending on different values
of ¢, then the two time series exhibit the
multifractal cross-correlation.

F1 () = F,(qrs) ~ s )
For ¢=0,
exp(FL () = F, (0,5 ~ s (9)

For the monofractal cross-correlation, the

exponent h, is independent of ¢ and equal to h as

obtained from the DCCA algorithm. When {x;}
are equal to {y;}, the MFCCA algorithm and
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MFDXA algorithm are equivalent.

2 MFDXA or MFCCA

A commonly adopted “moludus” variant of the
MFDXA procedure has been in question in Ref.
[15] considering the special case of two-component
ARFIMA processes and the MSM model. In this
paper, to exemplify the performance of MFDXA
and MFCCA more in detail, we introduce the
ARFIMA

stochastic processes to generate coupled fractal

general form of two-component
signals with long range correlation. In this case,
each variable depends not only on its own past, but
also on the past values of the other variable.

v =W>) a.(d) yo, + A=W D) a.(d) vy, &

n=1 n=1

(10

yi= =W D3 ad) you + WD a(d) yi 4«

=1 —1
an
Here & and ¢ ; denote two independent and
identically distributed Gaussian variables with zero
mean and unit variance. a, (dis ) are statistical
weights defined by
a,(di) = D(n—dy) /(D(— dyz,) )T+ 1)),
where I' denotes the Gamma function. W is the
weight parameter controlling the strength of the
correlation of both series. It is easy to see that
when W =1 the two series are decoupled, while
when W=0.5, the two series are the strongest
correlated.

To better elaborate the performance of both
algorithms., we control the possible variable
ingredients, setting d; = 0.1, d» = 0.4 for all
situations we will study. Before generating the
series, we produce two independent standard
normal random series, fixed at each scenario. The
only variable ingredient in our simulation is W,
ranging from 0.5 to 1.0 step by 0. 05, indicating
the strengthes of the correlation of these two series
weakening.

We perform MFDXA and MFCCA algorithms

in each situation. Both procedures use the least

square fit to estimate the local trend. We calculate
the order g ranging from 0.5 to 10 intercepted by
40 steps of 0.5 length.

When W =1, the two series are decoupled
with no cross correlation. There is no reason to
expect them to be multifractally cross
The ¢th order covariance calculated
by the method of MFCCA oscillates around zero,

implying that

correlated™,

there are no power-law cross
correlations, which is in agreement with the
expectation. In Fig. 1, we present the ¢-th order
covariance ( when q = 2) from MFCCA and
MFDXA., MFDXA

obviously power-law character. When W moves

respectively. shows an
towards 0.5, both methods catch the multifractal
behavior. As we know, Ah= hy., (@) — hpin (¢) can

measure the degree of the multifractalityt'. Fig. 2

F3(s)
= b s SN oo

L L L

0 1000 2000 3000 4000 5000
scale
(a) MFCCA

20+
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=
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= Lh
T
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Fig.1 F, (s) ~ susing MFCCA and MFDXA

o MFCCA
20l o MFDXA
1.5¢
3 1.0t
0.5+
0.5 0.6 0.7 0.8 09 1.0

Fig.2 Ah ~ W using MFCCA and MFDXA
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displays Ah as a function of the weight W using
MFDXA and MFCCA, respectively. However, for
the situation W = 1, the Ah obtained by the
MFDXA algorithm is so small, 0.09, that it
almost indicates a unifractal characteristic. This is
a misleading signal. With W ranging from 0.5 to
1. 0, the self-similarity between the two series will
become more and more complex, leading to an
increasingly stronger multifractality. From the
solid points, the method of MFCCA coincides with
our expectation of an increasing Ah. The Ah
calculated from MFDXA in Fig. 2 exhibits little
variability, and more importantly, it experiences a
non-monotonous process. This implies that
MFDXA is not sensitive to the vital weight
parameter W, From the perspective of the general
form of ARFIMA processes, we arrive at the
conclusion that MFCCA algorithm is more effective
and reliable than MFDXA. MFCCA is a natural
general extension of MFDFA and DCCA. MFCCA

algorithm can catch the true virtue of multifractality.
3 Analysis of the correlation between
price and volume in Chinese market

The CSI 300 index is a capitalization-weighted

stock market index designed to replicate the
performance of 300 stocks traded in the Shanghai
and Shenzhen Stock Exchanges. We select the CSI
300 index as our subject, because it is the best
representative to reflect the price fluctuation and
High

frequency data analyzed using the method of

performance of China’s A share market.

multifractal analysis is extremely rare in the
previous literatures. At the same time, high
frequency trading is becoming more and more
popular in China. We choose the 5 min closing
price and trading volume data downloaded from
Wind database.

The sample interval is from 14 ¢ 30, April 12,
2012 to 15 ¢ 00, July 25, 2014. Over the period
considered, this yields 26 597 data points. In this
paper, returns are computed as logarithmic price
return (that is In(P,;;) —In(P,), where P, is the
closing price at time t) and volume data are also
calculated as logarithmic trading volume variation
series (that is In(V,—1) —In(V,), where V, is the
trading volume at time t). Logarithmic price
return and logarithmic trading volume time series
are presented in Figs. 3 and 4, and their descriptive

statistics are provided in Tab. 1.

2.0
0.01F 1.5k

z
g g
g 5
o oF o
2 2
= =
o 2
E 2
E 001} E
& =
g §

=

-0.02}
0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000
time time
Fig.3 Logarithmic price return Fig.4 Logarithmic trading volume
Tab.1 The statistical description of return and volume series
mean max min SD ske kur JB
return —3.61E—6 0.014 279 17 —0.023 22 0.001 35 —0.875 03 19. 756 47 435 775,177
volume 4. 08E—5 1.893 617 —1.234 38 0. 244 493 0.310 332 1. 649 358 3 439.65177"

[Note] %% denotes 1% significance level
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Tab. 1 indicates that both skewness and
kurtosis for the logarithmic price return and
volume show significant

logarithmic trading

departures from normality. The Jarque-Bera
statistics for the normality test suggest that for
both series, the normality assumption can be
rejected at the 1% significant level.
3.1 Multifractal analysis of logarithmic price return
We perform MFCCA for CSI 300 logarithmic
price return and itself, in fact, from Eq. (3). This
method is equal to MFDFA!M., Fig.5 (a) exhibits
the detrended variance for the designated s=100,
F2. (©0,100) as the function of the box number .
Obviously, they are all positive values, thus
avoiding the trouble that the detrended variance

function 2, (v, s) for some ¢ results in complex

values.
9E-5
=)
S 6E-5
‘?; 3E-5
o -
0 100 200 300 400 500
v
(a) price
§ 0.20
= 0.14
oh
0.08
0 100 200 300 400 500
v
(b) volume
g 0.001
=
g 0
—0.001
0 100 200 300 400 500

v
(c) price-volume

Fig. 5 Detrended (co)variance function

for the designated s = 100

In order to characterize the correlations in this
case, the ¢th order variance function F,.(q,s) are
calculated for different g ranging from — 10 to 10
intercepted by 40 steps of 0.5 length. The
generalized hurst exponent h(g) in Fig. 6(a). For
the positive scenario, h(q) is decreasing from 0. 53
to 0.40, multifractal

showing an obvious

character. For the negative situation, h(q) is
ranging from 0.58 to 0.53, generally larger than
the positive one. The ¢ dependence of multifractal
scaling exponent t(q) has concave and nonlinear
characteristics (see Fig.6 (b)). To accurately
characterize the strength of the multifractality, we
also compute the locally Hoélder exponent a(q).
A= oy — Omin = 0. 647 — 0. 304 = 0. 343,
which implicates we can claim that CSI 300
logarithmic price return shows slightly strong
multifractal characteristics. When ¢=2, h(gq) =
0.53, indicating that on the whole, the price
return has weak persistence, and the cross-
correlation for logarithmic price return is long
range positively correlated, that is, the high price
will probably be followed with higher price, and

the low price will trigger lower price. To some

extent, it also explains the herd-effect.

0.56F

0.52r

h(q)

0481

0.44}1

0.40

108 6 4 2 0 2 4 6 8 10
q
(a) h(g)

—6F

108 6 420 2 4 6 8 10
q
(b) dg)
Fig. 6 Hurst exponent and scaling exponent

for price return
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3.2 Multifractal analysis of logarithmic trading

volume

We do the same for logarithmic trading
volume as the logarithmic price return. Fig.5(b)
shows that the detrended variances F%,(,100) are
all positive values like those of the price return
series. However, compared with price, the
scenario for volume is more complicated and
interesting. Firstly, there exists an obvious cross-
over point™ for the ¢-th order detrended variance,
about In(s* )=4.1, that is 300 min, almost 1. 25
trading days (see in Fig.7, ¢q=10,+-, —10 from
top to bottom). For s<s° and s > s° the
generalized hurst exponent h(q) is figured out in
Fig. 8(a). For the part of s<Zs", the logarithmic
trading volume shows much more strongly
multifractal behavior than the price return. The
evident concavity of the scaling exponent 7(¢) also
recognizes the strong multifractality for the volume
series (see in Fig. 8 (b)). In this situation, Aa=
1. 58, much larger than that of price. h(2)=0. 38,

anti-persistence is illustrated.

In F,(q, s)

Ins

Fig.7 Logarithmic g-th order detrened variance

While for the part of s=>5s", the range of the
generalized hurst exponent is so narrow, that is,
0. 065 to 0. 048, exhibiting a linear behavior. The
apparent linearity of the scaling exponent implicates
the almost monofractality of the logarithmic trading
volume for s> s (see in Fig. 8(b)).

The existence of the cross-over point in this

0_
-10 -8 -6 4 -2 0 2
q
(a) h(q)

s
=
o0
—_
o

e Ins<4.1
o Ins>4.1

=

08 6 4 2 0 2 4 6 8 10
q
(b) o(q)

Fig. 8 Hurst exponent and scaling exponent

for volume change

situation indicates that one simple multifractality

model can not completely depict the nonlinear

character of volume series.

3.3 Multifractal
between price and volume of CSI 300 index
Like the MFDFA method conducted above,

the order m = 1 1is chosen to estimate the

Fig. 5(c)

covariance for the

analysis of cross-correlation

polynomial trend of each segment.

exhibits the detrended
designated s= 100, F%, (v, 100) as the function of
the box number w It is easy to notice that the
detrended cross-covariance function F%, (v,100)
takes both positive and negative values. Taking
the modules of the cross-covariance will always

ignore the important information. Reserving the

sign of the cross-covariance is a wisdom disposal
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route. The values of parameter g range from —10
to 10 step by 0. 5. For the negative gs, we arrive at
the same conclusion as Refs. [ 9,157, that is, the
g-th order covariance F% (s) fluctuates around zero
for the smaller s, even though for the larger s, F,
(s) are far larger than zero, but do not develop
scaling behavior. So in this situation, Eq. (8) is
not satisfied, which means that there is no fractal
cross-correlation between the price and volume
series under the negative gs.

Fig. 9(a) displays the relationship between the
cross-correlation exponent h (¢q) and ¢ for the
positive situation. h (g) is a nonlinear function
depending on ¢, which implicates that multifractal
cross-correlation really exists between the price
and volume in Chinese stock market. h(2)=0. 44,
illustrates that the relationship between the price

and volume is anti-persistent rather than perfectly

0.9F

0.8}

0.7}

0.5+

0.4F

0.3F

(@) h(g)

(b) q)
Fig. 9 Hurst exponent and scaling exponent by MFCCA

effective. The scaling exponent t(q) is calculated
in Fig.9 (b), Aa = 0.13 implicates that the
multifractality is very weak.

We also conduct the MFDXA algorithm on the
price-volume relationship. As a different result
from the MFCCA algorithm, we find that for both
the positive and negative g¢s, the detrended
covariances follow the nice power law and develop
scaling behavior. Like the MFCCA algorithm we
have done, Fig. 10 exhibits the hurst exponent and
scaling exponent when g ranges from —10 to 10 by
0.5. Fig. 10(b) shows a stronger concavity of the
scaling exponent 7 (g) than that obtained from
MFCCA algorithm. Aa = 0.93, which is much
larger than the previous result. The mulfractality
under MFDXA is much stronger than MFCCA,
moreover, multifractality also exists among the

small fluctuations.

1.0

0.9F
0.8F
0.7

0.6

h(q)

0.5p
0.4F

0.3F
0.2

-10 -8 6 4 -2 0 2 4 6 8 10
q
(a) i(q)

7(q)

—10}
e
-10 8 -6 4 -2 0 2 4 6 8 10
q
(b) #q)

Fig. 10 Hurst exponent and scaling exponent by MFDXA
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4 Conclusion

From the perspective of the general two-
component ARFIMA processes, we demonstrate
that the algorithm, MFCCA, is more effective and
reliable than the traditional modulus processing
method, MFDXA. The preservation of the sign of
the cross-covariance fluctuation function brings a
new challenge to the multifractality research on
cross-correlation. MFCCA is a natural general
extension of MFDFA and DCCA. Furthermore,
the application of MFCCA to the price-volume of
CSI 300 index in Chinese high frequency trading
market, indicates that multifractality behavior is
weak and appears selectively only for large
fluctuations. This  outcome  suggests that
multifractality of the price-volume of China’s
market might be temporal relations only between
large events. Employing the MFCCA algorithm,
we can obtain a more precise description of
financial market when talking about the cross
relationship. Further research will be conducted,
such as how to utilize this relationship to oversee

and stablize the financial market or to obtain better

portfolio return.
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